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Introduction 
By Stanislas Dehaene and Yadin Dudai 

 
This Deliverable identifies and inventories the theoretical syntheses, data sets, and models 
that Subproject (SP) 3 “Cognitive architectures” is delivering at the end of the Ramp-Up 
Phase of the Human Brain Project.  
 
In this introduction, we first review what we mean by “Cognitive Architecture”, how SP3 
was organized, and what is being delivered here.  

What is cognitive architecture? 

The term “Cognitive architecture” refers to the infrastructure underlying an intelligent 
system: the set of internal representations, algorithms, and hardware choices that allow it 
to operate.  

In theory, cognitive architecture might be agnostic to the hardware in which it is 
implemented (thus making contact with the fields of artificial intelligence and computer 
science). In the Human Brain Project, however, we believe that there is much to gain in 
analyzing the solutions that evolution implemented in the human brain. Understanding the 
biological hardware supporting a given cognitive architecture is a key step towards 
reproducing it in a machine, and so is understanding how development leads to the mature 
functional system. Similarly important is understanding how evolution shapes brain circuits 
and neural architectures, to optimize the fit between species behavior and their ecological 
niche. Brains have been shaped by selective pressures in which environments, capacities, 
biological constraints, and chance events interacted. As a result, the biological substrate, 
its structure, in situ activity, phylogenetic history, inter-species comparisons, and 
ontogenetic unfolding are all critical for understanding the brain’s computational goals as 
well as the operation and implementation of the algorithms subserving these goals. 

In a nutshell, the delineation of a “cognitive architecture” captures the brain regions and 
the interactions between brain regions that subserve a specific cognitive function. Defining 
a cognitive architecture requires the delineation of the brain areas involved, the format in 
which assemblies of neurons represent information, and the interconnections that allow 
them to exchange this information and converge onto a decision or an outcome. A reverse-
engineering approach —starting from the function, analyzing it into its component parts, 
and then finding how these map onto brain circuits and neurons— is often useful in this 
endeavor.  

General goals of SP3 

The original aim of our subproject SP3 was to provide a survey of selected core areas in 
cognitive neuroscience and, for each of these areas, to critically review what is currently 
known of their cognitive architecture: the key principles and experimental data at the 
behavioural, neural, and network levels that need to be considered and incorporated into 
any realistic theoretical model of the brain.  
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The Ramp-Up Phase was focused on a specific subset of well-defined, challenging cognitive 
domains, already partially studied by cognitive neuroscience. For each such domain, the 
scientists in SP3 reviewed the existing literature and also generated data from innovative 
strategic experimental protocols aimed at dissecting the associated patterns of brain 
activation and response dynamics. The generated data aimed to provide fundamental 
constraints on any attempt at modelling the corresponding function. By providing such top-
down constraints, arising from high-level knowledge of computational constraints, 
behaviour and brain circuits, cognitive neuroscientists in the HBP aimed to either create, 
or at least constrain, theoretical models and computer simulations that capture and 
reproduce the main facts about a cognitive architecture. 
 
The selected cognitive domains were: 

- Low-level perception and multimodal integration (WP3.5) 
- The cycle leading from perception to action (WP3.1) 
- Motivation, Decision and Reward (WP3.2) 
- Learning and Memory (WP3.3) 
- Core knowedge for Space, Time and Number (WP3.4) 
- Capabilities characteristic of the Human Brain (WP3.6) 

Each of these domains comprises, of course, a vast set of questions. In the Ramp-Up Phase, 
given the limited funding available, the teams focused on a narrower set of issues (further 
detailed in their specific subsection, as described below). For instance, within “core 
knowledge”, it was decided to focus entirely on the representation of space (place- and 
grid-cell systems allowing for spatial navigation, group led by Neil Burgess), thus leaving 
the representations of time and number for future work beyond the Ramp-Up Phase.  

Unfortunately, internal conflicts in HBP disrupted this plan. As a consequence of the initial 
dismissal of SP3, followed by reintegration of “systems and cognitive neuroscience” 
through an open call, virtually none of the scientists involved in the Ramp-Up Phase remain 
present in the next phase of HBP (most of them did not reapply voluntarily). Thus, the 10-
year plan that was initially proposed will not be fully achieved. Still, the Ramp-Up Phase 
led to a very significant productivity, with more than 30 published peer-reviewed scientific 
papers, 19 new data sets and 5 novel models developed. 

Description of the Deliverables 

Reviews. For each cognitive function or sub-function under study, the researchers in SP3 
developed detailed reviews of what they consider the essential facts about circuitry, 
physiology and function that any neuronal model of the corresponding cognitive processes 
should reproduce. These reviews have all been included in the present document. 

To improve the impact on the neuroscience community, the vast majority of these reviews 
were published in a special issue of the journal Neuron (published on October 7, 2015; co-
edited by Stanislas Dehaene (CEA) and Yadin Dudai (WIS), with help from Katja Brose and 
Christina Konen at Neuron). This issue contained a total of 15 papers on “Cognitive 
Architectures”, the majority of which were authored by members of SP3. The special issue 
was distributed broadly at the Society for Neuroscience.  

We believe that this publication is an important achievement of the present SP3, as it 
indicates that our central Deliverables have been peer-reviewed and passed the 
publication stage. Due to space or timing issues, a few reviews included in the present 
document have not been published yet, but their authors intend to submit them for 
publication too.  

Data and models. 
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As detailed further below, SP3 is delivering the following set of data and models: 

DATA 

1.5 Dynamics of the internal model of objects and faces (human behaviour and MEG) 

1.5 Localization and dynamics of spontaneous activity in visual areas (human fMRI) 

1.3 Dynamics of attention (non-human primate local-field potentials) 

1.7 Cortical representation of the body (human behaviour, ERPs and fMRI) 

1.4 Map of human inter-areal connectivity and phase lags (human SEEG) 

2.1 Human networks involved in computing confidence (human behaviour and fMRI) 

2.1 Mouse computation of confidence in action (mice behaviour) 

2.2 Human networks involved in motivation and effort (human behaviour and fMRI) 

2.3 Brainstem modulation of decision processes (human behaviour and fMRI) 

2.4 Human networks for motivation, decision and valuation (intracranial recordings) 

3.1 Brain signatures of procedural memory encoding and consolidation (human behaviour 
and fMRI) 

3.1 Human networks for episodic memory encoding and consolidation (human behaviour 
and fMRI) 

3.2 Human network for conscious and unconscious working memory (human fMRI) 

1.1 Unisensory and Multisensory integration in primary sensory cortices in rodents and 
higher mammals 

1.1 Database of neuronal recordings in primary visual cortex (cat intracellular data) 

1.1 Neural responses to unimodal and multi-modal stimuli (mice two-photon data) 

5.2 Human networks encoding syntactic structures (human fMRI) 

5.2 Cortical encoding of probabilistic sequences (human behaviour and MEG)  

5.2 Brain networks encoding geometrical sequences (human and monkey fMRI) 

5.3 Human networks for social cognition (human fMRI) 

MODELS 

1.2 Model of gamma oscillations in visual cortex 

1.6 Model of visual action recognition (+ stimuli + human behavioural data) 

3.1 Neural mass model of the sleeping brain 

4.1 Model of spatial navigation and spatial memory 

5.1 Model of the emergence of human areas responsive to letter and number symbols 

The corresponding experiments and simulations are described in detail in the following 
sections of this document.  

The SP3 coordinator (CEA, directed by S. Dehaene) ensured that all researchers filled in 
the Dataset Information Cards, which provide detailed information about the data, the 
location of the data storage and the provenance of the data. All data is documented and 
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is available for download, either on the local institution’s server, or on the FTP site 
provided by HBP.  

Self-assessment of the outcome of the Ramp-Up Phase 

Publications resulting from this work. The research performed by SP3 has resulted in 
more than 30 publications, the vast majority of which appeared in top-ranking journals 
(Neuron, Trends in Cognitive Science, Current Biology, The Journal of Neuroscience, etc.). 
In this document, a list of publications is included in each section. Several additional 
publications are in preparation. 

Indication of who has used this work so far, and for what. Most theoretical syntheses 
produced by SP3 researchers have been published in the form of papers available to the 
whole scientific community and, in many cases, already cited.  

The primary use of the experimental data and models has been the normal scientific 
process of generating publications and presentation and discussion in seminars and 
international meetings.  

Furthermore, throughout the Ramp-Up Phase, several collaborations and interactions 
with other subprojects and within SP3 took place. Here are a few examples: 

• WP3.1 Perception-Action 

Pascal Fries’ group (ESI) collaborated with Gustavo Deco’s group (SP4) on modelling ECoG. 
Martin Giese’s group (EKUT) interacted with SPs 4 and 5 on spiking neuron models (Grün / 
Diesmann). Peter De Weerd (UM) and Avgis Hadjipapas (UNIC) discussed collaborations with 
Gaute Einewoll (SP4) and Markus Diesmann (SP6) on biophysical/hybrid models of cortical 
columns. 

• WP3.2 Motivation, Decision and Reward 

Mariano Sigman (CEA/University of Buenos Aires), Florent Meyniel (CEA) and Tobias Donner 
(UVA) initiated a collaboration to investigate confidence in a perceptual decision. 

 

• WP3.3 Learning and Memory 

Lars Nyberg’s group (UMU) collaborated with Anders Lansner (SP9) and Ed Vogel (external) 
when producing the cognitive architecture description. 

• WP3.4 Space, time and numbers 

Neil Burgess’s group discussed with SP4 at the EITN on simulations of navigation, and with 
Gustavo Deco on MEG data relating to large-scale network models of brain function. 
Collaborations are planned with the new SP3 project EPISENSE (PI Cyriel Pennartz). 

• WP3.5 From sensory processing to multimodal perception 

Yves Frégnac’s group interacted with SP4 and the EITN Institute.  

• WP3.6 Capabilities characteristic of the human brain 

Thomas Hannagan (CEA) had positive interaction with Marc de Kamps (SP4) leading to a 
possible collaboration. Lauri Parkkonen (AALTO) has participated in the meetings of the 
“Magnetrodes” EU FP7 project, which aims at measuring neuromagnetic fields at single-
neuron scales. 
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Making the data available via HBP platforms.  

A strong effort was made to meet the HBP goal of integrating key data and making it 
available to others . All data was documented in detail and either loaded onto the website 
as instructed by our SP5 contact (Martin Telefont), or in a few cases made available on an 
institutional server. Detailed single-subject data, ready for further analysis, has been 
provided (e.g. reference data on human brain responses to 35 types of syntactic 
constructions, Pallier et al [see below]). Furthermore, most models developed in SP3 have 
been made available in the format appropriate for HBP (e.g. Martin Giese re-developed his 
simulations in the simulator NEST, one of the official HBP simulation tools). 

However, at the time of this writing, the SP3 data could not be made available publicly 
through the HBP platforms. This is because the platforms are officially opening at the end 
of March 2016. Throughout the Ramp-Up Phase, there was no platform on which we could 
deposit the data. Furthermore, the pilot platforms are not yet as user-friendly as initially 
envisaged at the beginning of the project. In particular, creating de novo adequate 
metadata structures for system and cognitive neuroscience compatible with the future HBP 
database structures would have required allocation of resources which were not available 
or planned during the Ramp-Up Phase. 

Since current SP3 members are leaving the HBP at the end of the Ramp-Up Phase, the new 
HBP teams will be in charge of future data integration and release, with the goal of 
fostering additional scientific collaborations.  

Self-analysis of the value and completeness of the data.  

As the present report as well as the quality of the publications demonstrates, SP3 has 
delivered highly valuable, detailed and useful syntheses, new reference data, and new 
models of specific cognitive architectures. Still, a number of caveats should be 
emphasized. 

Data coverage and “completeness”. The data that were acquired obviously correspond to 
a small subpart of the data needed to characterize a given cognitive function. In the 
limited time available (2.5 years), the SP3 leaders endeavored to design cognitive 
paradigms that would provide new reference data that they considered essential for any 
scientific description of the corresponding function. Given the infinite space of cognitive 
stimulation paradigms, we do not fully understand the question, raised by the referees, of 
the “completeness” of the data: unlike, say, cell counts or receptor concentration data, 
there is no clear point at which such data would be “complete”. However, the data are 
clear “complete” in the sense that all planned data acquisition have been completed and, 
in most cases, the data have been fully analyzed and are either published or in preparation 
for publication. 

Limited funding. The SP3 “Cognitive architecture” received a total of 495 person x months 
(PM) for 2.5 years and for 19 tasks, i.e. less than one full-time person per task on average. 
Money was not equally distributed, with some partners receiving 6 PM while others 
(particularly those joining through open-calls) receiving much more. For most teams, this 
was barely enough to cover the salary of a post-doc, plus scanning costs and the travel 
costs needed to participate in the many meetings imposed by HBP administration. The SP3 
achievements listed in the present document should be considered in proportion to this 
funding level, in particular in the case of system neuroscience where animal costs and the 
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development of specialized technological equipment have to be supported. As an example, 
the acquisition of new multiscale data on the early visual system of higher mammals (cats 
and monkeys) and primary cortices of rodents (e.g. task 3.1.1 and WP3.5) were funded 
almost entirely by sources other than HBP, although HBP support was mentioned in the 
acknowledgements of the published or in press papers.  

Over-ambitious description of work (DoW). For some groups, the description of work that 
would be performed in the Ramp-Up Phase was over-ambitious. This is the case in 
particular for the work on action perception, where the intended program consisted in 
integrating reference data into a working simulation capable of reproducing the main 
phenomena in the field, not in gathering a complete set of fMRI, M/EEG, intracranial and 
electrophysiological responses. The fact that HBP hired science writers to rewrite the 
DoW, without necessarily consulting the scientists on the proposed changes, is in great 
part responsible for this misunderstanding. The DoW was written from documents that 
corresponded to the ambitious 10-year HBP program rather than to what could be 
reasonably accomplished in the 2.5 year ramp-up, especially given the available funds. 
Nevertheless, as described below, each group completed its task and fulfilled its goal of 
providing, for a given cognitive functions, the key facts that any future brain-modelling 
project should reproduce. 

Impossibility of performing the non-human primate research part of the program. At 
the start of the project, primate researchers in SP3 were dismayed to discover that the 
ethical form of the HBP agreement had been submitted with a clear mention that no new 
data would be acquired in non-human primates – although such data were indispensable to 
the proposed research program (e.g. WP3.6 Characteristics of the human brain). This 
disagreement led to the immediate resignation of one scientist (Andreas Nieder) and the 
reorientation of the corresponding program, with only 1.5 years left, to a more limited 
reviewing and modeling role (work by Thomas Hannagan, described below). Other groups 
(e.g. Pascal Fries, Liping Wang and Stanislas Dehaene) collected data using other sources 
of funding, and used the limited HBP funding to organize, analyze and especially theorize 
the data. In addition, the group of Peter De Weerd limited itself for the NHP data analysis 
part to NHP data collected prior to obtaining HBP funding. 
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Cognitive architectures for 
Perception and Action 

WP 3.1 coordinated by Olaf Blanke 

and WP 3.5 coordinated by Yves Frégnac 

  

This Work Package WP3.1 is led by Olaf Blanke (EPFL) and involves five tasks on non-consious 
and conscious visual recognition (T3.1.1), circuits linking perception to action (T3.1.2), body 
perception and sense of self (T3.1.3), multiscale data analysis and transfer modeling (T3.1.4) 
and physiologically constrained brain network models (T3.1.5).  

Work in T3.1.1 by WIS investigates human intra-cranial recordings (ECoG) in a visual 
categorization task and revealed transient short latency visual and motor responses in frontal 
and parietal cortex, suggesting that working memory encoding is achieved by transiently 
activating slow synaptic processes. Work by ESI investigates the relationship between 
spontaneous vs. stimulus evoked inter-areal interactions with ECoG recordings from non-
human primates. This work showed that both intrinsic and evoked visual responses are 
characterized by a high degree of spatial and spectral specificity. Relying on MEG/EEG 
recording, work by CEA documented the fundamental laws of invariant object recognition as 
well as the decoding of rotating mental images. Work by EKUT in T3.1.2 investigates neural 
models for the recognition of actions, and specifically goal-directed actions. A neurodynamic 
model for the perception of body motion (observed from multiple views) was developed, 
exploring probabilistic models of action semantics using Markov Logic. Relying on virtual 
reality and on MR-compatible robotic technology, work by EPFL in T3.1.3 investigates 
multisensory mechanisms of illusory own body perceptions concerning the hand and the full-
body in conjunction with behavioral and neuroimaging (fMRI) analysis. Along the same lines, 
work by UB in T3.1.3 investigates multisensory mechanisms of illusory own body perceptions 
concerning the hand and the full-body. For this combined virtual reality, behavioral, 
physiological and high-density EEG data were recorded in humans to establish 
electrophysiological measures for hand and full-body ownership.  

In addition to these three main tasks, two new projects focusing on methodological 
development started in April 2014. Work by UM and UNIC in T3.1.4 developed new tools for 
multi-scale data analysis and multi-scale transfer modeling, linking LFP, ECoG, and MEG 
data. Work by UH and AMU developed new tools to describe the spatial and temporal 
structure of the brain with MEG and SEEG.  

Altogether, this Work Package aims at providing a spatial and temporal description of 
neuronal circuits implicated in specific well-characterized cognitive task, and determining a 
list of specific constraints on human brain modeling for these selected cognitive functions.  
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  The workpackage WP3.5 is led by Yves Frégnac (CNRS). 

The dominant feedforward view of visual processing (Hubel and Wiesel, 1962; 1968) is based 
on the repetition, at each stage of integration, of canonical, but highly specific, rules of 
anatomical convergence from which derives the function. Although this simplifying view of 
sensory processing has led to major advances, it fails to account for the functional 
complexity expected from the recurrent structural connectivity of cortical subcircuits on the 
one hand, and the non-linear nature of the dynamic interactions between excitation and 
inhibition during sensory processing. Furthermore, most of understanding has been 
established using highly standardized and parametrized  sensory contexts (spots, bars and 
gratings), which have little to do with the rich spatio-temporal statistics experienced during 
the natural scene viewing conditions of our everyday life. In addition, the main conceptual 
limit to our present knowledge of early visual processing is that most modeling efforts have 
been targeted at explaining sensory discharges only at the spike level in a purely 
phenomenological perspective (see Carandini et al, 2005 for a review) rather than aiming at 
elucidating causal conductance-based mechanisms regulating the temporal selectivity of the 
spiking opportunity window. 

Using advanced intracellular and 2-photon imaging techniques, we have studied in the cat 
and mouse visual cortex generic principles of sensory processing and identified plausible 
neuronal correlates of Gestalt Laws and Multimodal Perception. 

The first task (3.5.1) focuses on the visual processing in the early visual system of the 
anesthetized cat. The choice of this preparation is dictated by the need to control precisely 
in space and time the reproducibility of the visual input, and ensure mechanical stability 
necessary for long duration recordings. In the first task of WP3.5.1, we have documented to 
an unprecedented level multiscale dynamic states evoked by standardized visual input, 
ranging from Dirac, dense noise and Fourier inputs to more realistic natural-like statistics. 
For the exact same seed of stimulus, a comparative description of sensory responses is 
given, ranging from conductance and intracellular evoked waveforms, to multi-unit and local 
field potential dynamics. The main result is that the sensory code and its temporal precision 
are stimulus-dependent and optimized by natural input statistics. In contrast to Fourier 
inputs, broad-band spectrum stimuli elicit synchronized input from the “silent surround” of 
V1 receptive fields with a significant alpha-band contribution  

In the second task of WP3.5.1, we show how reverse engineering approaches can be used to 
establish causal links between the functional dynamics of synaptic echoes in primary visual 
cortex and perceptual biases in low-level non-attentive perception. In particular, we 
demonstrate the existence of combined representation in V1 of synaptic integrative 
mechanisms facilitating the binding between orientation co-linearity and global motion flow 
on the one hand, and common fate detection on the other hand. Some of these processes 
seem particularly adapted to integrate the visual flow during saccadic eye-movements, 
when the feedforward flow of retinal input is in phase with intracortical horizontal 
propagation. We propose that they participate to a dynamic reconfiguration of the 
association field of visual cortical neurons during oculomotor scanning of natural scenes.   

The second task (WP3.5.2) shifts from the cat experimental model to the mouse model, 
judged to be optimal to study synaptic and functional interactions across primary sensory 
areas and reveal the neural basis of multimodal cortical intégration. Using 2-photon imaging 
in the behaving mouse, we demonstrate that functional excitatory interactions lead to a 
sparse representation of sound features in the visual encoding space. This representation 
adds up mostly linearly to the visual representation but some even sparser nonlinear cells 
might encode specific combination of auditory and visual features.  
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1.1 Early sensory processing: unimodal and multimodal responses 

WP3.5 – Yves Frégnac (CNRS-UNIC Unité de Neurosciences Information et Complexité) 

Review on the cognitive architecture for early sensory processing 

Yves Frégnac and Brice Bathellier “Cortical Correlates of Low-Level Perception: From 
Neural Circuits to Percepts”, Neuron, Volume 88, Issue 1, p110–126, 7 October 2015 

 

Extended summary: 

Low-level perception results from neural-based computations on sensory information, and 
serves to build unconscious or self-generated inferences. It ultimately creates a 
multimodal skeleton for the representation of our distal and peri-personal space. Mediated 
by subcortical sensory systems and early primary sensory cortical areas, such processes 
remain complex and difficult to integrate in a unified model based on neural data. The 
perspective reviews the neuronal processes in primary sensory cortical areas known to 
underlie low-level perception and identify potential building blocks for any realistic model 
of early sensory processing in the brain of higher mammals.  

By illustrating the complexity of explaining perceptual processes in terms of realistic 
neural-based architecture and rules, we try to identify bottleneck issues limiting presently 
further progresses: 

- a purely bottom-up strategy on its own seems doomed to fail; conceptual 
approaches must be developed to reduce structural complexity. 

- Multiple animal models are needed. Comparative studies show that primate brains 
are not simply inflated versions of rodent brains. Typical long-distance axons in 
rodents do not only remain within their cortical area of origin as in the ferret or the 
cat and rather tend to link multiple areas, sensory, limbic and motor. If long-range 
connections underlie our “perceptual grammar”, rodents may actually have a very 
different perceptual language than higher mammals.  

- If the choice of rodents as the reference model may be a deceiving alley for 
studying visual processing and more specifically the neural correlates of Gestalt 
laws, it may come at its advantage when searching for mechanisms responsible for 
olfaction, tactile sensing or for multimodal integration. The reduced size of the 
computational sheet makes that the higher visual cortical areas of the mouse abut 
directly other primary areas such as S1 and A1, with their interfacing border may 
constitute an ideal site for multimodal integration. In that respect, the mouse may 
offer interesting opportunities to understand the functional significance of 
heteromodal influences in primary areas, otherwise present but silent in primates.   

We conclude that future progress in the field will depend on careful choices of 
experimental models (structures and species adapted to the questions under study), on the 
definition of agreed-upon naturalistic benchmarks for sensory stimulation, on the 
simultaneous acquisition of neural data on multiple spatio-temporal scales and on the 
identification of key principles (algorithms) supported both by data and simulations. These 
goals emphasize the inescapable roles of well-designed experiments, and on comparative 
approaches. 

http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
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Neural correlates of unimodal perception and self-organization of internal 
knowledge in mammalian primary cortical areas 

Task T3.5.1 - Yves Frégnac (CNRS-UNIC Unité de Neurosciences Information et Complexité) 

 

Goals of the task 

This task focuses on two issues:  
- Sub-task 1: identifying common principles of sensory processing by cortical analyzers at 
various levels of integration, ranging from the conductance activation level (measured in 
vivo using both current clamp and voltage clamp techniques), spiking of single cells to the 
mesoscopic level (local field potentials, multiple recordings, EEG...);  
- Sub-task 2: identifying neural processes in early visual cortical areas responsible for the 
emergence and self-organization of internal knowledge, tackling issues related to local vs. 
global feature processing, with an emphasis on apparent motion, motion extrapolation, 
prediction, grouping and completion. 
 

Experimental datasets 

 
 Dataset sub-task 1: Multiscale study of reliability and correlation of evoked cortical 

dynamics during natural scene processing in cat primary visual cortex 

The principle of efficient coding suggests that visual processing in early sensory systems 
should be adapted to the statistical properties of the stimulus. By comparing intracellular 
responses to stimulus statistics of different complexity, we showed previously (Baudot et 
al., 2013) that the temporal reliability of the neural code is optimized for natural statistics 
and that the stimulus-locked trial-to-trial variability of the subthreshold membrane 
potential waveforms is modulated by the statistics of the full field stimulus context.  

Using the exact same stimulus seed, we performed a multiscale analysis based on more 
mesoscopic measures including multiple unit recordings (SUA and MUA) and local field 
potentials (LFP). The aim was to explore if the single-cell observations can be related (or 
not) to specific behavior and stimulus dependency shared by local ensemble of neurons 
and if a laminar dependency of the observed effects can be detected by these mesoscopic 
methods and what is the global impact of input statistics changes on the correlation 
between neurons.  
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Figure 1: Example of data collection 

Illustrating multiple recordings of local field potentials (LFP) and Multi-unit activity (MUA) with Michigan 
probes, with their associated functional measurements (Orientation/Direction tuning curves, ON-OFF receptive 
field maps) and Current source density (CSD) reconstructions. 

 

Experimental design: In the area 17 of the anesthetized and paralyzed cat, we used 
Michigan silicon probes with different designs to realize laminar and lateral recordings 
across and within layers. To study the stimuli dependency of the reliability and 
correlation, we used the same stimulus benchmarks as in the Baudot et al study, i.e 
different types of visual stimuli with various statistic of increasing complexity (Figure 1): 
drifting gratings, gratings and natural Image animated with virtual eye-movements and 
dense noise stimuli. To ascertain the feedforward and local vs lateral nature of the field 
potentials, we partitioned the full field stimulation in a central mask large enough to cover 
the LFP RF (equivalent to the aggregate RF of the hypercolumn) and stimuli were 
presented in the three center/surround partitions (center only; surround only ; center + 
surround).  

Results: For the LFP signal, the frequency content and its reliability (measured with 
coherence and wavelet analysis) were highly dependent of the type of stimuli and of the 
layer of the recordings. Similar conclusions were obtained for spiking activity with mean 
rate, sparseness, Fano-factor and noise correlation measures. In particular large 



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 14 / 281 
 

synchronizations of activity were found with natural image animated with saccade 
movement when the surround was stimulated (surround-only & center + surround).   

This work has been presented at the Society for Neuroscience Meeting (Passarelli et al, 
2015) and a Ms is in preparation.  

 
 Dataset sub-task 2: Evidence for a synaptic substrate of Gestalt Laws in cat V1 

The computational role of primary visual cortex (V1) in low-level perception remains 
largely debated. A dominant view assumes the prevalence of higher cortical areas and top-
down processes in binding information across the visual field (Gilbert and Li, 2012). Long 
range “horizontal connectivity” in primary visual cortex (V1) has long been proposed to be 
the neural architecture substrate of “pop-out” perception, which does not require 
attention. However, this hypothesis relies exclusively on either anatomical correlates or 
indirect psychophysical data and has never been tested at the intracellular level. Here, we 
investigated the role of long-distance intracortical connections in form and motion 
processing by measuring, with intracellular recordings, their synaptic impact on neurons in 
area 17 (V1) of the anesthetized cat.  

 

Experimental design and working hypothesis 

 
Figure 2: Stimulation protocol for probing spatial and axial motion sensitivity in the 

“silent surround of V1 receptive fields (see text). 

Using an hexagonal stimulation node matrix (Figure 2A) centered on each recorded 
receptive field (RF, central black tile), we explored systematically the visual subthreshold 
(synaptic) responses in the “silent” (non-spiking) surround of V1 RFs to static stimuli 
(oriented Gabor patch), as well as to two-stroke apparent motion flow coaligned or cross-
oriented with the orientation of the Gabor inducer (Figure 2B). The apparent motion 
sequence in visual space was matched in speed with that of horizontal propagation in 
cortical space (Bringuier et al, 1999; see top left inset in Figure 2).  
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In order to provide a meaningful estimate of the “horizontal” intracortical kernel, the 
analysis required the averaging of a couple dozen intracellularly recorded responses. This 
“mean-field” observation was necessary to overcome individual cell variability and reveal 
the “silent” synaptic footprint of the neural architecture needed to implement Gestalt 
laws.  

Results 

By systematically mapping synaptic responses to stimuli presented in the non-spiking 
surround of V1 receptive fields, we provide the first quantitative characterization of the 
lateral functional connectivity kernel of V1 neurons. Our results revealed at the population 
level two structuro-functional biases in the synaptic integration and dynamic association 
properties of V1 neurons.  

First, subthreshold responses to oriented stimuli flashed in isolation in the non-spiking 
surround exhibited a geometrical organization around the preferred orientation axis 
mirroring the psychophysical “association field” for collinear contour perception (Hess, 
Hayes and Field, 1993)(Figure 2).  

 
Figure 3: Synaptic correlate of the perceptual “Association Field” in V1. 

Left panel, for each node in each cell, the preferred orientation of the synaptic responses is computed from 
the circular average of the individual responses to each orientation. The mean synaptic association field is 
obtained by performing a circular average over the cell population of the preferred orientations, at each node. 
The reliability of the orientation bias is represented by the level of grey of each bar. Right panel: Note the 
similarity in the pattern with the perceptual Association Field of Hess, Hayes and Field (1993).  

Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs 
summed in-phase, evoked dominantly facilitatory non-linear interactions, specifically 
during centripetal collinear activation along the preferred orientation axis, at saccadic-like 
speeds. This spatio-temporal integration property suggests that local (orientation) and 
global (motion) information are already linked within V1. These electrophysiological 
results constitute the neural correlate of the preference shown by humans to perceive 
collinear sequences “faster” than “parallel” (Georges et al, 2002). This study is now in 
press in The Journal of Neuroscience (Gerard-Mercier et al, 2016). 



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 16 / 281 
 

 
Figure 4: The dynamic association field concept (D-AF). 

