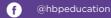
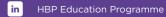


3RD HBP CURRICULUM WORKSHOP SERIES


MEASURING AND MODELLING BRAIN STATES

> 28-29 MARCH 2020 DAS CENTRAL SÖLDEN, AUSTRIA

> > SCIENTIFIC PROGRAMME



WORKSHOP INFORMATION

The final workshop of the 3rd HBP Curriculum Workshop Series invites researchers interested in measuring and modelling brain states at multiple scales. At the cellular level, the appearance of different brain states (such as wake, sleep, anesthesia) is reviewed at the scale of neurons, from extracellular recordings in both human and animal models. From a modelling perspective,

workshop participants will learn how cellular data can be used to build model networks of spiking neurons and how mean-field techniques are used to derive population models of different brain states from these network models.

This workshop is a satellite event to the **22**nd **International Neuroscience Winter Conference** (www.winterneuroscience.org/2020/).

Scientific Chair:

Alain Destexhe | Paris Saclay University

Organisers:

Sylvia Aßlaber | Medical University Innsbruck Judith Kathrein | Medical University Innsbruck Alois Saria | Medical University Innsbruck

Contact:

curriculum.edu@humanbrainproject.eu

Further information:

http://bit.ly/ModellingBrainStates

SATURDAY 28 MARCH 2020

13:00 - 14:00	Registration
14:00 - 14:15	Welcome & introduction
14:15 - 15:15	Brain states at the level of single neurons in mice Mavi Sanchez-Vives University of Barcelona
15:15 - 16:15	Optogenetic control of arousal state transitions Louis de Lecea Stanford University
16:15 - 16:45	Coffee break
16:45 - 17:45	Linking cellular levels and large-scale using mean- field models Alain Destexhe Paris-Saclay University
17:45 - 18:45	Modelling normal and pathological brain states at the whole-brain level Viktor Jirsa Aix-Marseille University
18:45 - 19:00	Wrap up Day 1

SUNDAY 29 MARCH 2020

09:00 - 10:00	EEG global microstates as basic building blocks of brain information processing Thomas Koenig University of Bern
10:00 - 11:30	Student presentations
11:30 - 12:30	Lunch break
12:30 - 13:30	Data-driven discovery of brain states Fede Raimondo University of Liège
13:30 - 14:30	Bistability, slow waves and complexity in physiological and pathological brain states Marcello Massimini University of Milan
14:30 - 15:00	Round table discussion

NOTES			

This project has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

humanbrainproject.eu/education