Left panel, the analysis requires to realign each RF map on the Apparent Motion axis (dotted horizontal arrow) 
and is based on the circular average of responses for common trajectories (defined by rotation invariance 
around the RF center). The resulting plot represents for each trajectory (centripetal, left half; centrifugal right 
half) the RF orientation maximizing the response to an axial AM flow, relative to the flow direction. The 
trajectories invading or leaving the RF (blue star) are represented as shaded rectangles. The comparison 
between responses for co-aligned motion (ISO) vs cross-oriented motion (CROSS) shows that apparent motion at 
saccadic speed make V1 neurons integrate co-aligned stimuli along their main axis instead of across the RF 
width axis (as classically reported at low speed). In other words, V1 neurons flip dynamically their axis of 
motion sensitivity by 90º when stimulated at saccadic speeds, retaining some capacity for broadband spatial 
integration for elongated contrast edges of the cell’s preferred orientation 

Right panel, this non-linear effect constitutes a neural correlate as early as V1 of a human psychophysical bias 
in motion flow detection: collinear sequences (ISO) are perceived as moving “faster” than cross-oriented 
(CROSS) configuration sequences (Georges et al, 2002).  

 

 

 

Conclusion 

We thus provide evidence for two neural correlates of low level perception, closely 
dependent on the spatiotemporal features of the synaptic integration field of V1 neurons, 
likely linked to intra-V1 horizontal connectivity. We suggest a new concept of dynamic 
association field, whose spatial anisotropy and extent are transiently updated and 
reconfigurated as a function of changes in the retinal flow statistics imposed during 
visuomotor exploration of natural scenes. 
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Data Provenance 

The data were acquired by Yves FRÉGNAC’s team at CNRS-UNIC (Unité de Neurosciences 
Information et Complexité), in Gif sur Yvette, in cats bred by the CNRS animal care 
facilities. 

 

Provided data set 

Due to the complexity of the in vivo preparation, such data cannot be exploited without 
intelligent understanding to the complete metadata. Since HBP and INCF platforms did not 
provide any specialized support to define some universally accepted format of metadata in 
vivo (which would require several person months work), we will open our own database to 
external request on the condition of a formal collaboration agreement relying on the 
expertise of the data provider. 

Currently only a small subset of UNIC data is available online on a UNIC server, to which 
we have added a new portal subcomponent corresponding to the new data presented in 
this report: https://hbp.unic.cnrs-gif.fr/db 

Note that the experimental costs of the HBP-related data were supported by the CNRS, the 
Agence Nationale de la Recherche and other international programs, which explains why 
the data web server will remain located at UNIC and under its control, while allowing yet-
to-be defined collaborations with HBP users.  

Note also that the cat experimental model is no longer included in the newly defined HBP 
objectives. 

A Dataset Information Card has been completed (See DIC Task T3.5.1 “Recordings from 
primary visual cortex of anaesthetised cat during visual stimulation”). 

 
Collaborations 

We collaborate closely with Andrew DAVISON (task leader in SP5 and SP9), with whom we 
co-supervise PhD students and Postdoctoral fellows (Jan ANTOLIK, Domenico GUARINO). 
We collaborate closely with Alain DESTEXHE (Director of SP4) and Olivier MARRE (SP4) on 
power-law analysis and correlation studies in asynchronous irregular networks. We 
collaborate with Olivier FAUGERAS (SP4) to promote links between Neuroscience and 
Mathematics through the organization of interdisciplinary conferences. 

In collaboration with SP4, Yves FREGNAC organized two international symposia to be held 
at the EITN on “The Early Visual System”, to better define the bottleneck issues that 
should be overcome to provide a realistic data-driven model of V1, adapting at multiple 
scales of integration to changes in sensory input statistics.  

 

  

https://hbp.unic.cnrs-gif.fr/db
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Neural correlates of unimodal and multi-modal perception in mammalian 
primary sensory areas 

Task T3.5.2 - Brice Bathellier (CNRS-UNIC Unité de Neurosciences Information 
et Complexité) 

 

Goal of the task 

Sensory processing occurs throughout complex neural systems organized often described as 
a collection of separate feedforward pathways dedicated to each individual sensory 
modalities, which then merge in so called associative areas. However useful, this view is 
only a first approximation of the real structure of sensory system. First, associative areas 
send feedbacks projections to areas classically described as purely unisensory, thereby 
potentially channelling some crossmodal information. Second, sensory areas are even often 
directly interconnected with each other, although the purpose of these lateral connections 
is mainly unknown (Cappe et al., 2009). One may suppose however that all these 
crossmodal communication pathway serve to modulate or complement the information 
obtained with one modality based on information acquired with other sensory modalities 
(Ghazanfar and Schroeder, 2006). This role is actually suggested by multisensory illusions 
such as the ventriloquist effect in which a clear biasing of about the perceived location of 
a sound source occurs when a concomitant visual stimulus is given to a subject (Bonath et 
al., 2007). Symmetrically, in the double flash illusion, the presence of a double tone gives 
the erroneous impression that the visual stimulus is doubled in time (Apthorp et al., 2013).  

So far however, the neural underpinning of such illusions is still elusive in most cases, 
although human imaging data suggests that primary sensory cortex is involved. Even worse, 
very little information exist about whether and how the areas classically described as 
unimodal represent information from other modalities.  

To start filling this knowledge gap about the cognitive architecture involved in 
multisensory perception, the mouse model may be particularly useful. First, in the mouse, 
there has been novel high throughput anatomical studies establishing precise connectivity 
atlas between cortical areas and detailing multimodal connections. (Zingg et al., 2014) 
Second, new imaging tools such as two-photon imaging of genetically encoded calcium 
sensors permit in the mouse to measure sensory representation with cellular resolution in 
the awake animal at a throughput unmatched in any other animal model. The goal of this 
task actually only partially financed by HBP (only half-time postdoc salary), was to use 
these techniques to start extensively characterising the auditory visual representations in 
the mouse primary visual and auditory cortex.   

Experimental design 

To allow for repeated imaging of large neuronal populations in supragranular cortical 
layers, we surgically implanted chronic cranial windows over the auditory or visual cortex 
coupled with AAV virus injections to express the genetically encoded calcium indicator 
GCAMP6s. Mice were then head-fixed under the two-photon microscope and a set of 
auditory, visual and bimodal stimuli were played in different light conditions (darkness or 
screen illumination). Eye movements were monitored with a video camera, which proved 
very important for controlling this experiment as sounds can elicit eye movements. 
Stimulus delivery, data analysis and eye tracking were programmed with software 
developed in my team by Thomas Deneux (postdoc) and Alexandre Kempf (PhD student).  

The stimuli consisted in a set of looming auditory and visual stimuli (increasing or 
decreasing in size or sound intensity) to assess potential auditory visual interactions 
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complemented with drifting gratings and frequency modulated sounds to assess typical 
tuning properties found in visual and auditory cortex. Looming stimuli were played either 
alone or in a bimodal conditions (all combinations were tested).  

 

Experimental datasets 

We have acquired a V1 dataset of 9056 neurons across 5 mice and an A1 data set of 3586 
neurons across 7 mice and we have extensively analysed both calcium signals and eye 
movements (only during V1 recordings). 

 

Eye movements 

Eye tracking reveals that all sounds occasionally evoke eye movement in a time-locked 
manner (Figure 5). In the light these eye movements produce visual responses simply due 
to changes in the visual field. On the contrary, in the dark there is no visual response 
induced by sound induced eye movements (Figure 5).  

 
 

Figure 5 
(left) Average eye tracking and calcium imaging signals for one recording session of in a mouse. The responses 
are shown for sounds in the dark or in the light or for visual stimuli. Sounds produce occasional eye responses 
that are more frequent at loud sound onsets. In the light, this results in a positive calcium signal corresponding 
to V1 responses due to changes in visual inputs evoked by eyes movements. These responses are absent in the 
dark. (right) Saccade-evoked visual responses are present in the light but absent in the dark 

Thus we were led to conclude that potential auditory responses in V1 can only be revealed 
in awake animals if the sound induced eye movement effects are carefully compensated or 
in complete darkness. 

 

 

Absence of visual responses in auditory cortex 

We have extensively recorded region across the primary and secondary auditory cortex of 
the mouse and found no indication of statistically significant responses visually evoked 
responses in auditory areas. The analysis was done using generalized linear model 
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(parametric) or using non-parametric test and both methods converged to the same 
results. We also tested if the presence of a visual stimulus modulates auditory responses, 
using similar tests, and we found no effect. Hence, for the stimuli and technique used, we 
believe that there is no detectable functional visual input primary auditory cortex.  

 

Negative and positive auditory responses in visual cortex 

Analysing the responses to auditory stimulations in darkness we found that most neurons 
displayed a slight sound-evoked decrease in the calcium signal, which was evident at 
population level (Figure 5). This probably reflect a global inhibitory input from auditory 
cortex to V1 as shown previously with in vivo intracellular recordings (Iurilli et al., 2012). 
However, using non-parametric statistical test we also found that a small fraction of visual 
neurons (7.6% for a total population of 9056 cells tested with p<.01) responded positively 
to sounds in darkness. Because in this condition there is no visual input, these most likely 
correspond to auditory inputs. We were reinforced in this idea when observing a diversity 
of responses in these positively responding neurons, indicative of tuning to diverse sound 
parameters (Figure 6).    

 

 

 
Figure 6: Examples of diverse auditory responses for 6 neurons in the visual cortex (in 
darkness).  

 

Some neurons preferred the most quiet part of the looming sounds some preferred the 
loud onsets. Some preferred responded to frequency ramps and some did not. All these 
complex features are actually found in the auditory cortex to a great abundancy. This 
suggests direct connections between visual and auditory cortex as shown already for the 
negative subthreshold responses (Iurilli et al., 2012) (note that positive responses were not 
detected previously).  
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Figure 7: Example of nonlinear responses in bimodal condition for one neuron. Green: 
auditory stimulation alone. 
Blue: Visual stimulation alone. Red: Auditory-visual stimulation. Black line: predicted additive summation. 

 

Bimodal responses 

We then checked whether auditory responding neurons (positive responses only) are 
perturbed by eye movements, and found that actually they have the same responses to 
sounds in the dark and in the light. Interestingly, these neurons can also respond visual 
stimuli and in most cases auditory and visual responses sum additively (not shown). But we 
found that some neurons also respond in a nonlinear manner signalling particular 
combinations of auditory and visual stimuli (Figure 7).  

 

Conclusions 

This project leads us to conclude that in the mouse there exist functional excitatory 
interactions leading to a sparse representation of sound features in the visual encoding 
space. This representation adds up mostly linearly to the visual representation but some 
even sparser nonlinear cells might encode specific combination of auditory and visual 
features.  

 

Completeness of the dataset 

Through this project, we have acquired data from more than 9000 neurons in visual cortex 
and more than 3000 in auditory cortex. This represents very high sample sizes sufficient to 
demonstrate with clear statistical significance the presence or absence of multisensory 
interactions in these areas. 

 

Data Provenance 

The data were acquired by Brice BATHELLIER’s team at CNRS-UNIC (Unité de Neurosciences 
Information et Complexité) in 2014. The data is taken from awake Bl6C57-J mice. 
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Provided data set 

We will provide the datasets for this study, ideally on the HBP collaborative servers. We 
have submitted a Dataset Information Card (see DIC Task T3.5.2 “Multimodal activity in 
visual cortex V1 of the mouse”), and the data is stored at: 

http://sp3.s3.data.kit.edu/3.5.2/Auditory_visual_dataset/ 

The data set precisely consists in two-photon calcium imaging of mouse V1 and A1 activity 
during time-varying auditory visual stimulation. It is available in Matlab format and is 
otherwise used for a publication in preparation.  

Collaborations 

We are presently collaborating with Wolfgang MAASS (SP4) to analyse the two-photon 
calcium imaging data in the mouse auditory cortex, that was acquired by Brice 
BATHELLIER. 

 

  

http://sp3.s3.data.kit.edu/3.5.2/Auditory_visual_dataset/
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Annex: Publications related to WP 3.5  

 

1. Interactions with other SPs : 

• Interactions of UNIC experimenters have been occurring continuously during the 
Ramp-Up Phase with SP4 members (Alain Destexhe, Gustavo Decco, Viktor Jirsa, 
Olivier Marre) and with SP6 members (Andrew Davison), in the context of the 
European Institute of Theoretical Neuroscience and internal meeting at UNIC (Gif-
sur-Yvette). 

• Data-driven modelling of V1 done by Frégnac’s team will be pursued with Jan 
Antolik (HBP PostDoc) and Andrew Davison (CNRS-UNIC; SP6) during phase 2 of HBP. 

 

2. Organization of international conferences : 

• Organization of an international workshop “The Early Visual System”, held at the 
European Institute of Theoretical Neuroscience (EITN), Paris on January 19th-20th 
2016, Paris.  

Organizers: Olivier Marre (IDV), Shilom Ullman (Weizmann), Yves Frégnac (CNRS 
UNIC), Alain Destexhe (CNRS UNIC) 

http://eitnconf-190116.sciencesconf.org/ 

• A follow-up two-day meeting is planned on May 19th and 20th, also to be held at the 
EITN (Paris), with the cofinancing of the Lidex Saclay I-Code (Y. Fregnac, SP3) and 
HBP-SP4 (A. Destexhe), gathering leading experts of the visual cortex in rodents 
and mammals, and confronting experimental and theoretical approaches. 

 

3. Publications accepted or in press in refereed Journals or edited Books: 

 
• Frégnac, Y. and Bathellier, B. (2015). Cortical correlates of low-level 

perception : from neural circuits to percepts. Neuron 88(1): 110-126. 

• Gerard-Mercier, F., Pananceau, M., Carelli, P., Troncoso, X. and Frégnac, Y. 
(in press). Synaptic correlates of low-level perception in V1. The Journal of 
Neuroscience. 

• Frégnac, Y., Fournier, J., Gérard-Mercier, F., Monier, C., Pananceau, M., 
Carelli, P. and Troncoso, X. (2015). The Visual Brain: computing through 
multiscale complexity. In “Micro-, Meso- and Macro-Dynamics of the Brain”. 
Research and Perspectives in Neurosciences, Eds G. Buszaki and Y. Christen. 
Springer-Verlag, DOI 10.1007/978-3-319-28802-4_4 

 

4.  Experimental Work partly supported by HBP presented at the Society for 
Neuroscience: 

• Troncoso, X., Pananceau, M., LeBec, B., Desbois, C., Gerard-Mercier, F. and Y. 
Frégnac (2015). Spatio-temporal synergy requirements for binding feedforward 
and horizontal waves in V1. American Society for Neuroscience. 331.04, P42, 
Chicago, USA. 

http://eitnconf-190116.sciencesconf.org/
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• Passarrelli, Y ., Foubert, L., Frégnac, Y. and Monier, C. (2015). Multiscale study 
of reliability and correlation of evoked cortical dynamics during natural scène 
processing in cat primary visula cortex. American Society for Neuroscience. 
331.20, Q16, Chicago, USA. 

• Deneux, D. Kempf, A. and Bathellier B. (2015). Non-symmetric auditory-visual 
interactions at perceptual and cortical levels in mice. American Society for 
Neuroscience. 509.08, N21, Chicago, USA. 

• Deneux, D., Kempf, A., Ponsot, E. and Bathellier B. (2015). Cortical 
population nonlinearities reflect asymmetric auditory perception in mice. 
American Society for Neuroscience. 231.05, J33, Chicago, USA. 

 

5. Invited or plenary talks at International Conferences: 

 

• Frégnac, Y. (2014). The Visual Brain : Computing with Complexity. Heller Lecture 
Series in Computational Neuroscience. Edmond and Lily Safra Center for Brain 
Sciences. The Hebrew University of Jerusalem. Israel (June 10, 2014).  Plenary 
Lecture. 

http://elsc.huji.ac.il/content/heller-lecture-yves-frégnac 
• Frégnac, Y. (2014). Hidden complexity in visual cortical receptive fields. ELSC 

Seminar Series in Computational Neuroscience. The Hebrew University of 
Jerusalem. Israel. Invited Conference. 

http://elsc.huji.ac.il/content/elsc-seminar-yves-fregnac 
• Frégnac, Y. (2014). Perceptual association waves and collective belief in visual 

cortex. In Workshop « Geometrical models in Vision ». Org. F. Chittaro, G. Citti, 
JP Gauthier, A. Sarti and J. Petitot. Trimester in « Geometry, Analysis and 
Dynamics on subRiemannian manifolds ». Institut Henry Poincaré. Invited 
Conference.  

http://www.cmap.polytechnique.fr/subriemannian/     http://gmvision.lsis.org/ 
• Bathellier B, (2014) Some thoughts about auditory coding, perception and 

learning in mice. Bernstein Workshop “Population Codes: From Data Analysis to 
Mechanisms”, Tutzing, Germany.  

•  Frégnac, Y. (2015). « What computational principles in artificial vision can be 
learnt from the biology of natural vision ». In the International Symposium 
« From Neurons to Robots ». Celebration of the Silver Anniversary of the 
Interdisciplinary France-Uruguay, Conférence en l’honneur du Dr Kirsty Grant, 
Montevideo, Uruguay. Invited Conference. 

• Frégnac, Y. (2015). The Visual Brain : Computing through multiscale complexity. 
1st International Conference on Mathematical Neuroscience (ICNMS). Org. O. 
Faaugeras. Juan les Pins, INRIA (Plenary Lecture). 

https://icmns2015.inria.fr/files/2015/06/E_Program_Officiel_ICMNS2015.pdf 
• Frégnac, Y., Sarti, A. and Antolik, J. (2015). Which theory to describe V1? In 

"Confronting mean-field theories to measurements: a perspective from 
Neuroscience". Orgs Cessac, B. and Faugeras, O., BrainScales Symposium at 
EITN, Paris. Invited Conference. 

http://elsc.huji.ac.il/content/heller-lecture-yves-frégnac
http://elsc.huji.ac.il/content/elsc-seminar-yves-fregnac
http://www.cmap.polytechnique.fr/subriemannian/
http://gmvision.lsis.org/
https://icmns2015.inria.fr/files/2015/06/E_Program_Officiel_ICMNS2015.pdf
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• Frégnac, Y. (2015). The visual Brain: computing through multiscale complexity. In 
"Micro-, meso- and macro-dynamics of the Brain". Orgs. Buszaki, G. and 
Christen, Y. Conference Ipsen, Paris. 

• Frégnac, Y. (2015). Context-dependent adaptive computing in the early visual 
system. 3rd Canonical Neural Computation Conference, Orgs. M. Carandini, D. 
Heeger and T. Movshon, New York University, Firenze, Italy. (Invited 
Conference). 

• Bathellier B, (2015) Cortical correlates of asymmetric auditory perception in 
mice. NYU Abu Dhabi Workshop on Computational and Experimental 
Neuroscience, Abu Dhabi, UAE.  

• Bathellier B, (2015) Cortical population nonlinearities explain asymmetric 
auditory perception. Annual meeting of Neuroscience School Paris (ENP), La 
Clusaz, France. 

• Bathellier B, (2015) Complex features in uni- and multi-modal representations of 
primary sensory cortex Annual SP3 conference, Foundation Hugot, College de 
France, Paris, France. 

 

National and International tribunes 

 
• Frégnac, Y. (2013).  Big science needs big concepts. In Voices: BRAIN Initiative 

and Human Brain Project: Hopes and Reservations Cell, 155(2): 265–266. 

• Frégnac, Y. (2014). A CNRS view of the Human Brain Project. Réunion sur « The 
Human Brain Project » organisée par la Direction des Relations internationales 
du CNRS. Meudon (24 Février 2014), CNRS. Invited Conference. 

• Frégnac, Y. (2014). A CNRS view of the Human Brain Project. Réunion sur « The 
Human Brain Project » organisée par la Direction des Relations internationales 
du CNRS. Meudon (24 Février 2014), CNRS. Invited Conference. 

• Frégnac, Y. and Laurent, G.  (2014). Where is the brain in the Human Brain 
Project. Nature Comments. Nature, 513 : 27-29. Supplementary to be found at 
www.brain.mpg.de/fregnac-laurent-2014 

• Frégnac, Y. (2015). Human Brain Project : « La médiation laisse espérer que la 
crise sera réversible. » Pour la Science : Décember issue. 

http://www.pourlascience.fr/ewb_pages/a/actu-human-brain-project-nouvelles-
orientations-36172.php 

• Frégnac, Y.: Participation to the report at the CSH-Asia Conference on Big Data 
projects and Brain Sciences: 

Contribution included in Huang, J.Z. and Luo, L. (2015). Perspective : 
Neuroscience : It takes the world to understand the brain. Science : 350 (6256) : 
42-44. 

 

General audience conferences 

 

http://www.cell.com/cell/abstract/S0092-8674%2813%2901211-7
http://www.cell.com/cell/abstract/S0092-8674%2813%2901211-7
http://www.brain.mpg.de/fregnac-laurent-2014
http://www.pourlascience.fr/ewb_pages/a/actu-human-brain-project-nouvelles-orientations-36172.php
http://www.pourlascience.fr/ewb_pages/a/actu-human-brain-project-nouvelles-orientations-36172.php


 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 26 / 281 
 

Frégnac, Y. and Grollier, S. (2014). Vers un Cerveau simulé par Ordinateur. Cycle 
de Conférences « Dialogues – des clés pour comprendre » organisé par le CNRS 
(INS2I). Musée des Arts et Métiers. Conférence Grand Public. 

Frégnac, Y. (2015). Interdisciplinarité : du cerveau biologique au cerveau virtuel . 
Cycle de Conférences « le cerveau virtuel est-il bien équilibré ? » organisé par 
Mahfoud Chkouri. Cité des Sciences et de l’Industrie. Conférence Grand Public. 

  



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 27 / 281 
 

 

1.2 Electrophysiological signals from early visual cortex: data and 
model  

Task T3.1.4 - Peter De Weerd (UM), Mark Roberts (UM), Avgis Hadjipapas (UNIC), 
Margarita Zachariou (UNIC) 

 

Overview 

We aimed to create a model of V1 gamma generating networks which would serve to link 
the observations of human V1 gamma measured using MEG with that of gamma (single unit 
spikes and LFPs) measured invasively in macaque V1 (Hadjipapas et al., 2015). Our central 
hypothesis was that differences between these signals arose principally from the 
differences in the spatial scale of the measurement; whereby invasive signals represent 
the behavior of single units (micro-scale) or local networks (LFP, meso-scale) while the 
MEG represents the aggregation of large populations of neurons in the vertical and 
horizontal dimension (macro-scale). The MEG is thereby sensitive to synchronization and 
time delays between local networks as well as the behavior within local networks. To most 
important step in achieving this is to create a simplified, abstract model with a sufficiently 
restricted space of relevant parameters that can be heavily constrained by empirical 
measurements from macaque V1. The cortical sheet is made of multiple cortical columns, 
which are linked by horizontal connectivity spreading across upper layers. Within each 
column neuronal networks operate in separate layers and are linked by vertical 
connectivity originating from excitatory neurons in deep layers. We examined the activity 
of this large network in a series of steps: We first developed an undifferentiated model 
constrained by observations of the contrast response function of 1) single unit spike rates 
2) gamma power 3) gamma peak frequency. To expand this model to include laminar 
compartments and horizontal connectivity across columns we examined 1) laminar 
differences in the empirical constraints 2) temporal dependencies between layers and 
between columns which will later be used as to constrain how model networks are 
combined to form a large scale model. 
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How to model a human brain? 
Start in V1 

Hadjipapas A, Roberts M, Zachariou M, Lowet E, De Weerd P. 

 
Abstract 

The ultimate outcome of the research in the combined disciplines of neuroscience and biology would be 
that it enabled us to model a human brain. Assuming that this would be possible, what is the best way to 
get there? In the present article, we first review a number of possible modelling approaches of varying 
scale and complexity. Based on that analysis, we suggest that efficient modelling requires integration with 
empirical validation with empirically -observed signals appropriate for the scale of the model. We suggest 
that the upscaling in size and complexity should be carried out in a manner that remains tightly linked 
with empirical validation using signals of an increased level of aggregation. Without claiming that 
oscillatory behaviour of a network is the only functional property of interest, we do suggest that 
oscillatory signals at different levels of aggregation can be valuable in empirically constraining parameter 
spaces of models at micro-, meso-, and macro-scales. We illustrate this by showing how a new model of 
gamma, built upon basic properties of early visual cortex, creates new insight into the fundamental 
properties by which early visual cortex operates, and how this new model reconciles seemingly 
irreconcilable data. We suggest that these mathematically well-specified models of gamma are based on 
local network structures that can be used as the building blocks for larger-scale models of early visual 
cortex.  
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1. Introduction  

The goal of the present article is to review a selection of 
empirical studies that are useful for modelling primate 
early visual cortex, and to consider the positive and 
negative aspects of a number of modelling approaches. 
As such, this review may contribute to building a model 
of the human brain, as is the ambition of the Human 
Brain Project (HBP). It is useful to begin by situating the 
scope of our review within the overall scope of the HPB’s 
ambitions. Modelling a human brain would require a full 
understanding of roughly 100 billion neurons in terms 
of their genomic and molecular processes and 
connectivity (each neuron connecting with ~10000 
others). A complete human brain model would also 
include the interactions with glia cells, comprising about 
50% of the brain’s mass and performing a plethora of 
essential functions. Importantly, communication in the 
brain is not limited to neurons, but includes inter-glial 
communication, and neuronal-glial interactions 
determining sensory functions such as neuronal tuning 
(Perea et al., 2014) as well as neuronal plasticity (Fields, 
2008). The different types of neurons (and glia) 
communicate with each other by a number of 
neurotransmitter and neuromodulator systems. All of 
these interactions in each adult human brain result, in 
part, from an individual’s genome reflecting 2-3 million 
years of human evolution preceded by many more 
millions of years of primate evolution (Reed and Bidner, 
2004), and from the individually experienced statistics of 
environmental stimulation throughout life and 
especially during early development. With our current 
limited understanding, a model of the scope of a human 
brain will be vastly under-constrained due to missing 
data and the resulting inability to empirically inform the 
large numbers of important and diverse parameters that 
would need to be set. A whole-brain model will therefore 
most likely show a host of unexpected behaviours that 
will require reduction to tractable problems to permit 
experimental and computational investigation. An 
alternative approach therefore would be to limit a 
model’s overall scope and nature by the specific 
scientific goal to which the model is applied. 

In the present review, we will focus on neuroscientific 
models of visual cortex, primarily the primary and 
secondary visual cortex (V1 and V2), because arguably 
there are no other two areas in the brain that are better 
understood. Despite the enormous body of knowledge 
that exists about V1 and V2, the same questions about 
the scope of modelling that exist for the brain as a whole, 
also exist for these early visual areas. V1 and V2 are 
complex regions of the brain characterized by cells 
showing a range of sensitivities to a range of stimulus 
parameters (e.g. (Hubel and Wiesel, 1959, 1960, 1962)), by 
exquisite laminar and columnar structure (Douglas and 
Martin, 2004; Stettler et al., 2002), and by highly specific 
thalamic as well as inter-areal connectivity (Sincich and 
Horton, 2005). Beyond spiking responses measured from 
single or multi-neurons, oscillatory behaviour as 
measured in population measures of neural activity is 
present in a range of frequency bands in both areas. An 
important source of oscillatory neural activity is thought 
to be the interaction between excitatory and inhibitory 

neurons, which is also of paramount importance for both 
the sensory tuning of neurons, and their spatial 
summation properties. Hence, fully understanding a 
range of well-established functional properties of V1 
requires a very complete insight into the excitatory-
inhibitory interactions. Reaching full or even sufficient 
insight is rendered difficult by the fact that excitatory 
and especially inhibitory neurons come in a great range 
of varieties (Buzsáki et al., 2004; Markram et al., 2004). In 
addition, their within-class interactions are still poorly 
understood, which further renders a full understanding 
of even the most ubiquitous properties in V1 and V2 
difficult. For example, it has been well established that 
parvalbumin positive (PV+) interneurons, presumably 
basket-cells targeting the axosomatic region of 
pyramidal cells (Buzsáki and Wang, 2012; Traub et al., 
1996), are critical for gamma-generation (Buzsáki and 
Wang, 2012; Cardin et al., 2009). However, somatostatin 
positive interneurons (SOM+), targeting dendritic 
regions of pyramidal cells and critical for surround 
suppression (Cottam et al., 2013) also have been 
proposed to play a role in cortical gamma oscillations 
(Gieselmann and Thiele, 2008). Recent findings have 
begun to elucidate the interactions among these two 
inhibitory cell types. SOM+ neurons have been shown to 
strongly modulate PV+ interneuron activity (Cottam et 
al., 2013), but knock-out does not eliminate gamma (Kuki 
et al., 2015). This suggests different roles of the two 
inhibitory cell types in generating and controlling 
gamma, but clearly more research on their interactions 
is required (for more on empirical and modelling 
studied of gamma, see Section 5). As a further challenge 
to modelling early visual cortex, even the more basic 
aspects of V1 such as the function of columns (Sincich 
and Horton, 2005) or the specific purpose and 
organization of connectivity between V1 and V2 (Sincich 
and Horton, 2005) are a matter of debate. This shows 
how formidable the challenge is to even ‘just’ model the 
early visual cortex. In the following section, different 
modelling approaches that can be useful in enhancing 
our understanding of visual cortex are presented. 

2. Different categories of models 

Within the field of (visual) neuroscience, there exist 
three broad subcategories of models depending on the 
level and kind of insight one wishes to achieve (i.e. the 
goal of the model). We will refer to them as (1) 
psychophysiological, (2) functional / computational, 
and (3) biophysical / generative. These broad 
categories of models aim for different levels of insight, 
and hence they use different theoretical concepts.  

1) Psychophysiological models: These are conceptual 
models based on the observed correlation between 
a mental function, as studied in a cognitive or 
behavioural paradigm, and a measure of brain 
activity, such as for example BOLD in an fMRI study, 
or stimulus or task-related change in electrical 
potentials or in brain rhythms (oscillations) in a 
neurophysiological study. Their primary aim is to 
identify a statistically (and experimentally) reliable 
correlation between a well-specified cognitive 
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function and a brain correlate, and to use this 
correlational data to formulate a conceptual theory 
of how a set of brain areas or specific neurons in 
brain areas contribute to the studied cognitive 
function (Kiorpes et al., 2013; Teller, 1984).   

 
2) Functional / computational models: This 

approach deals with specifying a mechanism that in 
principle could underlie a specific cognitive 
function. In the model implementation, the primary 
goal is to engineer a neural mechanism capable of 
performing a specific type of information 
processing underlying a cognitive function of 
interest. There is usually no great concern 
regarding the incorporation of realistic spatial scale 
or biophysical detail of model neurons. Instead, the 
models provide proof of concept of the potential 
relevance for a specific type of cognition or 
behaviour of a mechanism reduced to its essentials.  

  
3) Biophysical / generative: This approach is 

concerned with providing a principled and realistic 
interpretation of the biophysical generative 
mechanisms underlying empirically measured 
signals (Einevoll et al., 2013). In these models, 
realistic neural networks are based on known 
biophysical principles of neurons, complemented 
with knowledge from cellular biology, anatomy and 
physiology. The primary aim in generative models is 
to achieve a model that is realistic enough to yield 
an understanding of the empirically measured 
signal. This refers to the crucial concept of 
observability (Kalman, 1959, 1963). Generative 
models often require a detailed specification of the 
so-called measurement or observation functions. 
This means that these models require a 
specification of the connection between the 
measured signals on the one hand, and the system 
variables or parameters of interest that are not 
directly observable on the other hand. These non-
observable variables are also referred to as hidden 
or latent variables (Dodge, 2006; Tarantola, 2005). 
The key distinction between hidden and observable 
system variables originates from statistical 
estimation theory (Bollen, 2002; Kaplan, 2009) and 
control theory (Kalman, 1959, 1963; Kalman and 
Bucy, 1961; Kalman and others, 1960; Tarantola, 
2005). To understand the hidden versus observable 
dichotomy, consider the following example: In the 
cortex a transmembrane current at a particular 
location of interest such as the apical dendrites of 
layer 5 pyramidal neurons is an important variable 
serving as a functionally-important input, yet it is 
unobservable. A biophysical model may be 
developed to extract this interesting unobservable 
variable from a directly measured observable, for 
instance extracellular LFPs measured at fixed 
locations of a laminar probe. The so-called 
observation function connects what we would like to 
study (the unobservable system variable) to what 
can be experimentally measured (the observable). 
Establishing the observation function corresponds 
to solving the forward problem. If the solution to the 
forward problem is sufficiently specified, then one 
can also attempt to solve the so-called inverse 

problem (Tarantola, 2005), by utilizing certain 
assumptions about the system under study. This 
generally refers to identifying the most likely 
underlying unobserved system variable or 
mechanism of interest (e.g., layer-specific 
transmembrane current) given a specific set of 
measured observables (e.g., extracellular LFPs from 
laminar probes). 

Functional and biophysical models have a different 
relationship to empirical validation. Functional models 
are usually relatively abstract, and do not provide a 
sufficiently specified forward model, so that a 
quantitative or principled comparison with empirical 
data will be difficult. Thus, while theoretically valuable, 
such models may not be implemented at all in the brain. 
By contrast, detailed empirical validation is possible for 
biophysical models, as a sufficiently specified forward 
model permits investigating the crucial inverse question, 
that is, which generative mechanism is most likely given 
observed data. Hence for the more abstract, functional 
models to become amenable to empirical validation, a 
limited but sufficient set of biophysical detail must be 
incorporated, depending on the signal of interest and 
scientific question.  

3. Selecting the appropriate kind of model 
given the scope of the research question 

There are in essence two guiding principles for the 
construction of models. The first is structural 
/generative. Here, the goal is to achieve models in which 
substantial detail is incorporated, relevant for the 
generation of the observable output signals of interest 
(e.g. single unit spike trains in different layers, LFPs at 
different depths). Hence, these models incorporate a 
high degree of biophysical realism based on 
structural/anatomical knowledge of first principles. The 
basic idea is that if one achieves a model system with 
sufficient realism, it will show functionality in terms of 
the observable output signals similar to the various 
observed functions in its biological counterpart. Within 
this class of models, the primary aim is to build as 
realistic as possible single neurons, columns, or an entire 
cortical area. Given computational limitations there is a 
trade-off between the number of model neurons in a 
network and the biophysical realism of the single 
neuron models used. The second guiding principle is 
functional. Here, the scale, scope and complexity is 
determined by the functional behaviour that one wishes 
to model, and the model’s structure and realism is 
adapted to the specific phenomenon one wishes to 
study.  

3.1 Models aiming for structural realism of the data 
generating process 

Before discussing models aiming for structural realism 
in modelling visual cortex, it is worth pointing out a few 
of its major features. In mammalian neocortex, 
substantial vertical, and horizontal structure exists 
(Binzegger et al., 2004; Douglas and Martin, 2004). The 
vertical structure entails interconnected cortical layers 
receiving differential inputs from the afferent visual 
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pathway. The horizontal structure is related to the 
interconnections among cortical-columns, which are 
layer dependent. Realistic cortical models must take into 
account the wide variety of cell types that exist in V1, as 
defined functionally and morphologically. Not only is 
there diversity in morphology of excitatory neurons, 
especially the diversity of inhibitory neurons is 
particularly striking (Buzsáki et al., 2004; Markram et al., 
2004). Thus, a cortical area can be considered from a 
microscopic scale (neurons with specific morphologies 
within a certain layer or stretching across layers), a 
mesoscopic scale (networks of neurons within a layer, 
or crossing layers to form a cortical column) and 
macroscopic structure (an area itself ensuing from the 
interconnections between cortical columns). At each 

scale, different experimental observables can be 
obtained. For instance from laminar recordings, single 
unit spike trains (micro) and LFPs (meso) can be 
obtained. ECoG, MEG, and EEG on the other hand 
measure phenomena at the macroscopic scale.  

To understand how one type of signal is related to 
another, cross-scale links must be made. This can be 
done experimentally, using simultaneous recordings at 
various scales (Musall et al., 2014) or using data at many 
scales acquired in the same experimental paradigm 
(Hadjipapas et al., 2015). Increased insight into cross-
scale links can be achieved with generative models that 
incorporate vertical and horizontal structure and 
realistic cell types and morphology (Figure 8).  

 

 
Figure 8: Schematic of primate primary visual cortex (V1) and changes in observable signals in response to 
experimental manipulation.  

This figure schematically illustrates the approach taken in principled comparisons of empirical signals measured at different scales as 
in (Hadjipapas et al., 2015) and modelled in (Zachariou et al., 2015). In this highly simplified schematic, primary visual cortex consists of 
various types of interconnected neurons, of predominantly two functional classes, excitatory (blue) and inhibitory (red) (also illustrated 
in orange are layer-4 stellate cells). These are structured in six layers, whereby some neurons, especially large pyramidal neurons with 
cell body in layer 5 stretch across layers. There are connections between neurons both within and across layers. This vertical structure 
(interconnected layers forming a cortical column) is centred around these large pyramids. Cortical columns ensuing from this vertical 
structure, are replicated laterally but remain mutually-interconnected via direct horizontal and other (including indirect) connections. 
In experiments in nonhuman primate, e.g. (Roberts et al., 2013), laminar probes were inserted. From these laminar probes, LFPs, CSDs 
(Roberts et al., 2013) and single unit spike trains were extracted in response to contrast-varied gratings. In humans the same stimulus 
paradigm was applied (Hadjipapas et al., 2015), and source reconstructed MEG signal localized to human primary visual cortex was 
obtained. Increases in contrast caused typical shifts in gamma spectra towards higher frequencies. Other macroscopic observables, that 
could be theoretically obtained are subdural ECoG recordings and scalp EEG. A full model of V1 would involve incorporating all known 
anatomical and functional details, which can then be hoped to simulate a large array of functional phenomena of interest. Alternatively, 
the empirical data in a contrast manipulation paradigm could be used to progressively build up and constrain realistic neuronal and 
network behaviour at increasing scales (Hadjipapas et al., 2015; Zachariou et al., 2015).  
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A recent study provided a great example of a generative 
model achieving realism in the model-scale (Potjans and 
Diesmann, 2014). In this study, a cortical column model 
was constructed comprising almost 100,000 neurons. In 
addition, substantial realism in network structure and 
connectivity was employed. The model employs a 
realistic laminar structure in which crucial anatomical 
statistics such as the numbers and density of excitatory 
and inhibitory neurons is respected. In addition, the 
within and cross-laminar connectivities are also 
realistic, as they were directly derived from quantitative 
anatomical (Binzegger et al., 2004) and physiological data 
(Thomson et al., 2002). However, this high level of 
realism came at the cost of using relatively unrealistic 
integrate-and-fire neurons, rather than conductance-
based Hodgkin and Huxley model neurons. These 
neurons mainly aim at reproducing realistic spike train 
dynamics, which implies that there is not much 
information on the membrane potential dynamics that 
underlie the single neuron and the aggregate signals 
such as the LFP. This in turn limits the extent to which 
this model can be validated with experimental LFP data. 
Nevertheless, the model produces spontaneous patterns 
of activity that are indeed realistic and reproduces key 
experimental observations with respect to the timing 
and duration of laminar evoked responses to brief 
stimuli (modelled as pulses in thalamic afferents). 
Importantly, this model was not constructed to replicate 
any of these functional phenomena. Instead, it was based 
on first-principles derived from known anatomy and 
physiology of the cortex. This exemplifies one of the key 
strengths of such large scale, realistic models, which is 
the ability to reproduce, at least in general terms, a large 
number of diverse dynamic repertoires.  

A related recent study by the same group (van Albada et 
al., 2015) delivered a further important insight, namely 
that downscaling (i.e. going from the real situation of 
millions of neurons to thousands or hundreds) can affect 
network dynamics, even when classical corrections for 
downscaling are applied. This is because higher-order 
statistics such as neuronal correlations are not 
preserved by such corrections. In turn, this has a 
consequence for the observed dynamic behaviour of the 
downsized network, which is no longer the same as in 
the full-scale case. The work from this group has thus 
highlighted that to observe full network dynamics 
including neuronal correlations, one needs to consider a 
realistic number of neurons and synapses. This indicates 
an inherent limitation in much of the work performed in 
smaller scale models. 

Whereas in one type of studies, simple spiking model 
neurons are used to model a column (van Albada et al., 
2015; Potjans and Diesmann, 2014), a different generative 
approach focuses precisely on the generation of LFP 
from anatomically-detailed biophysical model neurons 
(Einevoll et al., 2013). Here, emphasis is placed on using 
realistic single model neurons, at the cost of a much 
lower number of model neurons. To enhance realism in 
model-neurons, they are built from a large number of 
compartments. Due to their realistic morphology, these 
model neurons and their compartments inherently take 
a realistic position in the laminar structure of the overall 

network in which they are embedded. For example, a 
pyramidal cell with its cell body in layer 5 will have a 
dendritic tree spanning the superficial layers, and axons 
in the deep layers. Because functional connectivity 
(inputs/outputs) is layer-specific, this will contribute to 
functionally different compartments. Hence, multi-
compartmental neurons allow for the consideration of 
the distribution of synaptic inputs across the different 
cell compartments. The distribution of activity in the 
different compartments of model pyramidal cells 
determines the LFP signal properties, in a way that is 
highly analogous to what would be measured with a 
laminar probe experimentally. This model permits 
linking hidden variables (synaptic currents) to aggregate 
signals measured empirically, leading to a well-specified 
forward model. This approach thus has been fruitful in 
elucidating the nature and fundamental properties of the 
LFP signal such as the origin of the power law observed 
in the LFP (and EEG/MEG) power spectrum (Pettersen et 
al., 2014), the factors governing LFP spatial reach and 
power (Lindén et al., 2011), and the effects of signal 
frequency on LFP spatial reach (Łęski et al., 2013). 
Knowledge of these properties of LFP is also highly 
relevant for empirical studies examining LFP 
synchronization /coherence. Note that the approach 
taken by Einevol et al. (Einevoll et al., 2013; Łęski et al., 
2013) was to start from first principles of cell function 
and morphology, functional anatomy, and solutions to 
well-defined bioelectric forward problems and volume 
conductor theory. Such models yield proof of principle 
as they reproduce many generic features of the 
measured LFP. The approach is generic, as there was no 
aim to reproduce LFP signals measured in any particular 
experimental situation. The ground-truth data from 
these models can be tested against experimental data, 
but can also be used to validate computationally-cheaper 
network models and algorithmically simpler LFP signal 
proxies (see (Mazzoni et al., 2015)).  

In modeling realistic multicompartmental models, an 
additional tradeoff must be made. The multi-
compartmental neurons are modeled typically as 
‘passive’; they lack active conductances and other, non-
synaptic contributions to the LFP that are known to exist 
(Buzsáki et al., 2012a). In addition, they do not produce 
spiking behavior. Spiking multi-compartmental models 
that are mutually-interacting can be simulated , but at 
the costs of a simplified compartmental structure and 
smaller spatial scale (number of models neurons) (Jones 
et al., 2007, 2009; Lee and Jones, 2013). In making this 
trade-off, it is useful to consider however that the 
linearity that underlies the passive conduction models 
also allows computations over a large scale, permitting 
an easier derivation of analytical expressions of 
aggregate signals such as the LFP. Such formalism is 
useful for formulating the fundamental properties of the 
aggregate LFP see (Einevoll et al., 2013; Łęski et al., 2013; 
Lindén et al., 2011). 

In between large-scale models that come at the cost of 
simplified model neurons, and small-scale models with 
highly realistic single neurons, a hybrid approach is also 
possible. Only recently, a hybrid scheme was 
constructed (Hagen et al., 2015), whereby a large-scale 
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model (Potjans and Diesmann, 2014) was utilized to 
provide input to a number of passive, multi-
compartmental morphologically realistic neurons 
representative for each cortical layer. From these 
realistic multicompartmental neurons, a realistic LFP 
can be 'measured' (Hagen et al., 2015). This combines the 
advantages of a large-scale model with realistic neuronal 
density, connectivity, and correlation structure, with the 
robust LFP forward model that can be derived thanks to 
the multi-compartmental neurons. The model shows 
realistic behavior in terms of its computed CSD and LFP. 
Moreover, a study of model behavior showed that to 
obtain a realistic LFP, the cross-correlations between 
single (model) neuron LFP contributions need to be 
preserved, and these in turn depend much on preserving 
the correlational structure of the input. This insight 
points to an inherent limitation arising from using small 
numbers of model neurons, in terms of obtaining an 
accurate forward model of an aggregate signal. A 
sufficiently large number of neurons is necessary, 
otherwise, in addition to the limitation of not achieving 
realistic dynamics with small number of neurons (see 
(van Albada et al., 2015), the actual estimation of the 
aggregate is inaccurate (because of inaccuracies in the 
observation function). A sufficiently large number of 
neurons is essential because the scale and 
correlational/synchronization structure is important in 
determining what components will be observable and 
/or will dominate the aggregate signals (see (Hadjipapas 
et al., 2009, 2015), but also the classic work of Nunez and 
colleagues (Nunez and Srinivasan, 2006a)).  

The inherent limitations of these large-scale and/or 
complex-structured modelling approaches are largely 
intuitive. First, in large-scale models an enormous 
number of parameters must be set, and to do so in an 
empirically validated manner is a formidable challenge. 
Second, the storing and analysing of the output of such 
models requires enormous storage and processing 
capacity. Rapid progress is being made however to cope 
with such large-scale data (e.g. Elephant, 
http://neuralensemble.org/elephant/), a challenge that 
is also being addressed by the HBP. Third, even after 
particular analyses have been done, the data may be so 
complex that they may be difficult to interpret. 
Therefore, currently large, structurally realistic models 
built from first principles are predominantly used in 
providing proof of basic concepts. So far, however, such 
models have had limited success in explaining or 
modelling more specific experimentally observed 
phenomena. The latter is central to achieving 
mechanistic insight specific to observed experimental 
data.  

3.2  Models tailored for specific experimental 
observations 

In models constructed to investigate the basis of specific 
empirical data, a first approach can be to limit the model 
to the appropriate scale and complexity of network, and 
the complexity of units and synapses required to 
understand the phenomenon. For example, gamma 
oscillations are locally generated, and hence it can be 
argued that the basic mechanisms of gamma as 

measured in the LFP can be understood by a model 
network of limited size and complexity, and with 
simplified integrate-and-firing neurons. With these 
simplifications, a price may be paid in the possibility for 
empirical validation, and hence a careful balance needs 
to be strived for (further discussion in section 3.2.2). 
However, when it is aimed to build a model reproducing 
macroscopic signals such as MEG /EEG, preserving a 
laminar structure in a sufficiently expanded model 
network will be important (Jones et al., 2009; Lee and 
Jones, 2013). This is because the generation of MEG/EEG 
is dependent on translaminar current dipoles, which 
depend in turn on differential behaviour of dendritic 
compartments in superficial layers and somatic 
compartments in deep layers, for example in the case of 
layer 5 pyramidal neurons. Thus, transmembrane 
currents essentially initiate a process whereby 
differences in charge between these two compartments 
cause axial intracellular (so called impressed or primary) 
and extracellular (so called secondary or return) 
currents. The impressed/primary currents aggregate 
over many (pyramidal) neurons that have the same 
orientation (vertically to the cortical surface), and form 
the current dipoles that are the main generators of MEG 
and EEG (Einevoll et al., 2013; Hadjipapas et al., 2015; 
Hämäläinen et al., 1993; Jones et al., 2009; Nunez, 2006). 
Thus, if one aims to reproduce MEG signals or their 
current dipole generators (Jones et al., 2009; Lee and 
Jones, 2013), then preserving some laminar structure 
and the key compartments (dendrites vs. soma) is 
important. One pioneering conceptual aspect in the 
work by Jones and colleagues (Jones et al., 2009; Lee and 
Jones, 2013), is the attempt to link the model with 
observed empirical data and reproduce very specific 
experimental findings and features of the measured MEG 
signals. Inverse MEG source reconstructions were 
undertaken on the real data to obtain the underlying 
current dipoles. Then current dipole moments (source 
signal time series) were analysed in the time and 
frequency domain to extract salient and specific 
experimental observables. They then employed a 
mathematical model, specifying the forward model 
underlying the generation of current dipole moments. 
This thus allowed for a direct comparison of equivalent 
model data and empirically measured signals (and thus 
for empirical validation of the model). One limitation in 
the interpretation of these studies is that aggregate 
signals from a small set of neurons may not be fully 
realistic (Hagen et al., 2015). Moreover, to use small-scale 
models to explain macroscopic measurements (MEG) 
also may represent a limitation, and empirical validation 
would have to include measurements at a smaller scale 
(e.g., spikes and LFPs from laminar recordings). 

Below, we will focus on models of gamma oscillations, 
which in a number of theories, are essential for 
information transmission in the brain (see Section 5). 
Functional and generative models are considered, but 
we now focus on the emergence of gamma in visual 
cortex in response to visual stimulation.  

3.2.1 Functional/computational models of gamma  

http://neuralensemble.org/elephant/
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Such models address the aims of the functional/ 
computational approach illustrated above. That is, they 
essentially start from a reductionist approach and ask 
what computations/information processing functions 
may be performed by these oscillations. These models 
have given enormously useful insights into how networks 
stripped down to basics perform canonical computations 
and exchange information (Fries, 2015a; Fries et al., 2007; 
Jadi and Sejnowski, 2014; Ray et al., 2013; Tiesinga and 
Sejnowski, 2010; Womelsdorf et al., 2014). In addition, 
these networks have offered insight into specific 
computations that may underlie specific parts of higher 
level aspects of perception, attention and other forms of 
cognition (Buia and Tiesinga, 2006; Fries, 2009, 2015a; 
Tiesinga et al., 2005).  

 

 

3.2.2 Reduced models studying fundamental 
properties of network oscillations 

These models employ some reduction and simplification 
of model units and network structure in order to 
address specific questions on the mechanisms by which 
gamma is generated and maintained. These models of 
reduced scale and detail have no spatial structure and 
typically use point neurons to ask basic question on the 
generation of gamma, and the mechanisms that ensure 
stability or cause destabilization.  

One line of research deals with the network and input 
conditions under which gamma oscillations arise, what 
governs their stability, and what destabilises them 
(Börgers and Kopell, 2005; Brunel and Wang, 2003; Traub 
et al., 1996; Whittington et al., 1995) (for reviews see 
(Buzsáki and Wang, 2012; Whittington et al., 2000)). 
Another line of research focuses on the network 
parameters that govern key oscillation observables such 
as their frequency and power (Bartos et al., 2007; Brunel 
and Wang, 2003; Jia et al., 2013; Mazzoni et al., 2011; 
Traub et al., 1996; Whittington et al., 1995). Yet another, 
related line of research deals with identifying the 
network mechanisms that govern the interaction 
between extraneous drive, local inhibitory (I) and 
excitatory (E) populations during the emergence of 
gamma oscillations. A specific question that has been 
addressed in this respect is whether the mechanism 
generating gamma oscillations is an ING (Interneuron 
Gamma), a strong PING (Pyramidal Interneuron Gamma) 
or a weak (sparse)- PING (Bartos et al., 2007; Buzsáki and 
Wang, 2012; Tiesinga and Sejnowski, 2009; Wang, 2010; 
Whittington et al., 2000). 

A major advantage of such relatively reduced models is 
that, because of a somewhat reduced scale and relative 
structural simplicity, they are amenable to detailed 
analysis of simulation outputs and in some cases even to 
analytical treatment of the model equations(e.g. (Börgers 
and Kopell, 2005)), which permits the precise 
identification of mechanistic causes for the observed 
phenomena. Some of these models have computed 

oscillation observables in the model (such as gamma 
frequency and power), which is especially valuable 
when certain experimental manipulations can be used to 
approximate changes in specific network parameters (Jia 
et al., 2013; Mazzoni et al., 2011; Roberts et al., 2013). 
However, the validity of this comparison depends 
crucially on the empirical validity of the generative 
model of the LFP.  

Even in reduced models of gamma, many crucial 
parameters such as connection probabilities, synaptic 
efficacies and most notably the nature of the input (in 
terms of its specificity to excitatory and inhibitory 
populations and its spatial and temporal correlation 
structure) have limited empirical grounding. These 
crucial parameters, the choice of which can strongly 
influence model behaviour and even change the 
underlying oscillation mechanism (e.g. from ING to weak 
or strong PING), are often set by convention or are a 
result of setting some initial values based on literature 
and 'tuning' parameters such that gamma oscillations 
are generated. This problem arises mostly because of the 
lack of sufficient and relevant details in the literature: 
the experiments to estimate such parameters are very 
complex and effortful and sometimes even impossible 
with current techniques. Therefore, one of the key 
challenges of the Human Brain Project is to find ways to 
estimate crucial modelling parameters in an empirically 
validated manner. A further limitation is that the models 
outlined in this section are typically spatially 
undifferentiated. In these models, the neuronal 
connectivities are typically probabilistic (i.e., spatially 
random), and hence no laminar or columnar structure is 
modelled. These may be for example models describing 
the average firing rates in two populations of neurons 
(inhibitory, excitatory), so called mean-field (firing-rate 
or population) models e.g. (Jia et al., 2013), or models of 
coupled excitatory and inhibitory neurons (Börgers and 
Kopell, 2005).  

In addition, many studies modelling individual units 
have employed so-called, point model-neurons. Point 
model neurons have no spatial differentiation into 
compartments such as the apical dendrites, soma, or 
distal dendrites; all currents in such model neurons 
enter and exit the neuron from a single point. For a 
comparison of the behaviour of different types of point 
model neurons, see Izhikevitch (Izhikevich, 2004). 
However, compartmental differentiation is important 
when attempting to compare a network output 
observable (e.g., the simulated LFP) with an 
experimentally observable signal (e.g., the laminar LFP). 
This is because neuronal cell compartments, especially 
in large pyramidal neurons, tend to stretch across 
cortical layers and receive inputs from different origins 
and with different timings. The resulting 
transmembrane currents and the associated impressed 
and return currents typically generate the LFP (Einevoll 
et al., 2013) and macroscopic signals such as ECoG, MEG 
and EEG (Hämäläinen et al., 1993; Nunez and Srinivasan, 
2006a). Some authors have used LFP proxies in models 
composed of point neurons (e.g. (Mazzoni et al., 2011; 
Roberts et al., 2013)). The validity of such 
approximations is debated (Barbieri et al., 2013; Einevoll 
et al., 2013). In a highly relevant study on this issue 
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(Mazzoni et al., 2015), a quantitative comparison was 
made between various point integrate and fire (IF) 
neuron LFP-proxies and ground truth biophysical model 
data (based on multi-compartmental neurons and an 
appropriate forward model), to evaluate which LFP 
proxies perform relatively well compared to ground 
truth data.  

The reduced models discussed in this section and the 
comparison of their output with models composed of 
multi-compartmental neurons are deepening our insight 
into the generative mechanisms of gamma. In general, 
despite the lack of spatial structure, the use of simplified 
model neurons, and the associated lack of a detailed 
forward model to generate signals comparable to 
empirically observed signals, these reduced models 
given a suitable LFP proxy can benefit from comparison 
with empirical data. Hence, subjecting these models to 
empirical validation can only further increase their value 
for understanding neural processing in (visual) cortex.  

4 A perspective on the empirical validation of models 

In general, large-scale models, strictly speaking, are 
difficult to empirically validate. In these models, the 
number of parameters and combinations of parameter 
settings that could potentially yield similar functional 
behaviour is extremely large. However, even in very 
simplified generative models, that consist of relatively 
small numbers of point neurons and have no laminar or 
columnar structure (such as a number of models focused 
on understanding fundamental generative gamma 
mechanisms and gamma oscillation properties described 
previously), the very same problem still holds. There is 
often not much empirical guidance to set synaptic 
conductances, levels of adaptation, connectivity strength 
among inhibitory, among excitatory, and between 
excitatory and inhibitory neurons, etc. Unfortunately, 
the question of which of the parameter configurations is 
most likely to yield model data that may underlie the 
empirical observations is difficult to answer. This is 
because many of the network parameters that are 
crucial for its behaviour such as the parameters 
specifying the input and the parameters specifying the 
effective neuronal connectivity and many other aspects 
are unobserved, and often set by convention. At the 
same time, even relatively small variations of these 
parameters, strictly within biologically plausible limits, 
may lead to qualitatively different behaviour. 

However, simplified models of reduced scale and/or 
with simplified units also have important limitations. A 
recent study showed that when comparing, otherwise 
similar networks with either more computationally-
simple, current-based synapses, with more realistic, 
conductance-based synapses, the second order statistics 
of neural population interactions in the network (such 
as spike train correlation) and their input-related 
modulation were different (Cavallari et al., 2014). 
Furthermore, activity of networks with the more 
realistic conductance-based synapses showed stronger 
synchronization in the gamma band, the spectral 
features of which also carried more information about 
the input. Thus, even after applying simplifications such 
as removing spatial structure in the network, and using 

point neurons rather than multi-compartmental 
biophysical neurons, the specific choice on the type of 
synapse can be crucial for the performance of the model. 
In this case, the crucial choice pertains to employing 
more realism in the form of conductance-based synapses 
and perhaps also conductance-based Hodgkin Huxley 
(HH) rather than more abstract integrate-and-fire (IF) 
model neurons.    

Having settled on what is the minimal realism necessary 
for addressing the question at hand and having built 
such reduced model, the next question to be addressed 
is which of the configurations of largely unknown 
parameter values is most likely to underlie the data. To 
solve this problem, we suggest a stepwise process of 
empirical validation (Zachariou et al., 2015). In this 
empirically constrained modelling approach, relatively 
simple (e.g. HH type) point neurons are used at first in 
small spatially-undifferentiated networks in which 
however the parameter space is maximally validated by 
empirical data at the correct scale. Such an empirically 
validated model aims at the characterization and 
extraction of robust and valid descriptors of network 
behaviour for a specific experimental setting. This 
approach is to be maintained when upscaling the 
network in terms of size and complexity towards from 
meso- to macro-scales. In a full scale model, it is then 
required that all constraints from micro-, meso- to 
macro-scale are satisfied simultaneously. In addition, the 
simultaneous availability of data at multiple scales is 
important to help constrain their interactions in the 
model. For example, the precise link between micro-
scale (as quantified from sorted single unit spike trains) 
and meso-scale (population activity as measured by 
LFPs) will determine the underlying generative models, 
which include ING, PING, or weak-PING (Wang, 2010; 
Whittington et al., 2000). Hence, it is crucial that 
empirical constraints are quantified and implemented at 
both micro- and meso-scopic scales, and thus should 
address both single unit and LFP behaviour. To 
constrain models at the macro-scale, additional 
empirical constraints from ECoG and MEG measures are 
necessary. Irrespective of the scale of modelling, 
empirical validation is carried out by running the model 
at all different settings of unknown parameters, and to 
choose the configuration that best matches the empirical 
data corresponding to the scale of modelling. The model, 
whose behaviour shows the best match to empirical 
constraints, is an empirically-validated model. Such a 
model network with sufficient (but perhaps not 
extensive) realism can then be analysed thoroughly to 
gain insights into the underlying mechanisms for the 
phenomena of interest.  

The obvious advantage of this compromise-approach is 
that the empirical validation may be a more tractable 
problem than in generic large scale and or complex 
models, because the parameter space that requires 
estimation is much smaller. If (quasi)quantitative 
empirical validation is aimed for, then this reduction in 
parameter space in more limited models is of paramount 
importance because it is difficult to estimate too many 
parameters from the finite and noisy datasets that are 
typically recorded experimentally. The disadvantages of 
these models are related to the insufficient realism in 
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term of scale/neuronal density, which in turn may lead 
to not attaining the full network dynamics as for the 
results of (van Albada et al., 2015) and thus not attaining 
the true correlational structure - leading to a poor model 
LFP estimation (Hagen et al., 2015). If point neurons are 
used, limitations with respect to attaining a realistic LFP, 
readily comparable with experimental data apply 
(Einevoll et al., 2013; Mazzoni et al., 2015). Nevertheless, 
there may be ways to estimate LFP from point neurons 
(Mazzoni et al., 2015). Furthermore, introducing a hybrid 
approach in which point neurons are mixed with multi-
compartmental neurons in differentiated models (Hagen 
et al., 2015) can provide a workable approach to find an 
acceptable compromise between empirical validation 
and sufficient generative realism. 

Gamma oscillations are particularly suited to test our 
approach of stepwise, empirically validated modelling. 
The main reason for the suitability of gamma oscillations 
to this end are fivefold. First, gamma oscillations are 
important in terms of the psychophysiological approach 
(section 5), demonstrating statistically-reliable and 
experimentally-robust associations with mental 
functions especially in sensation and perception (for a 
review see (Fries, 2009)). Second, gamma oscillations 
have been implicated in theories addressing aims of the 
functional/computational approach (Section 5). Third, 
the generative network mechanisms of gamma 
oscillations have been studied widely in-vitro and in-
vivo, and have been the target of extensive 
mathematical/computational modelling (for reviews see 
(Bartos et al., 2007; Buzsáki and Wang, 2012; Tiesinga and 
Sejnowski, 2009)). Fourth, gamma oscillations have been 
studied in detail in the early visual cortex of the human 
and non-human primate. This is important because the 
functional anatomy/physiology of the visual system (and 
early visual cortex especially) is well understood, and 
because the sources  of gamma activity both 
macroscopically (MEG and to a lesser extent EEG) and 
more mesoscopically (ECoG , LFP and laminar LFP, CSD) 
have been elucidated to a great extent (see (Hadjipapas et 
al., 2015). Fifth, key functional (for instance stimulus-
related) behaviour of gamma has been well-documented 
at the different spatial scales and species (human vs. 
nonhuman primate), as will be further shown in the next 
section.  

5 Gamma: A case in point for empirical validation of 
models 

Neurons communicate predominantly with each other 
through spiking, but excitability (and hence spiking 
probability) tends to vary cyclically over time. This 
implies that the presence or absence of a favourable 
temporal relationship among the excitable periods in 
different populations can make or break their 
communication (Fries, 2005a, 2009, 2015a; Fries et al., 
2007). These cyclical or oscillatory changes occur not 
only in the gamma frequency range (25-80Hz), but also 
in several other frequency ranges referred to as beta 
(14-25Hz), alpha (8-13Hz), theta (4-7Hz), and delta (1-
4H) (Clayton et al., 2016). Here, we will focus on the role 
of gamma oscillations in neuronal communication 

within V1, and early visual cortex. Despite what seems to 
be robust evidence for a role of gamma in stimulus 
processing and neuronal communication, there has been 
a persistent counter-view in which gamma is seen as a 
predominantly epiphenomenal feature reflecting the 
architecture of cortex, but without functional 
implications. We suggest that this debate has persisted 
due to the lack of predictive generative gamma models 
(i.e. models that can predict in which conditions gamma 
does or does not occur).  

5.1. The gamma debate 

Until recently it was thought that gamma frequency was 
highly stable over time and across brain areas in a given 
individual (Hoogenboom et al., 2006; 
Muthukumaraswamy et al., 2010), which would ensure 
efficient communication among remote neuronal 
populations. However, especially in recent years, 
evidence has accumulated that gamma frequency can 
vary considerably. From a theoretical/ modelling 
perspective, the idea that gamma frequencies are by 
default matched across different brain areas is not that 
straightforward, as gamma is often assumed to depend 
on local network properties (Buia and Tiesinga, 2006; 
Fries, 2005a), which may differ among areas. In addition, 
strong dependencies of gamma band frequencies on 
visual stimulus parameters have been demonstrated 
(Feng et al., 2010; Gieselmann and Thiele, 2008; Ray and 
Maunsell, 2010; Swettenham et al., 2009), which may 
interact with differences in local mechanisms generating 
gamma in different areas. Strikingly, Roberts et al 
(Roberts et al., 2013) demonstrated a >20Hz shift in  
gamma frequency with stimulus contrast in V1 (Figure 9, 
also see (Jia et al., 2013; Ray and Maunsell, 2011) 

This seemingly simple finding has had a large impact on 
the theoretical understanding of gamma in early visual 
cortex: In the domain of gamma oscillations, two 
important theories have been proposed that address the 
contribution of gamma to neuronal communication. The 
first one has become known as the binding theory. This 
theory proposes that different neurons in the brain that 
are encoding different spatial loci as well as different 
features of an object are bound together by gamma to 
form a coherent percept (Engel et al., 1999; Grossberg, 
1976; Von Der Malsburg, 1994; Milner, 1974; Singer, 1995). 
According to the maximal version of this theory, all 
relevant neurons in the brain encoding an object would 
be bound together by having an appropriate match 
(phase relationship) among excitable periods occurring 
in the gamma frequency range. A similar mechanism 
may be envisaged to form neural assemblies 
representing retrieved memories, actions while they are 
being executed, or feelings while they are being 
experienced. In all of these cases, large numbers of 
neurons are proposed to form functional networks that 
interact within and across different cortical areas as well 
as subcortical structures. In the context of the present 
review, we will use the term binding only to refer to 
interactions within V1, which we more generally will 
refer to as within-area communication (WaC).  
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Figure 9: Average data from a single monkey showing the increase in gamma frequency as a function of grating 
contrast in V1. 

Each panel represents gamma power (relative to baseline) as a function of time (stimulus onset at zero). Data replotted from Roberts et 
al. (Roberts et al., 2013) 

A second highly influential theoretical framework in the 
domain of neuronal communication in the gamma range 
is the communication through coherence (CTC) theory 
by Fries (Fries, 2005a, 2015a; Fries et al., 2007). In CTC, 
important principles have been proposed about the 
conditions under which communication between areas 
can occur among different cortical areas. The main idea, 
that an appropriate match between windows of 
excitability is required, is shared between binding and 
CTC theories. When limiting oneself to early visual areas, 
the difference between the two theories might be related 
more to the types of phenomena they have focused on, 
than on the basic principles of neural communication. 
Binding can be seen as more related to the way in which 
local processes within an area contribute to the 
formation of a Gestalt from local elements (Engel et al., 
1991; Gray et al., 1989), and figure-ground segregation 
(Lamme, 1995; Peterson and Salvagio, 2009; Poort et al., 
2012; Self et al., 2013), whereas CTC has been used 
primarily to understand the selective routing of 
information between areas at different hierarchical 
levels, especially in studies of selective attention 
(Bosman et al., 2012; Fries, 2005a; Salinas and Sejnowski, 
2001; Tiesinga et al., 2002; Wildie and Shanahan, 2011). 
Nevertheless, the two theoretical frameworks are highly 
related, as illustrated by studies showing that binding is 
facilitated by attention (Ashby et al., 1996; Shafritz et al., 
2002; Treisman, 1998, 2004; Treisman and Gelade, 1980). 
By analogy we use the term within-area communication 
by synchronization (wCS) rather than binding and the 
term between-area communication by synchronization 
(bCS) rather than CTC. The reason for the latter is that 
the term ‘coherence’ refers to a specific method of 
computing synchronization that is not applicable when 
the empirical data do not satisfy specific constraints 
(Lowet et al., 2016). Note furthermore that in line with 
considerations by Fries (Fries, 2015a), we will define the 
synchronization between neural populations as 
referring to the process of optimizing communication by 
means of arranging windows of excitation in two 
populations at a time (phase) difference appropriate to 
compensate for transmission delays. In the present 
review, we want to discuss challenges of communication 
by synchronization, and how these challenges have led 
to new empirical, methodological, and computational 

research that can inform modelling of early visual 
cortex.  

The finding that gamma frequency depends on stimulus 
properties implies the possibility for frequency 
mismatch resulting in an input-dependency of the 
efficiency of information transfer between populations. 
This would render synchronization as a mechanism for 
neural communication implausible (Jia et al., 2013). A 
highly relevant finding to evaluate the contribution of 
gamma to wCS came from Ray and Maunsell (Ray and 
Maunsell, 2010). They recorded from pairs of V1 neurons 
responding to different parts of a Gabor stimulus, 
responded with differing peak-power gamma 
frequencies to different contrast regions. Importantly, 
gamma synchronization was reduced as a function of the 
contrast difference between different stimulus location. 
This finding was interpreted as evidence against 
binding-by-synchrony, because they showed that there 
was no evidence for matching gamma spectra within the 
V1 representation of the object. Moreover, several 
authors (Burns et al., 2011; Roberts et al., 2013; Xing et al., 
2012), have reported large seemingly random gamma 
power and frequency (~15Hz) modulations in V1, in the 
absence of changes in stimulation. These data suggest 
that for neural communication by synchrony to work, 
there must be mechanisms not only to determine 
appropriate phase differences, but also to match 
frequencies sufficiently to enable sufficiency stable 
phase relationships.  

 

5.2 A computational view on neural communication 
by synchrony in V1 

The discussion in the literature about whether gamma 
synchronization can play a role in neural communication 
may so far have been largely characterized by a lack of 
computational insight into the mechanisms that regulate 
frequency, phase and power differences among 
communicating neural populations. To address this, it is 
useful to first consider the neurophysiological 
mechanisms by which gamma is generated. Gamma is 
thought to be generated by interactions between 
‘regular-spiking’ pyramidal cells and ‘fast-spiking’ 
inhibitory cells. Among inhibitory cells, basket cells are 
thought to play a prominent role, because of their 
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powerful perisomatic targeting of inhibition onto 
pyramidal cells. Among the possibilities for generating 
gamma, two have been prominently discussed (Buzsáki, 
2006; Tiesinga and Sejnowski, 2009). In the first scenario, 
basket cells, which communicate with each other 
synaptically and through gap junctions form a network 
in which randomly occurring patterning of spiking 
generates a gamma rhythm. With proper connectivity 
and assuming fast-acting and decaying inhibition (by 
GABAA) frequencies in the gamma network can be 
expected in the gamma range, which in turn may 
modulate the excitability of pyramidal cells at that same 
rhythm. This model is referred to as the InterNeuron 
Gamma (ING) model. In an alternative scenario, the 
rhythm is generated by excitatory drive to the pyramidal 
cells, which excites local basket inhibitory neurons that 
in turn given inhibitory feedback to the pyramidal cells. 
Here, the gamma rhythm will depend on the interplay 
between the strength of the excitatory drive and the 
decay time for inhibition. This mechanism, referred to as 

the Pyramidal InterNeuron Gamma (PING) model, is 
interesting in the context of findings that gamma is 
stimulus-dependent, and indeed computational PING 
models exhibit stimulus-dependency (Hadjipapas et al., 
2015; Roberts et al., 2013), see Figure 10). In addition to 
the ING/PING distinction, it is important to consider 
how local the network is that generates the gamma 
frequencies. Assuming a strongly connected inhibitory 
network in the ING model, large networks may converge 
upon a single narrow gamma spectrum, entraining 
pyramidal cells at different phases (Buzsáki and Wang, 
2012; Fries et al., 2007; Lisman and Jensen, 2013). In this 
case, the inhibitory network acts as a single clock to 
which activity from other cells is referenced. 
Alternatively, the connectivity among inhibitory (and 
excitatory) neurons may not be set up to permit the 
long-range spreading of oscillatory activity, which could 
give rise to multiple clocks (Buzsáki and Wang, 2012; Fries 
et al., 2007; Lisman and Jensen, 2013).  

 

 
Figure 10 

Top: Empirically obtained gamma spectra as a function of grating contrast in V1 of a single monkey, with on the right 
hand side estimated peak-power frequency as well as relative power as a function of contrast. Bottom: Analogous data 
obtained from PING modelling. Spectral responses are shown on the left and frequency of gamma, fast-spiking (FS) 
inhibitory neurons (blue), regular spiking (RS) excitatory neurons (red), and power are plotted as a function of excitatory 
drive (thought to be a proxy of contrast). Experimental data replotted from Roberts et al. (2013).  

 

Here, we will consider PING networks in which the 
inhibitory and excitatory cells receive local excitatory 
drive (stimulation), and whose gamma oscillations are 
generated locally. In this case, a PING network can be 
considered as an oscillator, and the question can be 
asked how these oscillators interact. Anatomically, 
PING networks may be compared to local populations 
in superficial layers in V1, where pyramidal cells are 
known to show lateral connections extending over up 
to 5mm (Yoshioka et al., 1996). Hence, the interaction 
between PING networks can be approximated by an 
interaction between oscillators. Mathematically, the 

synchronization of interacting limit-cycle oscillators is 
well understood (Ermentrout and Kopell 1984) 
(Ermentrout and Kleinfeld, 2001; Hoppensteadt and 
Izhikevich, 1996, 1998). Here, we will focus on the 
theory of weakly coupled oscillators (TWCO, for review 
see (Pikovsky et al., 2002) which has been applied in a 
broad array of scientific domains including 
neuroscience (Bendels and Leibold, 2007; Breakspear et 
al., 2010; Ermentrout and Kleinfeld, 2001; Galán et al., 
2005; Hoppensteadt and Izhikevich, 1996, 1998). In 
TWCO the phase of an oscillator is defined by an 
intrinsic (natural) frequency, and the interaction with 



  

39 

 

other oscillators is characterized by the phase response 
curve (PRC, for review see (Schwemmer and Lewis, 
2012)). The PRC defines how the phase of an oscillator 
is modified by its interaction with other oscillators. The 
amount of phase-locking (the strength of 
synchronization) between oscillators depends on the 
interaction (coupling) strength between oscillators and 
their intrinsic frequency difference (also referred to as 
detuning). The resulting interplay of detuning and 

coupling is expected to define a triangular region of 
synchronization in a coupling-versus-detuning space 
(Coombes and Bressloff, 1999; Pikovsky et al., 2002; 
Tiesinga and Sejnowski, 2010). This triangular region is 
often referred to as the 1:1 Arnold tongue (Figure 11). 
In TWCO, the coupling strength is ‘weak’, meaning that 
the interaction among oscillators mainly affects phases 
and frequencies, but not their oscillation amplitudes. 

  

 

Figure 11: Understanding the interaction and synchronization between PING networks in the framework of TWCO. 

A) Two PING networks are constructed and coupled (excitatory cells and connections in red; inhibitory cells and connections in blue), 
after which Net 1 is given stronger excitatory drive (fatter black arrow) than Net 2 (thinner black arrow). B) 2D-space of coupling 
strength versus detuning. Black dot falls within the Arnold tongue, indicating that there is sufficient coupling to achieve a given 
measure of synchronization for the imposed detuning (intrinsic frequency difference). C) The two nets achieve a similar narrow-band 
gamma spectrum despite differential excitatory drive. D) The higher intrinsic frequency of Net 1 than for Net 2 after synchronization is 
translated into a phase difference, with Net 1 leading Net 2 (with intrinsic frequencies referring to the frequencies obtained if Nets 1 
and 2 were uncoupled). E) A reduction of coupling strength for the same level of detuning. F) Lack of synchronization when coupling is 
too weak given the level of detuning. Grey region in B and E represents the expected regions within which synchronization would occur 
should all coupling vs detuning combinations be tested. G) Lack of synchronization leads to a lack of a fixed phase relationship between 
oscillators and to phase precession. Redrawn from Lowet et al., 2015.  

Lowet et al. (Lowet et al., 2015a) completed a study in 
which for a pair of mutually interacting PING networks, 
synchronization properties were tested for a large range 
of combinations of coupling and detuning. Compared to 
Tiesinga and Sejnowski (Tiesinga and Sejnowski, 2010), 
who first applied TWCO in a realistic gamma network 
for visual cortex, Lowet et al. (Lowet et al., 2015a) went 
several steps further. They studied a spatially-
continuous PING gamma network in which local 
connectivity decayed as a function of spatial distance, 
and in which different network locations received a 
different strength of input drive. As a result, gamma 
synchronization could be kept local within the network 
in accordance with findings from (Ray and Maunsell, 
2010). In addition, Lowet et al. (Lowet et al., 2015a) used 
input drive ranges in the model that induced a range of 
gamma oscillation frequencies that matched empirical 
observations from Roberts et al. (Roberts et al., 2013). An 
investigation of a large range of coupling and detuning 
conditions led to observations of phase-locking, phase-

relations and frequencies among PING models in line 
with TWCO and the Arnold tongue. Figure 12A shows 
the predicted triangular region of phase-locking 
(synchronization). Furthermore, phase and frequency 
coding of input was largely complementary, again in line 
with TWCO (Figure 12B, C). Large differences in input 
strength, being largely outside the Arnold tongue, are 
encoded as frequency differences. Finer differences in 
frequency within the triangular region of 
synchronization are translated into phase differences. In 
line with the distinction between encoding of coarse and 
fine input differences by respectively frequency and 
phase, combining the two codes yielded the best 
reconstruction of stimulus input. The behaviour shown 
in Figure 11 and Figure 12 is robust against a range of 
variations in the PING model (e.g., more or less sparse 
firing in the excitatory neurons), is not dependent on the 
type of model neuron (e.g.,HH vs Izhikevich), and the 
behaviours among coupled PING networks can also be 
seen among coupled oscillators (see Lowet et al. (Lowet 
et al., 2015a)).  
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Figure 12: Properties of the Arnold tongue 

(A) Region of synchronization in the coupling-by-detuning space (detuning shown here as a difference in excitatory drive). 
Synchronization is quantified by a phase-locking index. B). within the region of good phase locking, the locking occurs at different phase 
differences, such that the network with the higher intrinsic frequency will lead in phase. C) Illustration of the common frequency upon 
which oscillators with different intrinsic frequencies will emerge for the proper combinations of detuning and coupling. Based on Lowet 
et al. (2015). 

To demonstrate that TWCO is a useful approach to 
understand interactions in topographic visual 
networks, Lowet et al. (2015) constructed a 100 by 100 
array of phase oscillators, in which oscillators were 
connected with their neighbours with a strength and 
probability decaying exponentially with distance, as 
has been documented in early visual cortex (Figure 13). 
In line with conductional delays for horizontal 
connections on the order of ~0.3 mm/ms in V1 
(Angelucci and Bullier, 2003; Boucsein et al., 2011), Lowet 
et al. (Lowet et al., 2015a) used a time-delay term in the 
lattice model that increased as a linear function of 
spatial distance (slope of 0.4 ms/pixel, offset 1ms). 
Conduction delays affect phase-relations as well as 
phase-locking, and limit the extent of spread of 
synchronization in a topographic neural network. This 
network was then exposed to the contrasts extracted 
from natural images, by assigning an intrinsic 
frequency to each oscillator in line with its 
corresponding image contrast. Upon stimulation, the 
network showed interactions among oscillators, with 
the emergence of synchronization fields, which 
appeared to have useful properties for grouping and 
figure-ground segregation. In particular, although the 
emergent synchronization fields often did not fill 
complete surfaces, they showed the useful property of 
rarely crossing object boundaries. This can be 
understood from the perspective that contrast variance 
is greater at object boundaries than within the surfaces 
of these objects. This facilitates the emergence of 
synchronization fields within object surfaces, whereas 
the often large contrast discontinuity at borders will 
have the tendency to break topographic 
synchronization regions. 

The potential of oscillating neural networks for 
meaningful segmentation of input patterns has been 
described before (Chen and Wang, 2002; Kuntimad and 
Ranganath, 1999; Kuzmina et al., 2004). However, in 

some studies, the clustering is based on a phase-code 
only (Eckhorn, 1999; Kuntimad and Ranganath, 1999; 
Wang and Terman, 1995, 1997), whereas in others it is 
mainly based on de-/synchronization (König and 
Schillen, 1991). In Lowet et al. (Lowet et al., 2015a), local 
input differences in a network are translated in a 
combined frequency and phase code. Importantly, the 
nature of gamma in our modelling approach is local. 
This makes the modelling approach fundamentally 
different from other model architectures characterized 
by global synchrony, like the LEGION model (local 
excitatory global inhibitory oscillator network, (Wang 
and Terman, 1995)) or the PCNN (pulse-coupled neural 
network, (Kuntimad and Ranganath, 1999)). In these 
models, clustering was based on phase alone and the 
network had a single main frequency. LEGION and 
PCNN perform well in image segmentation tasks, but 
are not biologically plausible. The idea that there is 
information in the frequency and phase relations of 
oscillatory responses that is relevant for reconstructing 
input, does not prevent other types of encoding to be 
relevant as well. There are various types of information 
in the spiking of neurons that can be exploited while 
making abstraction of oscillatory properties. Likely, the 
brain will combine different types of codes depending 
on which code is more efficient given specific stimuli 
and behavioural requirements. Indeed, each type of 
encoding has its own advantages and disadvantages. 
For example, spiking rate (‘rate-coding hypothesis’) 
may sometimes relate closely with changes in stimulus 
parameters, but it requires sufficient integration over 
time, and its range of encoding can be limited by 
neuronal saturation. On the other hand, precise spike 
timing contains significant information about the 
stimulus (Masquelier et al., 2009; Rieke et al., 1997; 
VanRullen et al., 2005), however only short integration 
time windows are required to extract that information. 
Spike timing can also be considered in neuronal 
populations, an idea that has led to the relative spike-
timing hypothesis (König and Schillen, 1991; Sakurai, 
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1996; Singer, 1999; Tsukada et al., 1996). Information is 
represented here in the exact spiking pattern of a 
number of neurons.  

An important consideration is that synchronization 
usually does not lead to complete phase locking. 
Instead, noise and state-related factors will usually lead 
to partial (intermittent) synchronization regimes. Even 
without these factors, TWCO predicts that in almost all 
conditions (except when detuning is zero to begin with) 
partial synchronization is the rule rather than the 
exception. This is supported by reports of significant 
strengths of synchronization among neuronal 
populations with non-matching narrow-band gamma 
spectra (Bosman et al., 2012; Gregoriou et al., 2009; Ray 
and Maunsell, 2010). This suggests that these 
populations alternate periods of phase locking (with a 

matched frequency) with periods of phase precession. 
The non-stationarity of the resulting oscillations 
precludes the use of the widely used coherence index 
(Oostenveld et al., 2011) if the aim of analysis is to 
assess phase relations among neural populations. 
Instead other approaches to estimate phase relations 
among neural populations have been proposed, in 
which methods of frequency band selection are 
followed by the Hilbert transform for estimating 
instantaneous phase (Lowet et al., 2016). The latter 
approach may be preferable for the analysis of 
empirical data as well as modelling output if the goal is 
to obtain estimates of phase and phase-relations among 
neural populations.  

  

 

Figure 13: Phase-oscillator model with natural image input. 

A) Image processing. Each natural image was reduced to 100x100 pixels and transformed from a luminance image into a contrast 
image. Data from Roberts et al. (2013) was used to transform local contrast values into intrinsic gamma-frequencies per phase 
oscillator in the 100x100 lattice network. B) Two examples of emerging synchrony fields (color) defined by comparing a reference 
oscillator (black dot) to all other oscillators. In the resulting emerging synchronization field, color coding reflects either phase locking 
(left column) or phase difference (right column). When the reference (black dot) was located outside of the main object (top row), the 
resulting synchronization field did not extend into the object. Likewise, when the reference (black dot) was located inside of the main 
object (bottom row), the resulting synchronization field remained inside the object surface.  

The V1 modelling of our group reviewed here represents 
an important step forward in moving from a descriptive 
analysis of synchronization towards a predictive 
analysis based on theoretical principles. The 
demonstration that TWCO guides oscillatory 
interactions in the gamma range in V1 is a definitive step 
forward in developing more founded computational 
model of V1 gamma synchronization. Carefully studying 
these limited models can yield useful information into 
the principles behind neural architecture. However, the 
value of these insights is currently limited by the 
biological plausibility of the model. In order to increase 
our confidence that our ideas are indeed relevant, 
further work is required to make the PING models we 
have used more realistic (by including more realistic 
structure and connectivity), and to carefully test 
predictions of TWCO in these networks against 
empirical data. In ongoing work (Lowet et al., 2012), we 
are analysing relevant empirical data from V1 obtained 

with multiple laminar probes, at different distances from 
each other, and each stimulated with different local 
contrast. Furthermore, the models need to be expanded 
to include interactions among layers, and between 
different areas. Careful work is also required to calibrate 
models to take into account individual differences which 
reflect individual genomic differences (van Pelt et al., 
2012). Moreover, it is possible that PING models which 
accurately reflect non-primate cortex would have to be 
adjusted to account for differences between species. 

5.3. V1 – V2 gamma synchronization: Empirical and 
modelling data 

To test whether gamma synchronization can be a 
mechanism for information transmission from V1 to V2 
Roberts et al (Roberts et al., 2013) recorded 
simultaneously in V1 and V2 with depth probes, with 
recording contacts spanning the cortex from superficial 
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to deep layers in both areas. Figure 14A (left panel) 
shows there is a pattern of synchronization that 
preferentially links sites in superficial layers of V1 with 
layer IV in V2. The distribution of the observed pattern 
of synchronization was in line with the anatomy of 
feedforward anatomical connectivity (details in (Roberts 
et al., 2013)). Importantly, the pattern of functional 
connectivity from V1 to V2 during visual stimulation was 
constant with contrast. Figure 14A shows data from two 
monkeys that showed similar patterns of connectivity 
for a higher and a lower contrast. Hence, although 
different contrasts induce different gamma frequencies, 
synchronization between V1 and V2 remained possible. 
Furthermore, Granger causality analysis showed that the 
observed pattern of synchronization was associated 
predominantly with a feedforward direction of 
information transmission. These data fit well with the 
view that gamma is involved in feedforward information 
transmission, between LGN and cortex (Bastos et al., 
2014), and within visual cortex (Bastos et al., 2015a; 
Bosman et al., 2012; Fries, 2015a; Zandvakili and Kohn, 
2016).  

It is remarkable that despite strong variability in gamma 
power and frequency visible in individual trials (Figure 
14B, bottom panel), V1 and V2 were able to respond to 
stimuli with a robust level of synchronization. In line 
with observations from (Burns et al., 2011; Xing et al., 
2012), Roberts et al. (Roberts et al., 2013) found a large 
variation of ~15Hz in instantaneous frequency (for 
constant stimulation conditions). However, there was 
also a strong correlation between instantaneous 
frequencies in V1 and V2 (Figure 14C), which led the 
authors to suggest the existence of a mechanism for 
realizing sufficient a frequency match between the two 
areas. The frequency matching permitted V1 and V2 to 
show synchronization in spectra that shifted with 
contrast in a manner resembling the shifts of gamma 
power spectra in V1 and V2 individually (Figure 14D). A 
computational model in which two PING models were 
coupled to mimic the feedforward connectivity between 
superficial V1 and layer 4 in V2 showed that the V2 
model network became entrained by the frequency of 
V1, so that V2 gamma was similar for V1 gamma for 
different level of excitatory drive to V1 (Figure 14E). 
Roberts et al. (Roberts et al., 2013) emphasized the need 
for achieving a sufficient frequency match during the 
entrainment, and this view is in line with the application 
of insights from TWCO to gamma synchronization 
discussed in the previous section.  

Since individual trials show gamma bursts rather than 
sustained gamma, the entrainment must occur very 
rapidly, at the time scale of these bursts. In Figure 14B, 
the black lines correspond to the peaks of a theta rhythm 
that was present concurrently in the single trial 
oscillatory data. Lowet et al. (Lowet et al., 2015b) 

followed up on these observations and found that the 
theta rhythm in V1 and V2 was generated by 
microsaccades occurring while the monkeys were 
fixating the fixation spot. Interestingly, they found that 
gamma synchronization between V1 and V2 occurred at 
the rhythm of microsaccades. The idea that long-range 
neural communication depends on rhythms initiated 
through actions by the sensory organ is related to the 
theoretical concept of active sensing (Schroeder et al., 
2010; Tomassini et al., 2015). The influence of 
microsaccades is not limited to the visual system; it has 
been reported for example that saccades influence the 
hippocampal theta (Hoffman et al., 2013), which in turn 
structures gamma into bursts nested in the theta rhythm 
(Jutras and Buffalo, 2010). The patterning of feedforward 
information transmission in gamma bursts by slower 
rhythms is interesting, because it puts constraints on the 
way in which feedback by slower rhythms such as alpha 
or beta (Bastos et al., 2015b; Buffalo et al., 2011; Fries, 
2015a; van Kerkoerle et al., 2014; Michalareas et al., 2016; 
Zandvakili and Kohn, 2016) influence feedforward 
transmission via gamma. Presumably, the entire 
interaction between feedforward and feedback 
influences must happen within the time window of a 
gamma burst. A systematic analysis of gamma bursts 
and their relation with microsaccades by (Lowet et al., 
2015b) showed a strong tendency for gamma frequency 
to start higher at the beginning of a burst and then to 
decline. This decline is in line with the view that 
(bottom-up) drive after each microsaccade declines over 
time, making it likely that the effect of feedback would 
have a stronger relative impact on the later part of the 
gamma burst. This is also in line with spiking data 
(Lamme, 1995; Lamme and Roelfsema, 2000; Reynolds and 
Desimone, 1999) showing that feedback-influences 
related to figure-ground segregation or attention 
maximize their influence after the initial burst of 
feedforward activity (here from stimulus onset) had 
subsided.  

5.3. Using gamma to validate cross-scale visual 
cortex models in human and non-human primate 

In a recent study of gamma oscillations (Hadjipapas et al., 
2015), it was shown that principled cross-species and 
cross-scale (single-unit, LFP, MEG) comparisons are 
feasible. This comparison yielded marked similarities 
across scales and species in the functional behaviour of 
gamma frequency as a function of stimulus contrast. 
Thus, the gamma frequency response to contrast (input 
strength) is robust across scales and species and likely 
provides a signature for network response to input. At 
the same time intriguing dissimilarities were observed 
in gamma power between MEG compared to LFP and 
single unit spiking data (Figure 8). 
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Figure 14: Robust V1-V2 synchronization despite the bursty nature of gamma. 

A) Superficial (V1) to deeper (V2) pattern of synchronization induced by gratings. Each of the 4 subpanels shows within V1 (left and V2 
(right) the power of gamma (color-coded) as a function of depth (y-axis) and as a function of gamma frequency (x-axis). The horizontal 
dashed line corresponds to the estimated top of layer 4. Gamma power is strongest in superficial layers, and the peak power depends on 
contrast (compare 50% vs 6.1%). The grey lines show all possible pairing between depth probe contact points in V1 and V2 cortex used 
for estimating synchronization (coherence), and black lines show the top 5% strongest values. The pattern of strongest coherence was 
not affected by contrast, and was similar for two monkeys (compare the two leftmost panels with the two rightmost panels). B) Gamma 
is bursty. Top panel shows the average TFR of 50 trials (2secs), revealing the characteristic sustained gamma following stimulus onset 
reported in many papers. Bottom panel shows that TFR of a single one of these 50 trials. Sustained gamma is an averaging artefact. 
Black lines show delta peaks, to which gamma bursts are aligned. C) Gamma frequency is variable. Both V1 and V2 show very large 
variations of instantaneous frequency in the range of 15-20Hz at constant levels of contrast (coded in red, green and blue). This is 
shown in the marginal distributions of the scatter plot, which reveals the tight trial-by-trial correlation of gamma instantaneous 
frequency. D) V1-V2 synchronization (estimated by coherence). The magnitude of coherence reflects the gamma spectra, and their shift 
as a function of changes in contrast (see legend). E) Replication of V1-V2 coherence by linking two PING models. V1-V2 model coherence 
as a function of excitatory drive to the V1 model closely mimicked empirically observed coherence. Data from (Roberts et al., 2013). 

The understanding of differences in gamma power may 
give clues on various sources of differences between 
scales of measurements, for instance in terms of laminar 
differentiation and associated signal observability biases 
but also crucially in lateral connectivity/synchronization 
(Musall et al., 2014). Thus, such dissociations in the 
functional behaviour of different oscillation observables 
under the same experimental conditions point the way 
towards formulating further concrete research 
questions. One such research question is what 
generative mechanism governs gamma oscillation power 
in the presumably more local and structurally simpler 
networks generating laminar LFPs, as opposed to the 
more complex mechanism generating the more global 
MEG signal. 

We suggest that one way forward in constructing an 
empirically validated cross-scale model of visual cortex 
will come from a step-wise approach. A first important 
step is to create a gamma generating model at the micro 
and meso-scale that is empirically validated by data at 
the proper level (LFP and spikes). In further steps, multi-
layer and laterally expanded networks can be formed, in 
which proper within- and across-layer connectivity must 
be implemented. These models will yield generative 
forward models of more global signals, which can be 
empirically validated against ECoG or MEG data. By 
increasing the scale of the model, new factors will come 
into play and possibly specific parameters or other 
model properties will have to be adjusted. Importantly, 
the effective generators of the signals at different scales 
in a cross-scale model of visual cortex may not be 
invariant but may depend on the nature and spatial 



  

44 

 

distribution of the input, and on brain state (Łęski et al., 
2013; Lindén et al., 2011). In addition, the present review 
has not taken into account the tuning of neurons in early 
visual cortex to various parameters, and their 
arrangement into different functional domains. As a 
concluding thought, by focusing our review on gamma 
we do not wish to claim that it corresponds to the only 
or even the most important process in visual cortex. 
However, we do suggest that building models of 
increasing scale and complexity, while using gamma as 
one of the tools for empirical validation can be a 
productive way forward to generate full-scale models of 
visual cortex.   

6 From V1 to the rest of the brain 

In the present review, we have focused on modelling of 
early visual cortex (mostly V1). The advantage of V1 is 
that it is probably the best-studied region of neocortex. 
The amount of known functional-anatomical detail is so 
large that it has been possible to build structurally 
realistic models, with the downside that a validation of 
network parameters with empirical data is difficult due 
to the large parameter space that would have to be 
fitted. As an alternative, we have proposed a modelling 

approach that focuses on the modelling of relevant 
functional phenomena (e.g., figure-ground segregation, 
tuning properties, gamma oscillations), and build 
models that are more abstract, but which give the 
advantage of a strongly reduced parameter space that 
permits empirical validation. This difficult balancing act 
between structural realism and functional validation of 
models as described here for V1 is representative for the 
modelling of the whole brain. Empirically validated 
modelling of sensory areas is also an important aspect of 
the larger project to model the brain, as sensory areas do 
not only provide the input to the rest of the brain, but 
are also strongly involved in the broader brain networks 
that sustain high-level cognitive operations, including 
attention (Posner and Gilbert, 1999), working memory 
(Supèr et al., 2001), imagery (Klein et al., 2004), as well as 
object categorization and recognition (Cichy et al., 2014). 
Having a well-validated model of sensory areas will be 
important to specify the layer-specific and cell-specific 
connectivities between the sensory areas on the one 
hand and higher-level sensory, subcortical structures, 
and association cortices on the other, which are essential 
for normal brain function. 

   

 

 

Figure 15: Quantification of gamma spectral effects in humans and monkeys.  

A-C) The gamma peak frequency is plotted as a function of contrast for human MEG data (A) monkey LFP data (B) and monkey spiking 
data (C). D-F) Gamma power plotted as a function of contrast for human MEG data (D), Monkey LFP data (E) and monkey spiking data 
(F). For more details and additional analysis, see (Hadjipapas et al., 2015). The main similarity across scales concerns the gamma peak 
frequency dependency on contrast. The main difference observed concerns the gamma power dependency on contrast. While power 
decay and power saturation is observed at high luminance contrasts in LFP and single unit spikes, no saturation is present at high 
contrasts leading to linear scaling in human MEG gamma power. 
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Empirical research: Establishing the key parameters for an empirically-validated 
spatially-unstructured PING model of gamma oscillations in primate visual cortex 

 

Experimental Data  

In our empirical data, comprising single-unit and LFP recordings in macaque area V1 (Roberts et 
al., 2013) and source reconstructed human MEG localized to visual cortex (Hadjipapas et al., 
2015), we have observed a robust linear increase in gamma oscillation frequency with increasing 
luminance contrast. This was consistent across single unit spike trains, LFPs and MEG. 
Additionally, the slopes of the linear models describing the contrast-to- gamma-frequency 
relation were similar across this vast range of scales varying from single units to LFP and to MEG. 
However, there was a difference in the contrast-to-power relationship among measurement 
scales. In particular, at high grating contrasts, there was a saturation of power or even a robust 
decay in gamma power in the single unit spike trains and LFP (see Figure 8). However, the MEG 
power showed no saturation and increased linearly with contrast (Hadjipapas et al., 2015). This 
is an interesting dissociation, the full understanding of which, will require the use of complex 
structured models including layers and horizontal connections. Before attempting this, however, 
the crucial cross-scale link between single unit (micro-) and LFP (meso-) behaviour needs to be 
investigated. What underlies the frequency shift and the power decay/saturation observed at 
these two scales? Investigating this question carefully is a prerequisite before one can 
successfully examine the forward model underling the MEG signal (macro-scale). Validation was 
based on data from large datasets in three monkeys, two recorded with laminar probes in in 
area V1, one recorded with a sub-dural ECoG array covering a large part of one hemisphere 
(Rubehn et al., 2009). 

 

Spatially unstructured V1 model 

We developed spatially unstructured and physiologically validated Pyramidal Interneuron 
Network Gamma (PING) models of excitatory (E) and inhibitory (I) cells to investigate gamma 
oscillation mechanisms observed empirically in monkey V1 (Figure 16A). Importantly, we 
developed an approach to calibrate parameters, which are on the one hand largely unknown, 
but on the other hand are crucial for model behavior. Among the many parameters to be set we 
focused on the connectivity from E-to-I and from I-to-E cells which has a key role in gamma 
rhythm generation in PING models (Figure 16B). The calibration was performed by systematically 
manipulating these parameters and requiring that the model outputs satisfy certain empirical 
parametric constraints both at the micro-level (contrast-modulated single unit average rates) 
and at the meso-level (contrast-modulated spectral features of the LFP). The approach was 
based on a multidimensional fitting of the model against empirical parameters and allows for the 
selection of valid models, which best reproduce empirically-observed phenomena, including the 
frequency shift and power decay with increasing contrast and realistic firing rates for E and I 
neurons (Figure 16C, D). Model parameter fitting also allowed us to make empirically motivated 
choices in terms of model type (e.g., weak vs strong PING), type of simulated input, and effect 
of input on E and I cells (Figure 17).  
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Figure 16: Empirically constrained modelling by parameter fitting 

(A) Contrast-dependent modulation of LFP and spikes in macaque V1. V1 LFP spectral response in a 
representative monkey showing a frequency-dependent spectra shift with contrast (left), a graph extracting 
from the spectral response the non-monotonic power rise and decay with increased contrast (middle), and a 
monotonic increase in peak-power gamma oscillation frequency in the LFP (black) and the average single unit 
firing rate (magenta) (right). Power spectra shown in hotter colours correspond to contrast stimulation, bluer 
colours correspond to lower contrast conditions. Note the much higher LFP gamma peak frequency 
representing the population signal (black line) compared to the average single unit firing rate (magenta). 
This suggests a sparse rhythm in the neural population in which only a subset of neurons participates in the 
population oscillation in a given cycle. This also is in line with the existence of subthreshold oscillations, and 
is consistent with the notion of sparse rhythms and weak-PING models (Wang, 2010). (B) Parametric 
Exploration and Network Validation. In order to validate the model, we took a robust set of features from 
the empirical LFP spectra and the average single-unit firing rates (see Panel A) from our experimental data 
as well as from the literature. Here, we illustrate a parametric exploration of the model for E-to-I and I-to-E 
couplings for two out of five of the empirical features selected namely the ratio of the mean frequency of 
the oscillation versus the average single unit rates (left), and the maximum power observed across all 
contrasts (right). Colour coding in the two surfaces represents the magnitude of the empirical feature under 
consideration (i.e., frequency and power). Model output is evaluated across five such empirical criteria and 
the couplings which satisfy them all are denoted with a black sign. We had monkey V1 recording datasets 
showing gamma power decay, and others showing gamma power saturation. In the parameter space, valid 
networks showing saturation are denoted with a diamond symbol, and valid decay-exhibiting networks with a 
square. The distribution of the two different symbols show different clusters of parameter settings that are 
required to simulate saturation versus decay behaviour. (C) Valid PING model. Example of a valid weak PING 
model that exhibits a power decay in the LFP spectrum and satisfies all the selection criteria. (D) Network 
Diagram of PING network. The PING network model of randomly coupled regular-spiking excitatory and fast-
spiking inhibitory cells modelled as Hodgkin-Huxley-style single compartment neuron models. Coupling within 
and between populations is random (through voltage-dependent synapses) with a certain probability of 
connection. The LGN afferent input is modelled in terms of Poisson spike trains. The strength of input to the 
excitatory cells is varied to represent stimulus contrast-dependent input. For justification of using contrast 
as an experimental proxy of afferent input see (Hadjipapas et al., 2015) 
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Figure 17: Empirical validation of model choices and type of model input 

A selection of the evaluations made is illustrated (A) Weak and strong PING models. Vertical columns show 
parametric variation of network oscillation features as a function of input strength. Left column shows gamma power 
of modeled LFP. Middle column shows average single unit firing rates for E, I and all neurons (denoted S.U) as well as 
LFP gamma peak frequency (gamma peak). Right column shows average bivariate correlations among all E (blue), 
among all I (red) and among all E and I neurons (magenta). Rows represent simulation results from different model 
types. Top row shows results from a weak PING model network with Poisson input as in Figure 16D The increasing 
synchronization (Max Corr) of the inhibitory cells from low to middle inputs saturates at higher inputs, and shows 
slight decline at the highest input level used. Middle row shows strong PING with current input (used in (Roberts et 
al., 2013)), which does not satisfy all the criteria although it exhibits the key LFP-based features such as frequency 
shift and power decay. Bottom row shows weak PING model with current input, but modified so that not only the 
mean but also the standard deviation of the input across neurons varies with contrast, resulting in a valid network 
with similar decoupling mechanism as in the case of Poisson input (top rows). (B) Investigation of effects of input to 
E and I populations: Contrast modulated input on both populations. When contrast-modulated input was varied 
simultaneously on both populations, a valid network could not be obtained even when the input to the I-cells was 
scaled by a factor of 15 versus the input to the E-cells. (C) Investigation of effects of input to E and I populations: 
Role of magnitude of fixed input to inhibitory cells. When running the network simulations for different fixed 
thalamic inputs onto the I-cells (i.e. using different fixed synaptic conductances), then valid networks were only 
obtained for intermediate values (as shown in continuous line). Increase of conductance to I-cells destroyed the 
oscillations evidenced by a marked decrease of power, whereas a decrease of conductance to I-cells altered the 
oscillation into different frequency bands (consisting of slower, non-gamma frequencies). 

 

Conclusions  

Our work, based on empirically validated modeling through multidimensional parameter fitting, 
and partly illustrated in Figure 16 and Figure 17, has generated the following key findings:  

(1) Weak PING: The likely generative mechanism of gamma falls under the category of weak 
PING based on a set of validated parameter settings. The main differences of weak (e.g., 
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Zachariou et al. 2015) and strong PING models (e.g., Roberts et al. 2013) can be traced 
back to (a) the synaptic conductances; (b) the E-to-I and I-to-E connection probabilities 
and; (3) the frequency-input response curve of the excitatory cell model. 

(2) Micro-scale versus meso-scale divergence: The population (LFP) frequency is much 
higher than individual firing rates, in line with a sparse spiking rhythm in the network, in 
which only a subset of neurons participates in the population oscillation in a given cycle. 
This is consistent with the notion of weak PING (Wang, 2010). This result shows a 
divergence between network behavior at the micro and the meso scale that has 
important implications in terms of the choice of more detailed generative models that 
would aim to reproduce the empirical data. This finding supports the necessity of 
including both spikes (micro-level) and LFP (meso-level) data in modeling.  

(3) Individual variability: Changes in the specific balance in the strength of E-to-I and I-to-
E connectivity within the category of weak PING models permit reproducing variability 
observed across monkeys in terms of the spectral profile (decay/saturation).  

(4) The importance of correctly simulating input: In order to obtain realistic model 
behavior, the effects of changes in E-drive (input strength) should affect mostly the E-
cells in the model, whereas the effects on I-cells should be limited. In addition, both the 
mean and the standard deviation of the average input to the E-cells have to be made 
dependent on contrast. 

(5) Power decay with increasing contrast: The LFP power decay in weak PING model likely 
results from a decoupling among I-cells at high input strengths (Zachariou et al., 2015) 

 

Empirical constraints for vertically and horizontally expanded V1 models 

 

Constraints for laminar model expansion 

Area V1 in the macaque has 6 distinct anatomical layers of between 0.5 and 0.1 mm thickness 
(Lund, 1988; De Sousa et al., 2010) that are linked by complex patterns of vertical connectivity. 
In studying gamma processes two functionally distinct domains emerge; the superficial domain 
above layer 4, and the deep domain below (Maier et al., 2010). Within each domain activity is 
strongly synchronous whereas synchrony is sharply reduced between the two domains. We 
therefore divided our data according to these two domains to examine whether empirical 
constraints defined for the undifferentiated model need be further refined for a two-
compartment laminar specific model. 

In both monkeys both the superficial and deep LFP gamma generating domains showed similarly 
shaped gamma power contrast response functions and equal amounts of suppression/saturation, 
despite small yet significant differences in the level of gamma power and spike rates. There 
were, moreover, no differences in gamma peak frequency between laminar compartments 
despite significant differences in firing rates. This implies a different level of sparseness in the 
two domains. These observations are consistent with weak PING generative mechanisms in the 
two domains, and with only minor adjustments in the model settings required to account for 
different sparseness levels. Computational models of superficial versus deep laminar differences 
will thus be highly similar. 
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Figure 18: Laminar differences in constraint parameters 

Upper row shows data from monkey S; lower row data from monkey O. (A) Laminar distribution of power 
spectra (change in power from baseline during high contrast stimulation). Y-axis shows the depth of the 
electrode’s recording contact relative to the depth of layer 4; negative values indicate more superficial 
positions. Red colors indicate an increase in power from baseline. Notice two regions of high power 
increase centered around 40Hz corresponding to the gamma domain in the superficial and deep layers. 
Dashed line at depth zero indicates the level of layer 4 and where the two domains were separated for 
analysis. In Monkey S, superficial layers seemed thin, and were under sampled. (B) Mean single unit spike 
rates during the sustained period of stimulation (from 250ms after stimulus onset) in superficial (red) 
and deep (blue) domains as a function of contrast. Error bars show ± SEM. N values indicate the number of 
single units recorded in each domain, ANOVA P-values indicate significance of the difference between 
spike rates in each domain. Note that the P-value in monkey O is marginal probably because the responses 
were overlapping at very low contrast ranges, however in both monkeys, differences in firing rates were 
subtle. (C) Gamma band peak frequency as a function of stimulus frequency. Lines show means, error 
bars show ± SEM. Red lines correspond to superficial domain, blue to deep domain. Number of 
observations are as in D). Differences are non-significant. D) Gamma peak power as a function of 
stimulus contrast. Peak power was computed as Z-score of change from baseline. Lines show means, error 
bars show ± SEM. Red lines correspond to superficial domain, blue to deep domain. Notice the suppression 
of gamma power at high contrasts. In both monkeys, gamma power was marginally higher in deep rather 
than superficial layers, contrary to other literature (Maier et al., 2010; Roberts et al., 2013). This may 
reflect differences in analysis or the chosen boundary – note the 0.3 mm of low power above the zero line, 
or other factors. (E) Quantification of power suppression at high contrast. The strength of suppression 
per contact was quantified as the change in power from the preferred contrast to the highest contrast 
(37% in monkey S, 67% in monkey O), divided by the power at the preferred contrast. Values below 0 
indicate suppression, values above zero indicate higher power at the highest contrast. Lines show 
histograms of observed suppression ratios. P-values indicate significance (two-sample t-test) of 
differences in suppression ratios between superficial and deep gamma domains. We found no significant 
difference in the suppression ratio between the superficial and deep domains.  

 

Constraints for horizontal expansion of laminar models  

The MEG signal is a global measure of brain activity. As it depends on the aggregation of the 
activity of a wide volume of cortex, highly synchronous activity in these volumes may be 
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expected to give a higher-amplitude MEG signal (Hadjipapas et al., 2015; Hämäläinen et al., 
1993; Nunez and Srinivasan, 2006b). We therefore reasoned that the contrast response function 
of MEG gamma would depend on the correlated activity within and across domains. We found 
recently that while LFP (and single unit) gamma power showed a marked nonlinearity, 
decreasing or saturating at high contrasts, in the MEG data this was not the case; gamma power 
scaled linearly with contrast (Hadjipapas et al., 2015). This disassociation between findings 
might be accounted for by the differences in the lateral extent of the signal generator (and 
lateral synchronization), since the source generators of aggregate macroscopic signals such as 
MEG and EEG presumably depend not only on local network power but also on larger scale 
lateral synchronization between such local networks (Musall et al., 2014). We thus reasoned that 
it is possible that power increases of the aggregate MEG could be reconciled with a concomitant 
decrease/saturation of power in local network signals (as measured by LFP and subdural ECoG) if 
contrast would increase the lateral synchronization between these local networks. Under this 
hypothesis, the lateral (spatial) synchronization contribution to the aggregate signal would 
outweigh a decrease in the local signal power component (Musall et al., 2014). We first tested 
this idea by calculating a signal composed of the multiple LFP and ECoG channels averaged in 
the time domain (aggregated). We tested aggregation of channels arranged horizontally over the 
cortical surface, using data from surface ECoG (acquired during the same paradigm), and 
channels arranged vertically using data from laminar probes. We calculated the contrast 
response function of gamma in these aggregated signals, and found equal suppression or 
saturation in these signal as in the raw LFP and EcoG signals. This suggests that synchrony 
between remote neural populations did not increase with contrast. To test this further, we 
calculated the correlation in the time domain of LFP and EcoG data recorded at separate 
electrodes, at zero millisecond time lag (zero-lag correlation) after filtering LFPs in the gamma 
range. We found that zero-lag correlations were significantly reduced at high contrast. This 
analysis indicates that, contrary to our original hypothesis, synchrony between horizontally 
connected model neuron networks should decrease with increasing contrast.  

 

 
Figure 19: Effects of horizontal and vertical signal aggregation.  
Data from different rows correspond to different monkeys, columns to different analyses. First row shows analyses of 
horizontal aggregation on monkey K, which was recorded with surface ECoG covering most of one hemisphere. Data 
analysis was restricted to electrodes over V1. Second and third rows show data from monkeys S and O recorded from 
with laminar probes in V1. (A) Change in power spectrum from baseline in raw LFP. Hotter colors correspond to 
power spectrum during higher contrast stimulation, bluer colors correspond to lower contrast stimulation. Line width 
indicates ±SEM. (B) Change in power spectrum in aggregation, conventions as in A. For Monkeys S and O vertical 
aggregation was over all V1 electrodes of one laminar probe. For Monkey K we tested lateral aggregation over 
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distances from 2mm to 2cm (electrode spacing=2mms). Data shown are for aggregation over 6mm. (C) Contrast 
response functions of gamma peak frequency. Contrast response gamma frequency was computed for each 
individual raw LFP (black) and aggregation data (red in monkeys S and O). In monkey K, yellow indicates aggregation 
over 0.2 mm, to dark blue indicates aggregation over 2cm) (D) Contrast response function of Gamma power, line 
colors as in C. E) Change in zero-lag correlation between high contrast stimulation and low contrast stimulation. 
Each dot shows values from one contact pair. Points below the diagonal correspond to a reduction in correlation with 
increased contrast. Significance was tested with paired t-test, P values were <0.001 in all cases.  

 

Laminar Signal derivation 

The MEG signal is sensitive to magnetic fields arising from current flow along long dendrites 
which run perpendicular to the cortical surface (Hämäläinen et al., 1993). Of particular interest 
are the pyramidal cells with a soma in layer 5 and dendrites reaching in layers 1 and 2 because 
these neurons have the longest vertical dendrites they may generate the largest magnetic 
fields(Hadjipapas et al., 2015; Lee and Jones, 2013; Murakami and Okada, 2006). We hoped to 
isolate the activity of large neurons with trans-laminar arrangements by calculating the 
difference between LFPs recorded at different cortical depths.  

We first examined the laminar structure of zero lag correlations between LFPs (filtered in the 
gamma range) recorded at different depths. Consistent with previous literature (Maier et al., 
2010) channels within the upper and lower domains were highly correlated (red regions in upper 
left and lower right of Figure 20A) whereas correlation between the domains was much weaker 
(green/blue region in upper right). We tested the effect of changing stimulus contrast on the 
correlation between laminar domains, and found that zero lag correlations were reduced at 
higher contrast (Figure 20B and C, also see Figure 19E). Interestingly, correlations between 
domains (Figure 20C, green line) dropped more precipitately than correlations within domains 
(red and green lines). Correlations within the superficial domain (Figure 20C, red line) dropped 
the least with increasing contrast. As we had hypothesized above, contrast related changes in 
the zero-lag correlation would lead to differences in the gamma power contrast-response 
function. Specifically, we found that for the signals derived from superficial-to-deep differences 
(green line, panel E) and from within-superficial channels (red line, panel E) there appeared to 
be less suppression of gamma power at high contrasts, as compared to the raw LFP (Black line). 
Signals derived from pairs of channels both within the deep domain (blue line) appeared to show 
stronger suppression. In both monkeys there was a significant difference in suppression ratio 
between the groups (ANOVA, p<0.01). Post-hoc testing showed that in monkey S all derivation 
classes were significantly different from each other, with derivations between pairs of deep 
channels showing the strongest suppression, and derivations between pairs of superficial 
channels showing significantly weaker suppression. In monkey O, derivations between pairs of 
superficial channels displayed significantly reduced suppression and showed a trend towards 
negative suppression ratios (i.e. increased power at the highest contrast). Derivations between 
superficial channels were significantly different from the other two classes (which did not differ 
significantly from each other).  
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Figure 20: Laminar derivation analysis  
(A) zero-lag correlation values between pairs of LFP channels at different depths Regions in the upper left 
quadrant show pairs where both channels are above layer 4, regions in the lower right show correlations 
between pairs where both channels are below layer 4. Regions in the top right quadrant show pairs which cross 
the layer 4 boundary. Red colors indicate strong correlations blue indicate weak correlation; consistent with 
previous literature (Maier et al., 2010) the layer 4 boundary is marked by a sharp reduction in correlations across 
the boundary, whereas correlations with either gamma domain are high. (B) Change in zero-lag correlations with 
reduced contrast (difference between the highest contrast and the lowest). Red colors indicate an increase in 
correlation with reduced contrast, green indicates little change. A novel finding is that the gamma domains 
become more independent with increasing contrast. (C) Subdivision of data: To better illustrate the contrast 
dependence of zero-lag correlations data were divided into four categories: the raw LFP is shown in black, 
correlations between pairs of superficial channels is shown in red, between pairs of deep channels in blue and 
pairs crossing the layer 4 boundary are shown in green. Zero lag correlation values are shown as a function of 
contrast for each class, error bars show ±SEM. Notice that the green curve drops more dramatically with 
increasing contrast. (D) Further power analysis: We calculated the power spectrum of signals created by taking the 
difference between pairs of LFP channels at different depths. Data is grouped as in C. All pairs showed the same 
changing peak gamma frequency as a function of contrast. (E) Gamma peak power as a function of contrast for 
separate LFP-difference classes. Unsurprisingly the differences between superficial and deep channels (green) 
showed the highest power since, taking the difference between highly correlated channels will result in low 
amplitudes. Of interest is the change in shape of the gamma power-contrast response functions between the 
different classes. Green and red curves appear to show reduced suppression at high contrasts. F) 
Suppression/saturation was again quantified by the suppression ratio as in Figure 12E and compared across 
classes. Curves show histograms of suppression ratios for each class (line color). Positive values indicate strong 
suppression while positive values indicate increased power at the highest contrast. In both monkeys the four 
classes showed significantly different suppression ratios (p values in figure give the significance from an ANOVA).  
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Conclusions 

Our new analysis of the contrast dependency of gamma band activity and correlations in area V1 
revealed several novel insights.  

(1) Weak PING in superficial and deep layers. The ratio of firing rate to gamma frequency 
supported a weak-PING mechanism and that a similar, albeit not identical, degree of 
sparseness existed in the deep and superficial gamma generating domains. Our large-
scale model will be built of several coupled weak-PING networks. The strength of 
coupling between the networks will determine how independently each network 
operates.  

(2) Zero-lag correlations are reduced at high contrast. These observations will be useful 
as constraints for the contrast response function of vertical and horizontal model 
coupling strengths. The lack of saturation in MEG power at high contrast does not appear 
to be due to increased synchrony either within or between cortical columns. 

(3) The contrast-response function of gamma in specific trans-laminar potential 
differences offers interesting avenues for future work to understand the generative 
mechanisms of MEG. We hypothesized that signals derived from the combination of 
local network activities would have a different contrast-response function than that 
observed within the local networks, if the coupling between the networks changed as a 
function of contrast. In line with this, we found that gamma power in the signal derived 
from the derivation of LFPs at specific laminar depths showed less suppression at high 
contrast. We anticipated that the largest shift in the gamma-band-power contrast-
response function would be present in the deep-superficial derivation as we conjectured 
that this would best approximate the current dipole thought to underlie MEG. However, 
this was not supported by the data. We found weak support of our hypothesis in monkey 
S, where the deep-superficial data showed significantly less suppression than either the 
LFP or the within-deep data. However, in monkey O, where more data was collected in 
the superficial domain, is was clear that only the within-superficial derivation showed 
less suppression at high contrast. Notably, in Monkey S the within-superficial derivation 
also showed the weakest suppression. Further work will be required to fully understand 
this observation and, especially to understand whether this observation is relevant to 
understanding the generative mechanisms of gamma observed in human MEG. 

 

A proof-of-principle layer-extended column model  

Empirically informed models are important for realistic perceptual processing and realistic 
interactions with high-level cognition. However, empirical validation of large scale models with 
extensive parameter space is challenging and can benefit from constrains from experimental 
data across different modalities (e.g. spikes, LFP and MEG). 

Our experimental analysis has armed us with important insights on how to progress in developing 
an empirically-constrained, layered, cortical-column model informed by laminar analysis of LFPs 
and unit spikes in monkeys and to further compare this with MEG recordings in humans recorded 
during the same experimental protocol. The role of the pyramidal cells in V1 layer 5 has been 
suggested previously as a key component in the current dipole observed in MEG signal 
(Hadjipapas et al., 2015; Jones et al., 2009; Lee and Jones, 2013). Moreover, our trans-laminar 
analysis indicated that that differential LFPs within the superficial domain and across superficial 
to deep contacts reveals a shift in gamma power contrast response functions. This signal could 
be most sensitive to the activity of trans-laminar Pyramidal cells as the MEG is also considered 
to be. 
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Hence, as a first proof-of concept approach we considered a well studied integrate and fire 
network (Brunel, 2000) which is analytically tractable and has been shown to exhibit a variety of 
dynamical states such as asynchronous irregular and fast or slow oscillations with irregular 
spiking activity. This network is incorporated in the hybrid LFPy, a recently developed hybrid 
framework which forms the basis for LFP generation  when input is received from point-neuron 
network models (i.e.  LFP is generated by multicompartmental model neurons and can be 'read 
off' at various electrode positions following a specification of a detailed forward model, as 
illustrated in Figure 21A ), such as the Brunel network (Hagen et al., 2015). We simulated this 
network in a regime where it exhibits oscillations in the gamma range and modified/increased 
the input such that an asynchronous irregular activity regime was obtained. We observed (see 
Figure 21B) that the contrast-response function was similar across all depths with quantitative 
rather than qualitative differences, in line with findings above (Figure 18). The model showcases 
the value of the ground truth CSD data, that can be directly obtained in this framework. The 
CSD localizes the activity (the underlying transmembrane currents) to the correct contact 
locations/depths 5 (this is where the neuronal somata were placed - see panel A) and 2-3 (this is 
where many synapses were made). This can be seen in the bottom plot in Figure 21, where only 
these 3 contacts show significant power. This is to be contrasted with the LFP, where this 
localization is smeared out with many of the other contacts also showing gamma power, which is 
simply due to volume conduction. Most importantly however, this model also reproduced some 
of the key features of the empirical data such as a gamma peak frequency increase with input 
and a nonlinear gamma power modulation (power saturation) at high input. In addition, the LFP 
oscillation frequency was higher than the average E and I unit firing rates, although this 
difference was small compared to the real data and the previous spatially- undifferentiated 
weak- PING model. Related to this, the expected difference in E- to I- cell populations average 
firing rates was not observed. This was however expected, as by construction this specific model 
network was comprised of identical cells models for both populations. Nonetheless, this study 
shows that the hybrid- model framework can be useful in further exploring laminar differences 
and interactions. This can be achieved by extending and validating this network such as to 
optimally reflect our experimental findings, in an analogous fashion to the work performed in 
the undifferentiated model case. This is will be further pursued in collaboration with the groups 
of Gaute Einevoll (SP4) and Markus Diesmann (SP6).   
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Figure 21: A Layer-extended column model 
 

We used an existing model (Brunel, 2000) and modified it to approach empirical data from monkey recording 
experiments (Roberts et al., 2013). (A) Structure of the model. A schematic view of the morphologies (top) and the 
location of the somas (bottom) of the E and I cells and the location of the 6 recording contacts across the two layers, 
deep and the superficial. (B) Spectral characteristics of the LFP. LFP data are shown for each of the six recording 
contacts across trials for various Inputs (contrast), and average firing rates of the E and I populations. The power of 
channel 4 was too low to estimate frequency properly and hence it is not plotted in the left panel. (C) Spectral 
characteristics of the CSD. Spectral CSD data is shown for each of the six recording points across all for the three 
inputs (contrast) low, medium and high, and average firing rates of the E and I populations. The power of channel 4 
was too low to estimate frequency properly and hence it is not plotted in the left panel. 

 

 

General Conclusions 

Our work has led to various novel insights both from experimental data analysis and models as 
listed below. 

Experimental data analysis: 

1. In single-unit and LFP recordings in macaque area V1 (undifferentiated across all layers) 
and source reconstructed human MEG localized to visual cortex we have observed a 
robust increase in both gamma oscillation frequency and single unit spiking activity with 
increasing luminance contrast. In addition, at high grating contrasts, a robust decay in 
gamma power was observed in the LFP but not the MEG.  

2. Both the superficial and deep gamma-generating laminar domains showed similarly 
shaped gamma power contrast response functions and equal amounts of 
suppression/saturation, despite small yet significant differences in the level of gamma 
power and spike rates (sparseness). 
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3. Horizontal LFP aggregation does not shift the gamma power contrast response functions 
(zero lag correlation stays the same and drops with increasing contrast) contrary to our 
original hypothesis.  

4. Differential LFPs across superficial and across superficial-deep contacts reveals a shift in 
gamma power contrast response functions. This signal could be most sensitive to the 
activity of those trans-laminar pyramidal cells the MEG is thought to be most dependent 
upon. Further work will be needed to better understand these findings. 

Modeling: 

1. Out of many possible models, the empirically validated ones pointed to weak-PING (vs 
strong PING) model as the likely gamma mechanism.   

2. A specific balance between the strength of E-to-I and I-to-E connectivity is required for 
realistic network behavior and to reproduce certain variability observed across monkeys 
in terms of the spectral profile (decay/saturation).   

3. In order to obtain realistic model behavior, the effects of changes in E-drive (input 
strength) should affect mostly the E-cells in the model, whereas the effects on I-cells 
should be limited. In addition, both the mean and the standard deviation of the average 
input to the E-cells must be modulated by contrast.  

4. The LFP power decay in weak PING model likely results from a decoupling among I-cells 
at high input strengths. 

5. An appropriate framework with biophysical LFP calculations and laminar cell morphology 
is essential when studying laminar LFP results. 

 

Location of our data storage:  
To be assigned weblink on UM server (see Dataset Information Card Task 3.1.4 “Models of 
gamma oscillations in visual cortex”) 

Provenance of the data:  
Modeling data (see DIC Task 3.1.4 “Models of gamma oscillations in visual cortex”) 

Self-analysis of the value and completeness of our data 

• We have shown that there are striking gamma spectral changes as a function of contrast 
in monkeys and humans. Moreover, we have shown that while the human macro-level 
MEG signal shares many features with the invasive LFP and spiking signals, there are 
differences in the contrast-response function of gamma power. These spectral responses 
to contrast (E-drive) are informative with respect to structure and function of models. 
Our aim was to do complementary modeling and empirical data analysis to build 
empirically validated PING models, and then to use these validated PING models as 
building blocks laterally and vertically expanded models of primary visual cortex. In the 
modeling, we aimed to compare local gamma generating mechanisms, observable only in 
invasive recordings in animals, with the global gamma generating mechanism, which is 
observable in humans using MEG. Our hypothesis was that the invasive signal is sensitive 
to local processes, while the MEG is sensitive to global features, including 
synchronization and time delays between local networks (and we tested several specific 
hypothesis yielding surprising and novel insights, see Results). Because our modeling is 
empirically constrained a large effort was done in terms of empirical analysis of MEG and 
especially monkey spiking and LFP data recorded in the same contrast manipulation 
paradigm prior to the onset of the present project. The ultimate goal was the 
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development of a computational model that would faithfully reproduce the behaviour of 
the invasive data at the local level and of the MEG data at the global level. 

• Developing such a model faces several challenges. Chief among them is that there are 
many free model parameters which are unknown and so often set by convention without 
empirical support. To overcome this we developed a novel method for validating model 
behaviour against empirical data. As part of this validation process, we performed 
novel analysis of our empirical monkey datasets to produce previously sparsely-reported 
descriptive statistics of electrophysiological parameters in macaque V1. These novel 
statistics will be made available through the HBP platform and we predict they will be 
beneficial to other modeling groups. We have fully developed an empirically 
constrained unstructured model of gamma in V1 that has already produced novel 
insights.  

• To achieve the transfer function to MEG requires developing the model to a structured 
network including laminar and columnar structure, constrained by empirical observations 
of dependencies and time delays between these components. Our analysis of invasive 
data sets has produced novel insights in horizontal and vertical (columnar) gamma 
generating mechanisms, which will point the way for further model development. The 
data are informative on the manner in which both the vertical extension (columns) and 
lateral extension can be constrained. We have started working with a prototype columnar 
model previously published, and started modifying it using empirical constraints in a 
manner applied to our unstructured PING model.  

• Our involvement in the HBP has allowed us to develop collaborations with other groups, 
who will continue in the HBP, with whom we hope to further develop our model. 

• In summary, our project has produced completed empirical and modeling work on 
unstructured PING relevant to KPI_1; significantly advanced empirical analysis and 
ongoing modeling work relevant for KPI_2; and highly relevant empirical analysis that will 
constrain models in KPI_3 and 4 (which are two KPIs that are in fact closely linked). 
Hence, we have delivered significant progress on all aspects of the project, with part of 
the work completed. The work has yielded highly valuable empirical constraints, novel 
methodology for empirically constrained modeling, novel statistics and novel insights into 
the generative mechanisms of gamma in primary visual cortex. Parts of the project are 
already published; further work is at an advanced state of preparation and will be 
submitted in the coming months. Our modeling work will continue through collaborations 
we have developed through our involvement in HBP (with the groups of Diesmann and 
Einevoll). We regard this as an excellent level of output, especially given the imposed 
limits in time and funding.  

Scientific output and data use  
 
Review  
Unpublished, included in Deliverable report. 
 
Publications 

Hadjipapas, A., Lowet, E., Roberts, M. J., Peter, A., & De Weerd, P. (2015). Parametric 
variation of gamma frequency and power with luminance contrast: A comparative study of 
human MEG and monkey LFP and spike responses. NeuroImage, 112, 327–340. 
http://doi.org/10.1016/j.neuroimage.2015.02.062 

Zachariou, M., Roberts, M., Lowet, E., de Weerd, P., & Hadjipapas, A. (2015). Contrast-
dependent modulation of gamma rhythm in v1: a network model. BMC Neuroscience, 
16(Suppl 1), O10. http://doi.org/10.1186/1471-2202-16-S1-O10 

Publications in advanced preparation based on results in present delivery report 

- Empirically constrained PING modelling 

http://doi.org/10.1016/j.neuroimage.2015.02.062
http://doi.org/10.1186/1471-2202-16-S1-O10


  

58 

 

- Laminar characterization of gamma responses in monkey V1 

Conferences 

Zachariou et al, 2015. 24th Annual Computational Neuroscience Meeting (CNS), Prague, Czech 
Republic, 18–23rd  July (BMC Neuroscience) 

Zachariou at 2015. 19th Conference of the European Society for Cognitive Psychology (ESCOP), 
September 17-20th, 2015. 

Hadjipapas et al, (spotlight session) and Zachariou et al, (poster), HBP Summit 2015, Madrid.  

Ongoing/future colloborations 
With groups of Diesmann (SP6 T6.2.3) and Einevoll (SP4 T4.1.2)  
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1.3 Visual attention and the mechanisms of inter-areal communication  

Task T3.1.1 - Pascal Fries (ESI), Chris Lewis (ESI) 

 

Introduction 

The greatest proportion of brain activity is endogenously generated. The brain’s endogenous 
activity is highly structured and affects sensory coding, behaviour, and perception. The 
observation of structured endogenous activity across spatial scales suggests that it plays a role in 
the maintenance and formation of brain networks. The correlation of spontaneous functional MRI 
signals has demonstrated the existence of multiple intrinsic networks, previously observed 
during controlled cognitive paradigms. The prevalence and reliability of intrinsic networks have 
generated intense interest in the functional relevance and electrophysiological basis of inter-
areal correlations. Using multisite recordings from areas V1 and V4 of awake monkeys we 
investigated the spatial and temporal structure of intrinsically driven activity during both 
stimulation and passive fixation.  

Review of the cortical architectures underlying attentional selection and the 
communication-through-coherence hypothesis 

Pascal Fries “Rhythms for Cognition: Communication through Coherence”, Neuron, Volume 88, 
Issue 1, p220–235, 7 October 2015 

Abstract 

I propose that synchronization affects communication between neuronal groups. Gamma-band 
(30-90 Hz) synchronization modulates excitation rapidly enough so it escapes the following 
inhibition and activates postsynaptic neurons effectively. Synchronization also ensures that a 
presynaptic activation pattern arrives at postsynaptic neurons in a temporally coordinated 
manner. At a postsynaptic neuron, multiple presynaptic groups converge, e.g. representing 
different stimuli. If a stimulus is selected by attention, its neuronal representation shows 
stronger and higher-frequency gamma-band synchronization. Thereby, the attended stimulus 
representation selectively entrains postsynaptic neurons. The entrainment creates sequences of 
short excitation and longer inhibition that are coordinated between pre- and postsynaptic groups 
to transmit the attended representation and shut out competing inputs. The predominantly 
bottom-up directed gamma-band influences are controlled by predominantly top-down directed 
alpha-beta band (8-20 Hz) influences. Attention itself samples stimuli at a 7-8 Hz theta rhythm. 
Thus, several rhythms and their interplay render neuronal communication effective, precise and 
selective.  

http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
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Data set: Large-scale recordings from distributed and local visual networks during 
rest 

 

Empirical data 

We collected data from a custom designed, high-density electrocorticography array covering 
large portions of the superficial cortex in two macaque monkeys (Figure 22A). We presented a 
series of visual stimuli in order to map the spatial selectivity of the recorded visual regions 
(Figure 22B). Additionally, we collected data during periods of passive fixation while the animals 
awaited a visual attention task. We further investigated the extent to which intrinsic signals 
relate to the coding of visual stimuli across a broad range of contexts and stimulus classes. 
Finally, we investigated measures to quantify the reliability of individual neurons, the tuning 
similarity of pairs of neurons and the intrinsically driven variability of pairs of neurons. 

 
Figure 22: Intrinsic visual activity is topographically organized in local and inter-areal 
rhythmic synchronization 

A) Custom, high-density ECoG array shown on cortical surface model of macaque monkey. B) Visual selectivity of all 
recorded ECoG channels is limited to recording sites in visual areas. C) Trial to trial variability is structured in both 
space and time. D) During passive fixation, visual areas are intrinsically coupled in retinotopically specific, local and 
inter-areal synchronization. 

 

 

Results 

We found that endogenously generated activity, both during stimulation and passive fixation, 
exhibits a similar pattern of local and inter-areal rhythmic synchronization (Figure 22C and D). 
Further, we found that these patterns of synchronization were related to the topographical 
organization of the recorded visual areas. Rather than occurring across a broad range of 
frequencies, the intrinsic activity was exhibited topographically  specific inter-areal coupling at 



  

61 

 

specific frequencies (Lewis et al., 2016). We next investigated the pattern of activity in visual 
cortex that contained the greatest amount of stimulus information. We found that the 
frequencies showing the highest topographically specific organization also contained the most 
information about visual stimuli (Figure 23). These frequencies contained information about 
multiple visual stimulus attributes, including: position (Figure 23A), natural image identity 
(Figure 23B), as well as the visual orientation (Figure 23C). Importantly, the rhythmic activity 
contained comparable information about grating orientation as the simultaneously recorded 
spiking activity (Figure 23D).  

 
Figure 23: Stimulus selectivity of visual rhythmic activity 

A) Information about the position of a visual stimulus is highest in two frequency bands with different temporal 
dynamics. B) The same frequency bands with stimulus position information have the highest information about the 
identity of natural visual scenes. C) These frequency bands also contain the highest amount of information about the 
orientation of visual grating stimuli. D) Information about orientation in visual rhythmic activity is comparable to the 
information in simultaneously recorded multi-unit activity. 

 

In order to better understand how intrinsic activity effects the responses of single visual cells, 
we introduced new methods to access the reliability of single cells, as well as the tuning 
similarity of pairs of single cells (Figure 24).  
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Figure 24: Quantifying single unit reliability, signal correlation and intrinsic correlation 

A) The single trial responses of a single V1 neuron to multiple repetitions of differently oriented gratings. B) The mean 
response (tuning) of the cell shown in (A) to different orientations (in black) with individual trials shown in different 
colors. C) The reliability of a single V1 neuron. (i) mean-based tuning, (ii) mean-based tuning (in red) overlaid with 
individual trial estimates of tuning. (iii) single-trial estimates of tuning reliability. D) The tuning single-trial tuning 
similarity of two similarly tuned cells. (i) Mean-based tuning of cell 1 (in red) and cell 2 (in blue). (ii) single-trial 
based tuning similarity of the two cells. (iii) noise correlation of the two cells. E) The tuning single-trial tuning 
similarity of two dissimilarly tuned cells. (i) Mean-based tuning of cell 1 (in red) and cell 2 (in blue). (ii) single-trial 
based tuning similarity of the two cells. (iii) noise correlation of the two cells. 

 

We first assessed the variability of single cell responses to repetitions of identical gratings 
(Figure 24A). We found that though the mean response across identical trial repetitions 
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exhibited the well-known orientation tuning of single V1 cells, there was a high degree of trial 
variability arising from uncontrolled intrinsic activity (Figure 24B). In order to assess how this 
intrinsic variability affected the reliability of single neurons, we computed measures of single-
trial tuning (Figure 24C), which take into account the individual trial response. These measures 
indicate that although an individual cells tuning is relatively well preserved, assessing individual 
trial responses suggests that the responses of V1 neurons relay intrinsic and extrinsic signals 
roughly equally. We next sought to use these measures to assess the tuning similarity of pairs of 
V1 neurons (Figure 24D and E). We found that our single trial measures of tuning similarity 
quantified the extent to which two cells reliably exhibited similar tuning. Because our measures 
were generated from single trial estimates, we were able to generate populations of values, 
rather than the single values often used and to thereby get a complete picture of the degree to 
which pairs of V1 cells share similar extrinsic (tuning) and intrinsic information.  

 

Conclusions 

In total, our results combine to suggest that both the stimulus-driven and the intrinsic activity of 
visual areas are intricately structured in both spatial and temporal dimensions. We found that 
intrinsic activity, both as trial-to-trial variation in stimulus response to identical visual 
stimulation, and as spontaneous activity during passive fixation, reflect the topographical 
organization of the underlying cortex. Further, the topographically specific reactivation occurs 
in specific frequency bands. Importantly, these frequency bands also contain the most stimulus 
related information in visual areas across a broad range of behavioural conditions and stimulus 
attributes. Finally, by better assessing the degree to which individual V1 cells reflect external 
and internal variables, we can begin to assess how single cells and populations of cells combine 
extrinsic and intrinsic factors in cortical computations. 

 

A Dataset Card Information has been completed (See DIC Task T3.1.1 “Spontaneous activity in 
anesthetized cat area 17”). 
 
Data Provenance 
The data were collected by Conrado BOSMAN and Christopher LEWIS at The Donders Institute for 
Brain, Cognition, and Behaviour, at Radboud University, the Netherlands, and the ESI. 
 
The location of data 
Data are hosted by the Ernst Strüngmann Institute (ESI) for Neuroscience and are available to 
collaborators upon request. The data is complete and satisfies the commitments made in the 
description of work. 
 
Collaborations and data usage 
Ongoing collaboration on modeling inter-areal dynamics with Gustavo Deco in SP 2. He has used 
data collected by the ESI in order to validate models of spontaneous activity and to improve 
methods of source-localization for electrocorticography data. 
 
Publications related to HBP 
Lewis CM, Bosman CA, Womelsdorf T, Fries P (2016) Stimulus-induced visual cortical networks 
are recapitulated by spontaneous local and interareal synchronization. Proceedings of the 
National Academy of Sciences 
Fries P (2015)  Rhythms for cognition: communication through coherence. Neuron 
Lewis CM, Bosman CA, Fries P (2015) Recording of brain activity across spatial scales. Current 
opinion in neurobiology 
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1.4 Phase lags and inter-areal time delays: data and model 

Task T3.1.5 Matias Palva (UH), Satu Palva (UH), Viktor Jirsa (AMU) 

 

Overview 

Complex phase, amplitude, and cross-frequency correlations of neuronal oscillations are 
ubiquitous characteristics of emergent brain dynamics. Phase correlations, in particular, are 
likely to mechanistically underlie the regulation of neuronal communication and may thus be 
crucial for both functional integration and segregation (Fries, 2015b). The functional 
consequences of phase correlations are, however, fundamentally determined by the phase lags 
between the coupled populations. Phase lags are known to depend on axonal conduction delays, 
coupling strengths, frequencies of the oscillations, and specific patterns of network structures 
(Klopp et al., 2000; von Stein et al., 2000), and hence it might not be surprising that a large 
variety of phase-lag observations have been made with pairwise lag assessments by using local 
field potential or multi-unit activity recordings (Dotson et al., 2014a). While these observations 
reveal the phenomenological complexity of neuronal phase relations, they leave the large-scale 
cerebral structure of phase lags undisclosed. 

Systematic mapping of phase relationships in large-scale cortical networks is thus an important 
task but it has remained a difficult one and marred by methodological challenges. The principal 
challenge is that the commonly used large-scale electrophysiological tools, such as invasive 
human/primate electrocorticography (ECoG) or non-invasive electro-/magnetoencephalography 
(EEG/MEG), can yield neither accurate nor well-localized phase estimates because the signals 
are contaminated by volume conduction and signal mixing (Palva and Palva, 2012). Nevertheless, 
two new lines of research have advanced solutions to this problem. First, for primates, recording 
techniques enabling the usage of up to 64 micro-electrodes have been developed to allow 
concurrent mappings of large cortical regions-of-interest (Dotson et al., 2015). Obviously, this 
approach is not applicable to humans or easily expandable to primate whole-brain recordings. 
Second, the development of accurate electrode localization algorithms (Arnulfo et al., 2015a) 
have opened the possibility to use white-matter referencing (Arnulfo et al., 2015b) in human 
stereotactical-EEG (SEEG) recordings (Lachaux et al., 2000), which yield undistorted phase 
estimates unlike the traditional bipolar-referenced SEEG (Arnulfo et al., 2015b). Human SEEG 
can be recorded from epileptic patients during pre-operative monitoring and yields data on 
average from 120 electrode contacts in cerebral grey matter. 
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Review manuscript draft, in preparation for Trends in Neurosciences 

 

Large-scale cerebral structure of lags among phase-coupled neuronal 
oscillations 

Satu Palva, Nitin Williams, Gabriele Arnulfo, Spase Petkoski, Viktor Jirsa, J. Matias Palva 

 
Phase lags are poorly charted determinants for the 
functional impact of phase correlations 

Two complementary mechanistic dimensions underlie the 
processing and representation of information in neuronal 
circuits. Hierarchical feed-forward routes for sensory feature 
representations are formed through experience-dependent 
plasticity and can, via rate coding, signal the presence of well-
learned stimuli [1]. Yet, coding schemes based on relatively 
hardwired structural connectivity have severe capacity 
limitations and cannot alone explain adaptive perceptual 
inference and action generation because there is an infinite 
number of possible constellations of sensory features and 
appropriate perception-action mappings. As a solution to this 
problem, the brains appear to use complementary temporal 
coding mechanisms where the temporal correlations of spikes 
and phase correlations of oscillating neuronal assemblies signal, 
e.g., the perceptual relatedness of sensory features and 
regulate neuronal communication between functionally 
connected brain regions [2-4], respectively. While the 
condition-dependent strengths of such synchronization or 
phase correlations have been extensively studied under various 
conditions, much less attention has been devoted to 
understanding the phenomenology and functional significance 
of the associated time/phase lags even though these lags, per 
se, are crucial for the functional outcome of the coupling. In 
this review, we provide a summary of prior studies reporting 
time/phase-lag estimates and an overview of the lines of 
methodological challenges limiting the acquisition of accurate 
lag estimates from electrophysiological recordings. We will 
then address the new vistas on the large-scale organization of 
phase lags revealed by multi-channel recordings in animals and 
humans as well as on the insights into the underlying 
mechanisms given by computational models. 

Original observations of near-Zero-lag phase coupling 

In many early studies, phase-correlations among neuronal 
gamma-band (30-90 Hz) oscillations were observed in local field 
potential (LFP) and multi-unit activity (MUAs) recordings in cat 
and monkey visual cortices during visual stimulation (for review 
see [5]). These correlations systematically involved near-zero 
millisecond time lags. Early neurophysiological and simulation 
studies suggested that there is a non-linear boost in the 
postsynaptic impact on target neurons when the presynaptic 
inputs are synchronized within a few milliseconds [6]. Gamma-
band synchronization with time lags << 10 ms thus conceivably 
endows the oscillating assembly with a competitive advantage 
in the triggering of action potentials in downstream neurons 
compared to temporally uncorrelated populations [4, 5, 7]. 
Substantial experimental evidence supporting this hypothesis 
has been obtained from multi-unit activity in visual cortex of 
anaesthetised cat [8]. In the context of vision, gamma-band 
synchronization and spike-time correlations have been 

suggested mechanistically to subserve figure-ground 
separation, sensory feature binding, and bottom-up 
information representation [9]. In the slower frequencies, such 
as in the theta-band (4-8 Hz), because of both conduction 
delays and slower synaptic mechanism, the temporal 
integration windows were historically thought to be wider and 
less accurate [10, 11]. It was hence also thought that 
synchronization in the high gamma frequencies would underlie 
the integration in small-scale neuronal circuits while that in the 
slower frequencies could carry out long-range integration [12]. 

 

 
Figure 25: Phase-lags from coupling across spatial scales  

(A.) Recording sites from left and right hemispheres of area 17 in 
anaesthetised cat (left). Cross-correlogram between responses from 
left and right hemisphere, illustrating near -zero lag phase-coupling in 
the gamma band. (middle) Cross-correlogram between  electrodes in 
left and right hemisphere respectively, after corpus callosum had 
been sectioned (right). No phase-coupling is present. Adapted from 
Engel et al. (1991a) (B.)  Recording sites of all locations ipsilateral and 
contralateral to the paw  the cats used  to press a lever, in response to 
visual stimuli (left). Cross-correlogram of areas in left hemisphere of a 
cat, after lever press. All interactions are zero-lag (right). Adapted 
from Roelfsema et al. (1997). (C.) Recording sites from brain s of 
monkeys performing oculomotor delayed match-to-sample task (left). 
Histogram of phase-angles between PFC (pre-frontal cortex) and PPC 
(posterior parietal cortex). Note that the distribution of phase-angle is 
clearly bimodal, with modes around  0 and 180 degrees (middle). 
Illustration of connections between PPC and PFC, colour-coded by 
phase-angle  (red - ,180 degrees green – 0 degrees) (right). Adapted 
from Dotson et al. (2014). 

Synchronization of neuronal signals is modulated by 
neuronal oscillations which reflect rhythmic membrane 
potential fluctuations that are associated with enhanced 



  

67 

 

neuronal excitability in one phase of the cycle and inhibition in 
the other [13, 14]. Oscillations thus impose excitability 
windows that regulate neuronal activity in local networks and 
thereby both facilitate interactions between areas having an 
appropriate phase difference and suppress inputs arriving at 
the inhibitory phase. Zero-phase lag synchronized neuronal 
oscillations were proposed to have a key mechanistic role also 
in coordinating inter-areal communication [15]. This 
“communication through coherence” (CTC) hypothesis 
suggested that communication is facilitated during the 
coincident high-excitability phases of neuronal oscillations and 
likewise suppressed by an anti-phase relationship; coincidence 
of high- and low-excitability phases. 

Zero-lag gamma synchronisation in MUA was observed in 
cat striate and extra-striate cortical sites separated by 2 to 10 
mm [16] [17] (Figure 25A). Coupling lag in these studies was 
measured with cross-correlation function between MUAs (see 
Box 2). A number of more recent studies in rodents [18, 19] and 
primates [20-23]  have revealed near zero-phase-lag 
synchronization among brain oscillations in both attention and 
memory tasks (Figure 25B). 

Accumulating evidence for significant phase lags  

In recent years it has become evident that phase-
correlations among brain areas at large often involve variable 
non-zero phase lags in many frequency bands [24-26] (Figure 
25C). With this paradigm shift, also some of the small but 
systematic lags previously considered to be ‘near zero’ can be 
seen to build up a picture of a systematic non-zero lag structure 
of cortical interactions (Figure 26, Supplementary Table). 
Accordingly, the presence of phase lags has also been included 
in theoretical frameworks for the functional role of 
synchronisation [2, 8, 27]. Phase differences arising from 
conduction delays and emergent dynamics thus play a key role 
in the functional impact of neuronal phase-coupling. In 
neuronal oscillations, the excitation inhibition cycle is often 
skewed and in the gamma frequencies the inhibition is much 
longer than the excitation period [28]. The revised CTC 
framework [2] posits that in such a system, phase delays 
between communicating neuronal groups may enable optimal 
communication when they match in time with the axonal 
conduction delays. 

Trends in phase lags – Dependence on distance and 
frequency 

In general, it is thought that the phase-lag and 
corresponding time-delay between two coupled oscillations 
increases with physical distance between them because of the 
increases in the neuronal conduction delays. Such correlation 
between anatomical distance and phase-delay has been indeed 
observed in gamma-band synchronization. Gamma-band 
synchronization between V1 and V2 of early visual cortex of 
macaque monkeys is associated with delays between 0 to 3 ms 
[29] [30] while that with most electrode pairs less than 10 mm 
apart is associated with the MUA-LFP and LFP-LFP coupling with 
up to 5 ms delays [20]. Furthermore, gamma-band 
synchronization reflecting inter-areal top-down influences is 
associated with lags up to 6 ms between V4 on V1 of awake 
cats [31] and delays from 8 to 13 ms in monkey prefrontal-
parietal connections [32]. In humans, SEEG has been used to 
reveal inter-areal synchronization between cortical areas. WM 
tasks are associated with gamma-band synchronization within 
the medial temporal lobe [33] and beta-band (15-25 Hz) 

synchronization within the visual cortex [34]. While medial 
temporal gamma synchrony was associated with near zero 
phase lags, visual cortex beta synchronization with electrode 
separation of 5 cm was associated with variable and clearly 
non-zero phase-lags. Taken together, time delays appear to 
increase as a function of anatomical distances in cortical 
microcircuits. 

 

 
Figure 26: Association of distance  vs. phase-lags and phase-
angles 
(A.) Scatter plot relating distance between recording sites to phase-
delays in milliseconds, on log-log scale. Each datum is colour-coded by 
coupling  frequency, i.e. delta (magenta), theta (green), alpha (cyan), 
beta (blue) and gamma (red). Marker type indicates recording 
technique used, i.e. multi-unit recordings (+), multi-electrode arrays 
(*), SEEG (x), ECoG (o), MEG (diamond) and others (square). Most 
points indicate gamma-band coupling with multi-electrode arrays, at 
different lags. A few indicating near-zero lag coupling (set to 0.1 ms) is 
also seen. (B.) Scatter plot relating distance between recording sites 
to phase-angles in degrees, in semi-log scale. Colour and marker type 
of data points same as A. Detailed phase-lag and related information 
on all studies represented available from Table in Supplementary 
material. 



  

68 

 

 
 

 

 

Apart from distance, lags between phase synchronized 
oscillations are influenced by the frequency at which 
synchronization takes place. In studying coupling between 
visual cortex and higher cortical areas in awake cats, von Stein 
et al. (2000) [12] found that coupling at the lower frequencies 

of theta and alpha bands had 20-50 ms lags, while in the higher 
gamma band frequencies the phase lags were only 1 2 ms. 
Similarly, theta-band  synchrony between medial pre-frontal 
cortex and hippocampus of freely behaving rats has been 
associated with delays of 50 ms [35]. Compared to monkey 

Box 1. Recording technologies to study phase-coupling and phase-lags 

EEG – Scalp electrodes record electrical potentials associated with extra-cellular volume currents caused by 
coherent synaptic inputs to large asymmetric pyramidal neurons mainly in deep cortical layers. Both volume 
conduction and the distance of the electrodes from the sources introduce linear mixing between the recorded 
signals, which corrupts both local and inter-areal phase estimates. 

MEG – Records weak magnetic fields outside the skull from humans, via superconducting quantum interference 
devices (SQUIDs). Has a higher spatio-temporal resolution than EEG, but phase-lag estimation with MEG is also 
vulnerable to signal distortion due to linear mixing effects. Sensitive mainly to sulcal sources. 

ECoG – Platinum-iridium or stainless steel electrodes placed sub-durally to record LFP activity from humans. 
Arrays of grid or strip electrodes typically used. Phase-lag estimation is not as compromised by linear mixing as 
in EEG, although some mixing from brain tissue still occurs. Less coverage than EEG since sulcal signals are only 
weakly sampled or missed altogether, and sub-cortical sources are not sampled.  

Stereo-tactical EEG – Records LFP activity from humans by insertion of several platinum-iridium shafts (~10) 
through the cerebral tissue. Phase-lag estimation is not as compromised by linear mixing as in MEG/EEG, 
although bipolar montages can induce signal distortion. Both cortical and sub-cortical coverage, although 
coverage is sparser than MEG/EEG, i.e. lower percentage of total LFP activity across the brain is recorded. 

Micro-electrode arrays – Dense rectangular arrays of micro-electrodes, typically used on non-human primates to 
measure both LFP and MUA (and even SUA). Typically confined to a single neuronal volume, advances have 
enabled coverage of multiple brain areas. Phase-lag estimation is minimally distorted by linear mixing effects. 
Different laminae can be simultaneously sampled, as can both cortical and sub-cortical sources. 

Multi-unit recordings – Record action potentials (specifically, multi-unit activity or MUA) from local clusters of 
neurons in animals, by inserting conductive micro-electrode (typically platinum or tungsten) near a group of cell 
membranes. While accurate estimation of phase-coupling and phase-lags is possible, coverage is severely 
limited.. 

Single-unit recordings –  Records action potentials (specifically, single-unit activity or SUA) from single neurons 
by manoeuvring the tip of conductive micro-electrode near a single cell membrane. Coverage is even further 
limited than in multi-unit recordings, although accurate estimation of phase-coupling and phase-lags is possible. 
 
 
 
 
 

Box 2. Analysis methods for determining phase-lags 

Cross-correlation function - Vector of correlations of a signal with time-lagged version of another signal. Lags of 
zero are included and correlation values calculated up to positive and negative values of a given lag. Coupling 
delay is taken as the lag at which cross-correlation vector reaches its peak. Typically applied to SUAs and MUAs. 

Coherence – Frequency-specific measure of coupling, obtained by normalising cross-spectral density function of 
two signals by their individual auto-spectral densities. For a given frequency, phase-lag is the angle of the 
complex-valued cross-spectrum. Typically applied to assess MUA-LFP or LFP-LFP relationships. 

Partial Coherence – Frequency-specific measure of coupling between two signals that is independent of the 
effect of an explanatory signal. Obtaining by subtracting a linear projection of the explanatory signal onto each 
of the two original signals, and estimating coherence between the residuals.  As for coherence, phase-lag is 
angle of the complex-valued cross-spectrum. Generally applied to LFPs. 

Multi-Variate Auto-Regressive (MVAR) modelling – Multi-variate model of brain activity based on Granger 
causality, relating present value of a given electrode to past values of all electrodes including itself. Maximum 
coupling delay is equivalent to the estimated model order, usually given by minima of AIC/BIC values over a 
range of lags. Typically applied to multi-variate LFP data. 

Spike-Triggered Averages – Measure of delay between spike and LFPs, obtained by averaging LFPs aligned by 
time of occurrence of spikes. Coupling delay determined by positive/negative lag corresponding to maxima of 
LFP average closest to 0. Applied to assess MUA-LFP or SUA-LFP relationships. 
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gamma-band synchronization between PFC and PPC [32], beta-
band coupling among these areas are associated with much 
larger delays of 30 ms in awake cats [36]. Time lags thus appear 
to increase roughly in proportion with the cycle durations 
indicating and interesting form of scale-freeness that is not 
trivially explainable by the axonal or synaptic conduction 
delays. 

Anomalous lag findings and the zero-vs-non-zero lag 
conundrum 

Although many studies suggest that phase and time delays 
are dependent on the anatomical distance and oscillation 
frequency, there are numerous examples of minimal delays  
despite a large physical separation or the involvement of slow 
frequencies. Theta-band (3-9 Hz) coupling between inferior 
prefrontal cortex and V4 in awake macaque monkeys has been 
shown to have lags of only 15 ms [37]. In particular, there are a 
number of studies reporting long-range beta-band 
synchronization with lags around 0 ms [38]. Zero-phase lag 
synchrony has been observed between visual and parietal 
cortices [38] and between somatosensory and parietal areas 
[39]. Dotson et al. (2014) [40] reported beta-band coupling 
(8 25 Hz) between pre-frontal cortex (PFC) and posterior 
parietal cortex (PPC) of awake macaque monkeys, with bimodal 
distribution of delays centred around 0 ms and 180 degrees 
during a working memory WM task (see Figure 25C). 180 
degree lags and hence anti-phase synchronization has been 
observed in PFC-PPC connections also during reaching [41]. 

However, lags that are much larger than expected by the 
distance are also frequently observed. For example, gamma 
band synchronized spikes of a single excitatory and inhibitory 
neural population are separated by lags of 3.3 ms despite them 
being only a few hundred microns apart [42]. The relationship 
between lag and distance also does not seem to hold in 
gamma-band synchronization between sites up to 900 microns 
apart but and lags between 7 and 11 ms and hence longer than 
those in the gamma frequency band [43]. Tallon-Baudry et al. 
(2004) [44] also report beta-band (15 20 Hz) coupling of sites 
only 6.7 mm apart in inferior temporal cortex of macaque 
monkeys performing a working memory task with relatively 
high coupling delays of around 23 ms. 

Phase or time lags between oscillating assemblies cannot 
thus be ‘mechanically’ accounted for by considerations of site 
separation or oscillation frequency. As summarized in Figure 
26, the current body of pairwise lag estimate data shows a 
large diversity of possible phase and time lags. This analysis also 
shows that it is essentially impossible to draw inferences about 
the large-scale organization of phase lags from the scattered 
body of studies examining small numbers of recording sites. 

 
Paradigm shift in mapping the large-scale organization of 
phase-lags 

To reconcile the disparate views on phase and time lags, 
measuring the phase relationships in large-scale cortical 
networks is a fundamentally significant task. This endeavor has, 
however, remained difficult and marred by methodological 
challenges (see Box 1). There are a number of confounding 
factors that influence the accuracy of phase- and time-lag 
estimates. 

Bipolar referencing used in both micro-electrode arrays and 
in SEEG distorts the signal by interference and hence introduce 
large errors in lags [26]. Micro-electrode arrays also still do not 
offer whole-brain coverage and can only be used with non-

human primates, thus limiting the range of cognitive tasks that 
can be studied. While ECoG, EEG and MEG provide wider 
cortical coverage, their spatial resolution is compromised due 
to linear mixing caused by volume conduction and signal 
mixing. Linear mixing directly affects both the accuracy of local 
phase estimates and the estimates of phase differences. 
Moreover, in ECoG, sulcal signals are confounders or are 
missed altogether. 

However, two recent technical advances: (i) recording LFPs 
through multi-channel micro-electrode arrays in primates (see 
Dotson et al. (2015) [24] for review) and (ii) using white-matter 
referencing for human stereo-tactical EEG (SEEG) recordings 
[26] have opened novel avenues for accurately determining 
phase-lags concurrently from many recordings sites in large-
scale cortical and subcortical networks. 

Dotson and colleagues used micro-electrode arrays to 
record LFPs from the prefrontal (PFC) and posterior parietal 
cortex (PPC) of two monkeys during the delay period of a visual 
working memory (VWM) task.  A number of statistically 
significant connections was then estimated separately for all 
frequency bands and thereafter the phase-distributions for 
these connections [24]. Most of the phase correlated between 
PFC and PPC were found in the theta-, alpha-, and beta-
frequency bands. PFC-PPC phase-lags were centred bimodally 
around zero and 180 degree lags while locally each area was 
characterized by near-zero lag coupling. These data thus 
revealed concurrent in-phase and anti-phase coupling but the 
spread of the phase difference distributions is also suggestive 
of systematically non-zero lagged phase relations. 

Recently, Arnulfo et al. (2015) [26] introduced a new 
referencing scheme for SEEG where gray-matter contacts are 
referenced to closest contacts in white matter. This approach 
both controls volume conduction and minimizes the 
interference from signals picked up at the reference the white 
matter does not contain significant bipolar signal generators. In 
addition, the signals are largely acquired with correct polarity 
unlike in bipolar where the polarity is essentially random. This 
is crucial for dissociating true in-phase and anti-phase 
couplings. In a recent study (Arnulfo, 2016), white-matter 
referencing was used to systematically map phase and time-
delays from resting state activity. The authors found that 
frequency-dependently, large fractions of cortical phase 
couplings were associated with a systematic phase difference. 
Using statistical testing to identify true non-zero lags, the 
authors found that in low frequencies, most couplings involved 
significant lags and large phase diversity, but progressively 
towards the gamma frequencies, zero- and 180-degree phase 
relationships accounted for up to one half of significant 
connections. In addition, with increasing frequency, the phase 
spread of the couplings remained constant, which 
comprehensively consolidates the prior views of low-frequency 
oscillations involving unexpectedly large time and phase lags, 
and gamma oscillations being extremely accurate in their 
temporal organization. 

 
Analytical and computational studies reveal the structural and 
mechanistic basis of lags  
Experimental studies have demonstrated a diversity of phase 
relationships among neuronal assemblies, varying with both 
distance and frequency. Both dependencies have also been 
observed in a range of computational models. 
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Network models of coupled oscillators show self-sustained 
emergent oscillatory dynamics with phase lags near zero or 
near-180-degree. It is often argued that such behaviour arises 
from nonlinear couplings, but obviously a more detailed 
specific understanding on the underlying mechanisms is 
needed. Analytical and computational investigations suggest 
that these phase lags are shaped by the interplay of a number 
of functional properties of the networks, e.g. mean frequencies 
of the populations, coupling strength.  For example, for the 
network synchronization of two interacting populations of 
oscillators [45], the phase shift between the mean fields 
depends on the natural frequencies and the coupling strengths 
within and between populations. Similar findings were 
reported for asymmetrically interacting oscillator ensembles 
[46]. The parameter dispersion of the mean field and mean 
population frequencies of oscillatory networks equally 
influences the phase-lags between individual oscillators [47]. 
Recent modelling studies reveal an influence of topological 
properties of the networks, which are quantified using graph 
theoretical metrics such as node strength or node degree. For 
example, it has been shown that stronger connected network 
nodes are phase lagging behind the weaker ones [49] 
suggesting that the relationship between node degree and 
directionality contributes to the emergent behaviour of 
network function. Consistent with these findings, Stam et al. 
showed in a computational model that the phase lead/lag 
relationship between local node dynamics is correlated with 
the degree of the node [50]. However, the majority of studies 
did not systematically address the influence of time delays, 
which play an increasingly dominant role, together with the 
structural connectivity, for larger, in particular full brain 
networks. Usually time delays via signal transmission are 
assumed to be small. In order to be negligible, they need to be 
smaller than the half period of the natural oscillators, which is a 
condition not satisfied for full brain networks, where time 
delays can reach 200ms.  

There is a small number of influential studies investigating 
how time delays shape network dynamics, its synchronization, 
and in turn, the phase-lags between nodes. Essentially two limit 
cases have been considered, either a network of identical 
oscillators, which are coupled via complex connectivity, or 
alternatively more complex network nodes, but coupled with 
simple connectivity such as all-to-all or random couplings. Time 
delays then enter in both cases as an additional 
complexification. An early case is a network of identical 
oscillators coupled with a single delay [51], followed by other 
studies on heterogeneous networks with single delay [52], and 
homogeneously distributed delays [53]. These studies all 
demonstrate that time delays directly change the timing of the 
interactions between the oscillators and can have highly non-
trivial effects on the phase-lags. In particular, for the case of 
spatially distributed time delays, as relevant for the brain, 
analytical studies revealed that the delays impose phase-
shifted in- and anti-phase clusters of oscillators depending on 
the spatial distribution. The spatially distributed delays were 
shown to impose phase-shifted, in- or anti-phase clustering of 
oscillators depending on the spatial distribution of delays. Anti-
phase synchronization has been observed in computational 
models with different frequency bands [54]. It was found that 
beside in-phase synchronization within modules, a delay time 
close to half-period could induce anti-phase synchronization. In 
full brain network models with realistic connectivity, anti-phase 
spatio-temporal patterns can emerge from noise-driven 

transitions between different multi-stable cluster 
synchronization states, with a two-community network 
structure [56].  
 
Functional Implications 
Several lines of experimental and theoretical evidence thus 
converge to show that both zero and non-zero lag phase 
coupling are pervasive in neuronal systems at all scales from 
millimetres to fronto-posterior connections. Neuronal 
communication may thus be dynamically regulated by two 
distinct mechanisms. In the first, near-zero lag synchronization 
of presynaptic neuronal assemblies endows them to have a 
greater impact on the postsynaptic target neuron than 
asynchronous assemblies [9, 11, 57]. In the second, phase 
correlation of pre- and post-synaptic neurons facilitates or 
blocks the communication depending on the excitability phase 
of the post-synaptic neuron at the time of arrival of the 
presynaptic inputs and hence, depending on the phase 
difference and conduction delay between these neurons [2]. 
Both mechanisms support adaptive and rapidly reconfigurable 
temporal coding and appear likely to co-operate. New empirical 
evidence on the large-scale structure of phase lags in cortical 
and subcortical networks sheds light on the conditions wherein 
either or both of these mechanisms may be at play. 

As shown by several studies here, zero-lag phase 
interactions characterize oscillatory synchronization in the 
gamma but to a lesser extent also in other frequency bands. 
Furthermore, although zero-lag synchronization is more 
prevalent across short than large anatomical distances, it has 
been also observed also between widely separated cortical 
structures such as the prefrontal and posterior parietal cortices. 
Hence, zero-lag synchronization is a common characteristic of 
systems-level neuronal activity and cannot be attributed to 
single functions, frequencies, or brain systems. Interestingly, as 
several lines of evidence also point to systematic anti-phase 
synchronization, there is a solid experimental basis for the 
phase correlations to support both neuronal integration, by 
zero-lag coupling, and segregation, by anti-phase coupling [58]. 

References 

1 Singer, W. (1995) Development and plasticity of cortical processing 
architectures. Science 270, 758-764  
2 Fries, P. (2015) Rhythms for Cognition: Communication through 
Coherence. Neuron 88, 220-235  
3 Singer, W. (2013) Cortical dynamics revisited. Trends Cogn Sci 17, 
616-626  
4 Uhlhaas, P.J. et al. (2009) Neural synchrony in cortical networks: 
history, concept and current status. Front Integr Neurosci 3, 17  
5 Singer, W. (1999) Neuronal synchrony: a versatile code for the 
definition of relations? Neuron 24, 49-65, 111-25  
6 Softky, W.R. and Koch, C. (1993) The highly irregular firing of cortical 
cells is inconsistent with temporal integration of random EPSPs. J 
Neurosci 13, 334-350  
7 Freiwald, W.A. et al. (1995) Stimulus dependent intercolumnar 
synchronization of single unit responses in cat area 17. Neuroreport 6, 
2348-2352  
8 Nikolic, D. et al. (2013) Gamma oscillations: precise temporal 
coordination without a metronome. Trends Cogn Sci 17, 54-55  
9 Singer, W. and Gray, C.M. (1995) Visual Feature Integration and the 
Temporal Correlation Hypothesis. Annu Rev Neurosci 18, 555-586  
10 Konig, P. et al. (1995) How Precise is Neuronal Synchronization. 
Neural Comput 7, 469-485  
11 Konig, P. et al. (1996) Integrator or coincidence detector? The role of 
the cortical neuron revisited. Trends Neurosci 19, 130-137  
12 von Stein, A. et al. (2000) Top-down processing mediated by 
interareal synchronization. Proc Natl Acad Sci U S A 97, 14748-14753  



  

71 

 

13 Pastor, M.A. et al. (2002) Activation of human cerebral and 
cerebellar cortex by auditory stimulation at 40 Hz. J Neurosci 22, 10501-
10506  
14 Schroeder, C.E. and Lakatos, P. (2009) Low-frequency neuronal 
oscillations as instruments of sensory selection. Trends Neurosci 32, 9-
18  
15 Fries, P. (2005) A mechanism for cognitive dynamics: neuronal 
communication through neuronal coherence. Trends Cogn Sci 9, 474-
480  
16 Engel, A.K. et al. (1991) Synchronization of oscillatory neuronal 
responses between striate and extrastriate visual cortical areas of the 
cat. Proc Natl Acad Sci U S A 88, 6048-6052  
17 Engel, A.K. et al. (1991) Interhemispheric Synchronization of 
Oscillatory Neuronal Responses in Cat Visual-Cortex. Science 252, 1177-
1179  
18 Colgin, L.L. et al. (2009) Frequency of gamma oscillations routes flow 
of information in the hippocampus. Nature 462, 353-357  
19 Diba, K. et al. (2014) Millisecond timescale synchrony among 
hippocampal neurons. J Neurosci 34, 14984-14994  
20 Womelsdorf, T. et al. (2007) Modulation of neuronal interactions 
through neuronal synchronization. Science (New York 316, 1609-1612  
21 Womelsdorf, T. et al. (2006) Gamma-band synchronization in visual 
cortex predicts speed of change detection. Nature 439, 733-736  
22 Salazar, R.F. et al. (2012) Content-specific fronto-parietal 
synchronization during visual working memory. Science 338, 1097-1100  
23 Buschman, T.J. and Miller, E.K. (2007) Top-down versus bottom-up 
control of attention in the prefrontal and posterior parietal cortices. 
Science 315, 1860-1862  
24 Dotson, N.M. et al. (2015) Methods, caveats and the future of large-
scale microelectrode recordings in the non-human primate. Front Syst 
Neurosci 9, 10.3389/fnsys.2015.00149  
25 Maris, E. et al. (2016) Diverse Phase Relations among Neuronal 
Rhythms and Their Potential Function. Trends Neurosci  
26 Arnulfo, G. et al. (2015) Phase and amplitude correlations in resting-
state activity in human stereotactical EEG recordings. Neuroimage 112, 
114-127  
27 Steinmetz, P.N. et al. (2000) Attention modulates synchronized 
neuronal firing in primate somatosensory cortex. Nature 404, 187-190  
28 Buzsaki, G. and Wang, X.J. (2012) Mechanisms of gamma 
oscillations. Annu Rev Neurosci 35, 203-225  
29 Jia, X. et al. (2013) Gamma and the Coordination of Spiking Activity 
in Early Visual Cortex. Neuron 77, 762-774  
30 Besserve, M. et al. (2015) Shifts of Gamma Phase across Primary 
Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information 
Transfer. PLoS Biol 13, e1002257  
31 Salazar, R.F. et al. (2004) Directed interactions between visual areas 
and their role in processing image structure and expectancy. Eur J 
Neurosci 20, 1391-1401  
32 Gregoriou, G.G. et al. (2009) High-frequency, long-range coupling 
between prefrontal and visual cortex during attention. Science (New 
York 324, 1207-1210  
33 Fell, J. et al. (2001) Human memory formation is accompanied by 
rhinal-hippocampal coupling and decoupling. Nat Neurosci 4, 1259-
1264  
34 Tallon-Baudry, C. et al. (2001) Oscillatory synchrony between human 
extrastriate areas during visual short-term memory maintenance. J 
Neurosci 21, art. no.-RC177  
35 Siapas, A.G. et al. (2005) Prefrontal phase locking to hippocampal 
theta oscillations. Neuron 46, 141-151  
36 Pesaran, B. et al. (2008) Free choice activates a decision circuit 
between frontal and parietal cortex. Nature 453, 406-409  
37 Liebe, S. et al. (2012) Theta coupling between V4 and prefrontal 
cortex predicts visual short-term memory performance. Nat Neurosci 
15, 456-62, S1-2  
38 Roelfsema, P.R. et al. (1997) Visuomotor integration is associated 
with zero time-lag synchronization among cortical areas. Nature 385, 
157-161  
39 Witham, C.L. et al. (2007) Cells in somatosensory areas show 
synchrony with beta oscillations in monkey motor cortex. Eur J Neurosci 
26, 2677-2686  

40 Dotson, N.M. et al. (2014) Frontoparietal correlation dynamics 
reveal interplay between integration and segregation during visual 
working memory. J Neurosci 34, 13600-13613  
41 Stetson, C. and Andersen, R.A. (2014) The parietal reach region 
selectively anti-synchronizes with dorsal premotor cortex during 
planning. J Neurosci 34, 11948-11958  
42 Vinck, M. et al. (2013) Attentional modulation of cell-class-specific 
gamma-band synchronization in awake monkey area v4. Neuron 80, 
1077-1089  
43 Maris, E. et al. (2013) Rhythmic neuronal synchronization in visual 
cortex entails spatial phase relation diversity that is modulated by 
stimulation and attention. Neuroimage 74, 99-116  
44 Tallon-Baudry, C. et al. (2004) Oscillatory synchrony in the monkey 
temporal lobe correlates with performance in a visual short-term 
memory task. Cereb Cortex 14, 713-720  
45 Montbri\'o Ernest et al. (2004) Synchronization of two interacting 
populations of oscillators. Physical Review E - Statistical, Nonlinear, and 
Soft Matter Physics 70, 1-4  
46 Sheeba, J.H. et al. (2008) Routes to synchrony between 
asymmetrically interacting oscillator ensembles. Physical Review E - 
Statistical, Nonlinear, and Soft Matter Physics 78, 2-5  
47 Petkoski, S. et al. (2013) Mean-field and mean-ensemble frequencies 
of a system of coupled oscillators. Physical Review E - Statistical, 
Nonlinear, and Soft Matter Physics 87, 1-12  
48 Hong, H. and Strogatz, S.H. (2011) Kuramoto model of coupled 
oscillators with positive and negative coupling parameters: An example 
of conformist and contrarian oscillators. Phys Rev Lett 106, 1-4  
49 Moon, J.Y. et al. (2015) General relationship of global topology, local 
dynamics, and directionality in large-scale brain networks. PLoS 
Computational Biology 11, 1-21  
50 Stam, C.J. and Straaten, E.C.W.v. (2012) Go with the flow: Use of a 
directed phase lag index (dPLI) to characterize patterns of phase 
relations in a large-scale model of brain dynamics. Neuroimage 62, 
1415-1428  
51 Yeung, M. and Strogatz, S. (1999) Time Delay in the Kuramoto Model 
of Coupled Oscillators. Phys Rev Lett 82, 648-651  
52 Choi, M. et al. (2000) Synchronization in a system of globally coupled 
oscillators with time delay. Physical Review.E, Statistical Physics, 
Plasmas, Fluids, and Related Interdisciplinary Topics 61, 371-381  
53 Lee, W.S. et al. (2009) Large coupled oscillator systems with 
heterogeneous interaction delays. Phys Rev Lett 103, 4-7  
54 Li, D. and Zhou, C. (2011) Organization of Anti-Phase 
Synchronization Pattern in Neural Networks: What are the Key Factors? 
Frontiers in Systems Neuroscience 5, 100  
55 Deco, G. et al. (2009) Key role of coupling, delay, and noise in resting 
brain fluctuations. Proc Natl Acad Sci U S A 106, 10302-10307  
56 Honey, C.J. et al. (2007) Network structure of cerebral cortex shapes 
functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 
104, 10240-10245  
57 Azouz, R. and Gray, C.M. (2003) Adaptive coincidence detection and 
dynamic gain control in visual cortical neurons in vivo. Neuron 37, 513-
523  
58 Deco, G. et al. (2015) Rethinking segregation and integration: 
contributions of whole-brain modelling. Nat Rev Neurosci 16, 430-439  

Glossary 

Bipolar montages: Recording arrangement whereby each 
electrode contact in a linear shaft is referenced to the one 
neighbour contact.  

Emergent dynamics: Dynamics arising from the interaction of 
lower-level constituents, but not reducible to them. 

Graph-theoretic property: Feature of an abstraction of a 
complex system into a set of nodes and edges. For example, 
the average number of edges per node, i.e. the mean degree. 

Mean-field: Single state-variable describing for e.g. the 
dynamics of a neuronal population, by approximating the effect 
of interactions between its many constituent elements. 
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Generally employed in computational modelling, to gain insight 
into system behaviour at relatively low computational cost.    

Neuronal oscillations: Periodic signal, typically observed at the 
level of neuronal populations. Oscillations are generated by the 
interaction between excitatory pyramidal neurons and 
inhibitory interneurons. 

Phase-correlation: Systematic dependency between the 
instantaneous phases of two oscillators. Also referred to as 
phase-synchronisation or phase-coupling. 

Phase-lag: The angle by which an oscillator lags or leads 
another, when their instantaneous phases do have a systematic 
dependency. 

Volume conduction: Transmission of electric or magnetic fields 
from a primary current source to measurement sensors, via 
intermediate tissue such as the brain, skull and scalp. 

 

 

Supplementary Table 1. Tabulation of phase-lag findings from neuro-physiological data 

 Phase 
lags 

Freq. 

bands 

Distance Recording 

 

Analysis 
method 

Species Brain region Task 

(Animal state) 

Gray et al. 
(1989) 

~0 ms 40-60 Hz 2-7 mm  Multi-unit 
recordings 

(MUAs) 

Cross-
correlation 
function 

Cat Visual cortex  

(area 17) 

Visual stimulation with 
moving light bars 

(Anaesthetised) 

Engel et al. 
(1991) 

around 2 
ms 

40-60 Hz 8-10 mm  Multi-unit 
recordings 

(MUAs) 

Cross-
correlation 
function 

Cat Area 17 and 
Posteromedial 
lateral 
suprasylvian 
(PMLS) 

Visual stimulation with 
moving light bars 

(Anaesthetised) 

Engel et al. 
(1991a) 

0 ms 40-60 Hz ~5 mm  Multi-unit 
recordings 

(MUAs) 

Cross-
correlation 
function 

Cat Area 17 of  

left & right 
hemispheres 

Visual stimulation with 
moving light bars 

(Anaesthetised) 

Livingstone 
et al. (1996) 

3 ms 70-90 Hz 300-500 
microns 

Enamel-
coated 
tungsten 
electrodes 

(LFPs and 
MUAs) 

Cross-
correlation 

Squirrel 
monkey 

electrodes 
were in deep 
layer 4B and 
superficial 
layer 2/3 (early 
visual cortex) 

Visual stimulation 

(Anaesthetised) 

Fries et al. 
(2008) 

~0 ms 30-70 Hz 4-6 mm Multi-
electrode 
arrays 

(LFPs and 
MUAs) 

Coherence 
(b/n 
MUAs) 

Macaque 
monkey 

V4  Visual stimulation, Selective 
visual attention 

(Awake) 

Roelfsema 
et al. (1997) 

0 ms 20-25 Hz >1 cm  Trans-
cortical 
electrodes 

(LFPs and 
MUAs) 

Cross-
correlation 
function 

Cat Parietal &  

Motor cortices 

(areas 7 and 
5l) 

Visuo-motor integration task 

(Awake) 

Jia et al. 
(2012) 

3 ms 
(between 
spikes), 5-
8 ms 
(between 
LFPs) 

30-50 Hz ~6 mm  Multi-
electrode 
arrays 

in V1 and 
tetrodes in 
V2 (LFPs, 
MUAs and 
SUAs) 

Cross-
correlation 
function 

(b/n 
spikes), 
Coherence 
(b/n LFPs) 

 

 

Macaque 
monkey 

V1 and V2  

(early visual 
cortex) 

Visual stimulation 

(Anaesthetised) 
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Grothe et al. 
(2012) 

~8 ms 45-90 Hz ~10 mm Micro-
electrode 
array 
(LFPs, 
MUAs and 
SUAs) 

Spike-
triggered 
average 

Macaque 
monkey 

V1 and V4  

(visual cortex) 

Selective visual attention task 

(Awake) 

Gregoriou 
et al. (2009) 

8-13 ms 40-60 Hz 
(but also 
theta and 
beta 
frequencies) 

>5 cm  Multi-
electrode  

arrays 
(LFPs and 
MUAs) 

Spike-field 
coherence 

Monkey Frontal eye 
field (in PFC) 
and V4 

(Attention task) 

Awake 

Brovelli et 
al. (2004) 

up to 26 
ms 

16-22 Hz >1 cm Micro-
electrode 
array 
(LFPs) 

Coherence Macaque 
monkeys 

Primary 
somatosensory 
cortex, Motor 
cortex, Inferior 
Posterior 
Parietal Cortex 

Motor maintenance (i.e. press 
hand lever)  

(Awake) 

Siapas et al. 
(2005) 

50 ms 4-10 Hz 7 mm Tetrodes 
(LFPs, 
SUAs) 

Spike-field 
coherence 

Rat Pre-frontal 
cortex, 
Hippocampus 

Freely behaving 

(Awake) 

Witham et 
al. (2007) 

0 ms ~17.5 Hz >1 cm Micro-
electrode 
arrays 
(LFPs, 
SUAs) 

Coherence, 
Phase 
Slope 
Index 

Macaque 
monkeys 

Somatosensory 
cortex 
(spikes), 
Parietal cortex 
(spikes) 
,Motor cortex 
(LFPs) 

Finger-movement task 

(Awake) 

Womelsdorf 
et al. (2007) 

5 ms 40-80 Hz ~2 to 10 
mm 

Micro-
elecrode 
array 
(LFPs, 
MUAs) 

Coherence Monkey, 
Cat 

Cat - area 17, 
area 18 and 
area 21a  

Monkey - V1, 
V4 

Visual stimulation with 
moving gratings 

(Awake) 

Bosman et 
al. (2012) 

>0 ms 60-80 Hz >1 cm  ECoG grid Coherence, 

Granger 
causality 

Monkey V1 and V4 of 
visual cortex 

Attentional stimulus selection 

(Awake) 

 

Baldauf & 
Desimone 
(2014) 

20 ms 60-100 Hz >5 cm  MEG 
(LFPs) 

Coherence, 

Phase 
Slope 
Index 

Humans IFJ, FFA and 
PPA 

Object-based attention, i.e. 
faces and houses 

(Awake) 

von Stein et 
al. (2000) 

20-50 ms 
for 
theta/alpha 
and 1-2 
ms for 
gamma 

4-12 Hz, 
20-100 Hz 

7-10 mm 
(for area 
7-area 5) 
and > 1 
cm (for 
area 17-
area 7, 
area 17-
area 5) 

Micro-
electrode 
arrays 
(LFPs) 

Cross-
correlation 
function 

Cats area 17 
(primary 
visual cortex), 
area 7 (visual 
and 
polysensory 
responses) and 
area 5 (sensory 
and sensory-
motor 
responses) 

GO/NO-GO task of stimulus 
perception 

(Awake) 

Tallon-
Baudry et 
al. (2001) 

5.4 ms, 
12.4 ms 

15-25 Hz 3.5 cm, 
5 cm 

SEEG 

(LFPs) 

Phase 
Locking 
Value 

Humans Extrastriate 
visual areas 

Visual short-term memory 
task 

(Awake) 

Tallon-
Baudry et 
al. (2004) 

8 ms, 23 
ms 

15-20 Hz 4.2 mm, 
6.7 mm 

Micro-
electrode 
arrays 

Phase 
Locking 
Value 

Macaque 
monkeys 

posterior 
infero-
temporal 
cortex (near 

Visual short-term memory 
task 

(Awake) 
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(LFPs) superior 
temporal 
sulcus – STS) 

Bastos et al. 
(2015b) 

>0 ms ~ 4 Hz and 

 ~ 60-80 Hz  
feed-
forward 
influences, 
14-18 Hz 
feedback 
influences 

>1 cm ECoG grid 

(LFPs) 

Conditional 
Granger 
causality  

Macaque 
monkeys 

Visual cortex 
(8 areas – V1, 
V2, V4, TEO, 
DP, 7A, 8L, 
8M) 

Visuo-spatial attention task 

(Awake) 

Vinck et al. 
(2013) 

3.3 ms 30-70 Hz 100s of 
microns 

Micro-
electrode 
array 
(LFPs, 
MUAs and 
SUAs) 

Phase 
Slope 
Index 

Macaque 
monkeys 

Visual cortex 
(area V4, 
between 
excitatory and 
inhibitory 
cells) 

Selective visual attention 

(Awake) 

Maris et al. 
(2013) 

 

7-11 ms 55 Hz, 87.5 
Hz 

up to ~3 
mm 

Micro 
electrode 
arrays 
(LFPs and 
MUAs) 

Coherence Macaque 
monkeys 

Visual cortex  

(area V4) 

Resting-state, visual 
stimulation, attention 

(Awake) 

Dotson et 
al. (2014) 

0 ms, 
~31.2 ms 

8-25 Hz < 1 cm 
(within 
PPC), 
>5 cm 
(between 
PFC and 
PPC) 

Micro- 
electrode 
array 
(LFPs) 

Cross-
correlation 
function 

Macaque 
monkeys 

Pre-frontal 
cortex (PFC), 
Posterior 
parietal cortex 
(PPC) 

Oculo-motor, delayed match-
to-sample task 

(Awake) 

Stetson et 
al. (2014) 

~25 ms 15-30 Hz >5 cm Micro-
electrode 
array 

(LFPs, 
SUAs)  

Partial 
coherence 

Macaque 
monkeys 

Parietal reach 
region (PRR) 
and Dorsal 
Premotor 
cortex (PMd) 

Movement planning  

(Awake) 

Liebe et al. 
(2012) 

10-15 ms 3-9 Hz >5 cm Micro-
electrode 
array  

(LFPs, 
SUAs) 

Phase 
Locking 
Value 
(PLV) 

Macaque 
monkeys 

IPF (Inferior 
Prefrontal 
Cortex) and 
V4 in visual 
cortex 

Visual short-term memory 
task 

(Awake) 

Salazar et 
al. (2004) 

up to 6 ms 20-60 Hz  5 mm Micro-
electrode 
array 

(LFPs) 

 

Multi-
Variate 
Auto-
Regressive 
(MVAR) 
modelling 

Cats Primary 
(A17/18) and 
higher visual 
areas (A21) 

Movie and pink noise visual 
stimulation 

(Awake) 

Besserve et 
al. (2015) 

~2 ms 50-80 Hz 5 mm Micro-
electrode 
array 

(LFPs, 
MUAs) 

Phase 
Locking 
Value 

 

Macaque 
monkeys 

V1 Movie visual stimulation 

(Anaesthetised) 

Aoki et al. 
(1999) 

~0 ms 30-40 Hz >5 cm ECoG grid Cycle-
triggered 
averages, 
Cross-
spectra 

Humans Forearm 
sensori-motor 
cortex 

3 visuomotor tasks, i.e. target 
tracking, finger threading and 
finger sequencing 

(Awake) 

Klopp et al. 1-4 ms 8-12 Hz, 1 to 9 SEEG Coherence Humans Fusiform 
gyrus to 

Memory task for faces 
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(2000) (gamma), 

1-9 ms 

(alpha) 

30-45 Hz cm several other 
sites including: 
anterior 
cingulated 
gyrus, 
posterior 
cingulate 
gyrus, anterior 
and posterior 
hippocampus, 
lingual gyrus, 
supre-marginal 
gyrus etc. 

(Awake) 

Fell et al. 
(2001) 

~0 ms on 
average 

32-48 Hz 0.8 to 
2.6 cm 

SEEG Phase 
Locking 
Value 

Humans Rhinal cortex, 
Hippocampus 

Word memorisation task 

(Awake) 
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Data set: Map of human inter-areal connectivity and phase lags based on 
resting-state SEEG 

In this project, we have assessed the large-scale phase-lag structure of human cortical and 
subcortical network oscillations by using a large set of resting-state SEEG data. These data 
open a novel and comprehensive view into the organizational principles of neuronal 
network oscillations. 

 

Objective 

This report is the human SEEG-based experimental part of the Deliverable for our 
objective, followed by the theoretical section based upon modelling of network 
oscillations within a large-scale connectivity framework:  

The objective of this work package is to understand the nature of spontaneous brain 
activity in biologically realistic brain network models with concurrent oscillations in 
multiple frequency bands.  To this end, we exploit the first comprehensive 
estimates of the true time and phase lags between interacting human cortical 
regions. 

 
Design and Methods 

Subjects, data acquisition, and data provenance. We collected data from 67 epileptic 
patients undergoing evaluation prior a surgical ablation of the epileptic zone (EZ). These 
subjects were selected from among 76 consecutive patients in Niguarda hospital, Milan, 
Italy (by Dr. L. Nobili and A. Rubino) of which 9 were rejected because of significant 
cortical lesions or malformations. The data were pre-processed and analysed in the 
Neuroscience Center, University of Helsinki, Finland (by Dr. G. Arnulfo, J. Hirvonen, S. 
Wang, Dr. A. Zhigalov, Dr. H. Eyherabide, and Dr. N. Williams). The data were acquired in 
a project funded by the Academy of Finland (J.M. Palva and S. Palva). 

10-minute long resting-state SEEG recordings with eyes closed but without sleeping were 
acquired with a 192-channel SEEG amplifier system (NIHON-KOHDEN NEUROFAX-110) at a 
sampling rate of 1 kHz. The subjects were uninterrupted during the recordings and there 
were no active distractions (television, etc.).  

 

Data characterization and secondary aims. Using the first 22 subjects of the present 
cohort, we have conducted proof-of-concept and data characterization analyses in order to 
assess quantitatively the inter-areal phase and amplitude correlations (Arnulfo et al., 
2015b), the dynamic states (Zhigalov et al., 2015), and their mutual relationship (Zhigalov 
et al., PLoS Biol, revision submitted). This project also aimed to assess the phase 
correlation and lag networks underlying threshold-stimulus detection task (TSDT) 
execution. MEG data for somatosensory (Hirvonen and Palva, 2015) and visual TSDTs 
(Hirvonen et al., 2016, in preparation, respectively) are recorded and the local and inter-
areal phase coupling correlates of conscious perception mapped. The SEEG counterpart of 
this experiment has been delayed and the data acquisition is still ongoing because of 
delays in the handling of the ethical application at Niguarda, lower than expected patient 
throughput, and temporary cessation of all SEEG recordings during 2015 caused by the 
breaking of the SEEG electrode implantation robot. 

 

Preprocessing. For each subject, the SEEG electrode contacts were localized with an 
automatic segmentation algorithm from CT images and co-localized with anatomical MRI 
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(Arnulfo et al., 2015a). The anatomical MRIs were segmented to obtain surface models of 
the cortical white-grey matter and pial surfaces with the Freesurfer software. Cortical 
surfaces were then parcellated with both Desikan-Killiany and Destrieux atlases while for 
the labeling of subcortical structures, the volumetric MRI segmentation is used (Desikan et 
al., 2006a; Destrieux et al., 2010). 

Using this localization, we identified contacts in cortical and subcortical grey matter and 
used the closest contacts in underlying white matter for re-referencing the original 
'monopolar' SEEG time series. The electrode contact time series analyzed here thus 
reflected signals from local grey matter sources with minimized volume conducted 
components and no introduction of confounding grey matter signals through referencing 
(Arnulfo et al., 2015b). 

 

Analyses of phase lags at single subject level. All analyses of phase correlations and lags 
were performed between the raw grey-matter electrode contact time series from 
individual subjects. The time series were FIR filtered and transformed to complex time 
series with the Hilbert transform. We first evaluated 'static' functional connectomes by 
obtaining pairwise complex phase-locking values (cPLV) across all contact pairs for the 
whole 10 min time series and all frequencies. Contact pairs with shared reference contacts 
were excluded from all analyses. From the static connectomes, we chose for a time-
windowed analysis contact pairs exhibiting significant phase coupling (p < 0.05, no multiple 
comparisons correction, estimated against time-rotated surrogate data to maintain auto-
correlation-caused redundancies). 

While the static cPLV connectome yields estimates of the overall phase lags, it is a 
composite of possibly many distinct and dynamically variable phase lags and is hence a 
priori uninformative. We thus assessed the phase-lags with a time-windowed analysis so 
that phase-coupling between contact pairs was measured in windows of five oscillation 
cycles with cPLV and windows with PLV > 0.85 were ultimately selected for the analyses of 
phase lags. A high PLV threshold ensured that the chosen windows reflected strong 
neuronal phase coupling with a consistent phase relationship. For all contact pairs yielding 
more than 30 significant windows, the phases of these cPLVs were the pooled across and 
constituted the contact-pair-specific phase-difference distribution (PDD). 

We assessed three statistical properties of these PDDs. First, "systematicity" was measured 
with the Rayleigh test and indicated whether the phase lags from different time windows 
were systematically centered on a given lag or distributed uniformly. Second, "non-zero-
lagness" was measured by comparing the mean phase across all time windows against the 
distribution of such mean phases obtained with identical procedures from surrogate data 
with matched coupling at zero phase lag. Third, the PDD width was compared against the 
corresponding widths of surrogate data to estimate whether the measured PDDs were a 
likely to be composites of multiple interactions or explainable by a single one. 

Analyses of phase lags at group level. For group analyses, we pooled the means of time-
window phase estimates of significantly systematic contact pairs from all subjects into a 
parcel-parcel connectomes for the Desikan-Killiany (Desikan et al., 2006a) and Destrieux 
atlases (Destrieux et al., 2010). For each parcel-parcel pair, we then estimated with the 
Rayleigh test whether the phase lags were systematic or uniformly/randomly distributed. A 
significant observations here thus indicates that at the group level, a given parcel-parcel 
pair exhibits a systematic phase lag. 

 

Results 

Sampling statistics and static connectivity. In total, the cohort yielded 5710 grey matter 
electrode contacts of which 5282 were in neocortical and 428 in subcortical or 
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hippocampal structures. This sampling gave a total of 337946 contact pairs (285439 among 
cortical, 3937 among subcortical, and 48570 between these two). Collapsing these data to 
the Desikan-Killiany parcellation showed that most cortical regions were extensively 
sampled (Figure 27A) and that more than 57 % of parcel pairs were sampled by at least 10 
contact pairs (Figure 27B). The least sampled parcel pairs were almost exclusively 
interhemispheric (Figure 27C), because SEEG electrode contacts are largely implanted 
unilaterally and hence undersample bilateral connections. 

 
Figure 27: Sampling statistics 

A) Inflated cortical surfaces show the number of electrodes (color scale) in the parcels of the Desikan-Killiany 
atlas. B) The fraction of parcel pairs (y-axis) sampled by N or more electrode pairs (x-axis). C) The parcel-
parcel sampling matrix shows the number of electrode pairs (color scale) for pair of parcels. 

 
We first assessed the strength and extent of static, i.e., time-averaged, phase correlations 
by pairwise PLV estimates (Lachaux et al., 1999) between all electrode contacts. We 
divided the contact pairs into three groups based on their Euclidian distance: short (0-34 
mm), medium (34-53 mm), and long (53-137 mm). Corroborating our prior findings, the 
strength of phase correlations, as indicated by the mean PLV, decreases systematically 
with distance as well as with frequency for frequencies above ~10 Hz (Figure 28A). The 
extent of phase correlations was indexed by the fraction of couplings exceeding a 
surrogate-data-derived significance threshold corresponding to p < 0.01 (uncorrected). 
These fractions were considerably large (Figure 28B), which together with the small mean 
PLVs indicates that the brains operate in regime of widespread functional coupling but low 
overall coherence. 

 
Figure 28: Strength and extent of static phase correlations 

A) Mean PLV for short (black-), medium- (red), and long-(green) range electrode pairs. B) Fraction of electrode 
pairs exhibiting significant (p < 0.01) phase correlations. 

 

Dynamic phase-lag analyses. For each frequency band, all electrode pairs exhibiting 
significant coupling were subjected to a time-window-based analysis that aimed to identify 
brief five-cycle-long moments of strong phase coupling. Selecting then the electrode pairs 
where an adequate number (> 30) of significant time windows were found, we first asked 
whether the phase lags observed in these windows (Figure 29A) would be systematic or 
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uniformly distributed. Surprisingly, we found that essentially all low- (2.5-12 Hz) and a 
majority of the high- (12-80 Hz) frequency couplings indeed exhibited a specific systematic 
phase lag (Figure 29B) indicating that even in the supposedly highly variable resting state, 
emergent brain dynamics are characterized by an organized mosaic of inter-areal phase 
relationships.  

 

 
Figure 29: Systematic phase lags in the human brain 
A) Phase lag distributions (color scale) of all significant electrode pairs (y-axis) of a representative subject for 
10 Hz oscillations. B) Example non-zero (upper panel) and zero- (lower panel) lag distributions of two 
electrode pairs (red) and their surrogates (gray) from the data in panel A. 

 

The individual phase lag distributions suggested that in a subset of electrode pairs, the 
phase lags would be very near zero or 180 degrees. We used zero-lag correlated and 
coupling-strength matched surrogate data to test whether the lags in these and other pairs 
were explainable as originating from a true zero-lag phase distribution (Figure 30A). We 
found that depending on frequency but essentially independently of distance, 50-70 % of 
the systematic couplings had a lag significantly deviating from zero (Figure 30). 

 

 
Figure 30: Systematic zero- and non-zero-lagged phase couplings are salient between 
electrode pairs 
A) Fraction of electrode pairs in the complete cohort exhibiting a significant (p < 0.05, uncorrected) systematic 
phase lag. B) Fraction of systematic electrode pairs exhibiting significantly (p < 0.05, uncorrected) non-zero 
phase lag. 

 
Systematic phase lags in cortical parcellations. The lead results so far have shown that 
phase correlations in human brains are largely systematic and characterized by both near-
zero and significantly non-zero phase lags. A key question is whether these phase 



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 80 / 281 
 

relationships are consistent across subjects. We obtained the mean phase across time-
window phase estimates for each systematic electrode pair and pooled these phase 
estimates to become parcel-parcel phase estimates. To ensure adequate statistics, we 
required the parcel pairs to be sampled by a minimum of ten electrode pairs. For the 
Desikan-Killiany parcellation, with only 68 parcels, surprisingly large fractions of parcel 
pairs, 33-56 %, exhibited significantly systematic phase lags across the pooled electrode 
pairs (Rayleigh test, p < 0.05, uncorrected; Figure 31A). Visualizing the parcel-pair phase 
lag distributions showed that both clearly zero-lagged and systematically non-zero lagged 
parcel pairs were robustly observable (Figure 31B). 

 

 
Figure 31: Zero- and non-zero-lagged phase couplings are systematic between large 
cortical parcels.  
A) Fraction of Desikan-Killiany parcel-pairs exhibiting a systematic phase lag across the contributing electrode 
pairs. B) Phase lag distributions (color scale) of all significantly systematic parcel pairs for 10 Hz oscillations. 

 
Data Provenance 

The raw data have been acquired in a collaboration project comprising Matias PALVA, UH, 
and Lino NOBILI, Claudio Munari Epilepsy Surgery Centre, Niguarda Hospital, Italy. 
 

Delivery and data release 

The adjacency and all supporting matrices for phase correlation strength and phase 
estimates produced in this project are downloadable from the URL: 
http://sp3.s3.data.kit.edu/3.1.5/ and are described in a Dataset Information Card: 
Human Connectome of Phase Lags. 
 

Discussion  

We have analysed an unprecedentedly large set of SEEG data in order to systematically 
map, for the first time, cerebral inter-areal phase relationships. This was, in part, also 
enabled by the usage of a novel white-matter referencing scheme that yielded volume-
conduction controlled local field potential recordings from known depths of grey matter 
without referencing-caused temporal distortions. As summarized in our review, a large 
body of literature based on pairwise phase estimates shows that phase couplings among 
neuronal assemblies may involve either near-zero and -180-degree (Dotson et al., 2014b; 
Roelfsema et al., 1997), or clearly in between, non-zero phase lags (Baldauf and 
Desimone, 2014; Tallon-Baudry et al., 2001; Womelsdorf et al., 2007). Whether ongoing 
brain activity at large is dominated by one or another kind of coupling is an important 
constraint both for conceptual models of the functional significance of phase correlations 

B A 

http://sp3.s3.data.kit.edu/3.1.5/
https://dataset-information-manager.herokuapp.com/admin/dataset_information_catalog/datasetinformationcard/53/?_changelist_filters=o%3D4
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and for computational models of large-scale dynamics. To this end, we used a novel 
statistical approach for dissociating significantly non-zero lagged couplings from those that 
could not be discerned from an equally sampled true zero-lagged coupling. We found that 
both zero- and non-zero-lag couplings were saliently observable both in individual 
electrode pairs and between cortical parcels at the group level. Interestingly, low-
frequency oscillations exhibited greater variability in phase lags and greater fractions of 
non-zero lag couplings than high-frequency oscillations. Overall, this dataset will be a 
treasure trove for understanding the high-resolution architecture of inter-areal 
interactions and the time/phase lags therein. 

 

Self-analysis of the value and completeness of data. We achieved our primary objective: 
a comprehensive description of cortical and subcortical inter-areal phase relationships in 
the human brain. Outside of our HBP project, both resting- and task-state data acquisition 
and analyses are still ongoing, and will be integrated with the connectome released in the 
present study. This will improve the anatomical resolution and inferential value of the 
phase connectome. With the resolutions used here, however, the coverage given by the 
337946 acquired grey-matter electrode contact pairs is more than adequate and hence the 
data can be considered complete. The value of these data is, in our humble opinion, 
immense. Human electrophysiological resting-state data of this quality, anatomical 
accuracy, and quantity has never been acquired – typical publications in the field use 5-10 
times smaller subject cohorts, poor anatomical accuracy, and no shareable anatomical 
descriptions. The connectomes that we are publishing are represented in an anatomical 
framework directly usable in any human neuroscience laboratory. These data yield the 
very first large-scale (whole-brain scale) mapping of phase-accurate LFPs from any 
mammal – the value for understanding the large-scale brain dynamics is hence great. 

Usage of data and collaboration. So far these data have been used by the consortium 
partners. The connectomes and associated metadata will be released to become freely 
usable when the findings have been accepted for publication. These data also support an 
ongoing collaboration with SP4, Gustavo Deco. 
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The main Deliverables of this project, the review (manuscript above) and the human phase 
connectome publication(s) (partial data presented above) are in preparation at the time of 
the writing of this report. 
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Theoretical analysis project component investigating the principles underlying 
oscillatory network organization in the presence of time lags 

 

Network couplings of oscillatory large-scale systems, such as the brain, have a space-time 
structure composed of connection strengths and signal transmission delays. As the spatial 
distribution of the connection strengths strongly influences the network dynamics, so does 
the spatial distribution of time delays. When the signal transmission delays are small with 
regard to the characteristic time scale of the system, then they can be mostly ignored. In 
the brain, the time delays of signal transmission (10 to 200 ms) are on the same scale as 
the signal operation (10 to 250 ms) (Buzsáki and Draguhn, 2004) and contribute critically to 
the system’s spatiotemporal organization. Oscillatory network systems are particularly 
sensitive to changes in signal transmission delays, because shifts in phasings of the 
oscillators may easily change the nature of the mutual influences from excitatory to 
inhibitory and vice versa, affecting the overall synchronization behaviour of the network. 
The latter, is one of the hypothesized key mechanisms of brain function (Fries, 2005b; 
Varela et al., 2001) and cannot be ignored when studying large-scale networks. With the 
advance of non-invasive structural imaging techniques, large-scale network modeling 
approaches of the entire brain have now become feasible using biologically realistic 
connectivity, the so-called Connectome, and spatially distributed delays (Deco et al., 
2009; Ghosh et al., 2008), Figure 32A. 

 

 

Figure 32 
A) Two forms of connectivity are implemented in large-scale brain models: local connectivity (left) 
between near neighbors and global (right) representing the human Connectome. (B-C) Averaged tract 
lengths and weights from connectomes of 4 healthy subjects. Joint distribution B), and C) histogram of 
weighted lengths for intra and inter- hemisphere links. D) Sketch of the spatial delay-imposed 
structure of the brain used as a first approximation of its space-time organization. 

Upon analysis of experimental connectivity data (Van Essen et al., 2013), the results imply 
that the lengths of connection routes between brain areas are multimodaly distributed 
(Figure 32B-C). This insight suggests that the complex space-time structure of the 
connectivity maybe approximated by a less complex mode decomposition, which will aid in 
the mathematical analysis of the large-scale brain dynamics.  

We have provided a first theoretical framework, which allows treating the space-time 
structure of network couplings as a whole with regard to its effects upon network 
synchronization. By decomposing the spatial distribution of time delays into spatial 
patterns within the couplings’ space-time structure, we could analytically compute the 
synchronization characteristics of the network. This analysis was performed on idealized 



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 83 / 281 
 

networks of phase oscillators with a connectivity structured by time-delays. We found that 
oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters as a 
function of the delay structure and computed their stability boundaries analytically for 
different frequencies. These synchronization patterns can be controlled by rearranging the 
time delays in the network. We thus clearly demonstrated that it is not just the 
connectivity that matters in oscillatory large-scale networks, as the brain, but time delays 
are of equal importance.  

 

The principles of the modelling 

We focus on the phase synchronization at different frequency ranges between distant 
regions of the brain. The aim of the model is to explain the mechanisms behind this 
phenomenon and to point the possible ranges and regimes of large-scale brain dynamic and 
consequently the phase differences between brain regions. Finally, the model should also 
encompass the empirically obtained results, based on the phase locking values (PLV) 
between electrophysiological measurements. PLV is a statistical measure for similarity 
between phases of two signals and although it can happen that the signals are coherent 
just by chance, in most of the situations it is assumed that a synchronization phenomenon 
is responsible for this coherence. Hence, statistical testing is necessary to distinguish these 
cases and statistically significant level of coherence to be obtained. 

Since the experiments apply Hilbert or wavelet transform on band pass-filtered time-series 
for obtaining the phase at different frequency, the underlying dynamics of our model is 
assumed to consist of phase oscillators.  Empirically only 1:1 synchronization is assumed, 
thus justifying our choice of modelling different frequency bands separately. Finally, in 
order to account for the non-deterministic nature of the brain dynamics, as observed in 
the experiment, white Gaussian noise was added. Its intensity was however kept much 
lower than the coupling strength, such that the main source of the heterogeneity in the 
model was the delayed interactions between oscillators. Still, the noise had significant 
influence to the dynamics at the microscopic level of each oscillator. By keeping the model 
simple, whilst accounting for the oscillatory nature of the brain, measured by PLV, we are 
able to directly apply the theoretical analysis that describes how the spatial distribution of 
time delays determines the synchronization of coupled oscillators. 

It should be noted that there exists invariant scaling between the frequencies and the 
time-delays. For example increasing the transmission velocity over the fixed lengths as 
given by the connectome, has the same effect as decreasing the frequency. This however, 
only shifts the observed dynamical regimes at the frequency/time-delays parameters 
space. Hence by fixing the velocity at the realistic range of values, we can study the 
impact of the delays for different frequencies. We have performed simulations for 
velocities between 2 and 10 m/s, whilst in the results shown in the figures this is fixed at 5 
m/s.  

We used structural and diffusion MRI from randomly chosen healthy subjects data from the 
Human Connectome Project (Van Essen et al., 2013). The connectome was obtained for 
Desikan Killiany atlas (Desikan et al., 2006b) resulting in 68 cortical regions, where each 
link is described by a length and a weight that are averaged over all the tracts identified 
between those regions. Based on our analytical analysis this was then simplified, which 
proved to be sufficient to capture all the possible network dynamics of the realistic brain 
network. Namely, based on the tract analysis (Figure 32B-C), we decomposed the spatio-
temporal connectome in two modes as a first approximation; (Figure 32D). The values of 
each of them are empirically obtained as the modes of the intra and interhemisphere 
distributions of the connectome links, Figure 32C. Nevertheless, this captured most of the 
synchronization profiles observed in the more realistic approximation and in the full 
network. 
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Modeling the experimental protocol 

The global dynamics was described by the Kuramoto order parameter, which is divided in 
two spatial subnetworks following the space-time approximation. These modes, beside the 
incoherence, could be either in- or anti-phase, as predicted by the theoretical analysis. 
Hence for synchronization, most of the oscillators would have phase-lags around 0 or ±π, 
depending on the frequency and the level of coupling/coherence. Besides the global 
(synchronization over nodes) we also analyzed the PLV (synchronization over links), 
providing direct link between the model and the experiment. Namely, time-windowed 
(TW) PLV was applied for each pair of nodes with length varying between 5 and 15 periods 
of the cycles (in the presented results it is set to 5, for consistency with the experimental 
protocol). However, for each of these cases a different level of significance was calculated 
based on the shuffled time-series and the uncoupled network with identical noise level. 
The former generally yielded lower values, meaning that the latter was adopted for most 
of the parameters range.   

The simulations were run for at least 150 seconds after the transient period and identified 
the TW in which the PLV was significant, based on the both surrogate measures. From the 
complex PLV we obtained the phase difference in those TW. In addition, we also 
calculated the phase difference directly from the time-series of the phases at each 
oscillator. The circular statistics of both measurements was very similar, with the former 
representing more coarse-grained version of the latter. Similar holds for the levels of 
significance, the lower one was only making the peaks in the distribution of the phase 
differences to be flatter and less pronounced.  

 

Results of the reduced model 

The most important contribution of the model was the fact that it captures the statistics 
of the phase lags as observed in the experiment, whilst still accounting for the dynamical 
regimes predicted in the theoretical analysis.  

In Figure 33, for fixed frequency the global dynamics changes from incoherence to anti- 
and in- phase coherence for increasing the coupling strength. However, even at global 
incoherent state, due to the heterogeneity of the connectome, local, link-wise coherence 
is observed. This is reflected at the matrix showing the circular average of the phase lags 
during the TW of significant PLV for each pair of regions. There are no empty entries in 
this matrix, meaning that even though the global level of coherence and the long-time 
averaged PLV are both very low, still there are short periods of time where the PLV is 
higher than the level of the surrogates. These are probably result of the stochastic nature 
of the dynamics at very low coupling, since there is no spatial structure, and the phase-
lags are flatly distributed with relatively high variance.  

By increasing the coupling, the coherence between links increases, and nodes organize in 
the space resulting in peaks of phase-lags at 0 and ±π. The stronger connected nodes (with 
higher in-strength) are more strictly following this division: intrahemisphere links are in-
phase (phase-lags ~ 0), and interhemisphere links are anti-phase. The links between the 
weaker nodes on contrary still have flatly distributed lags. This is seen from the matrices 
sorted by increasing in-strength of the nodes, i.e., the sum of all the weights for that 
node.  
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Figure 33: Regimes of the large-scale network dynamics, as reflected in the phase 
distribution between the nodes. Coupling strengths are increasing for fixed frequency 
(f = 20 Hz), resulting in switching from global incoherence to alternating in- and anti-
phase coherence.  
A) Histogram of the phase differences between significantly coherent links. B) Spatial distribution of the phase 
difference; white corresponds to the links where no significant PLV was detected at any TW. Nodes in the 
upper row are sorted according to the Desikian atlas, and in the lower row they are sorted by the in-strength of 
the nodes, within the hemispheres. The latter unveils a structural organization, which beside the spatial 
distribution takes into account the strength of the nodes.  

 

 

 
Figure 34: Large-scale network dynamics for different frequencies/delays. Natural 
frequencies are increasing for constant coupling (K=2) and noise strength, resulting in 
alternating switching from in- to anti-phase coherence, but also to incoherence (anti-
resonance phenomenon of the time-delays).  
(A) Histogram of the phase differences between significantly coherent links. (B) Spatial distribution of the 
phase difference; white corresponds to the links where no significant PLV was detected at any TW. 

 

For higher coupling reorganization occurs. Most of the nodes become in-phase, but some of 
them are completely incoherent with others. These behave as detached, besides the global 
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coupling being much larger than the one needed to observe much higher static PLV and 
periods of significant PLV. These are in general links between very strong and very weak 
nodes, both intra and interhemisphere. So whilst the strong nodes are in- or anti- phase 
locked between each other depending in which hemisphere they are, and weak nodes are 
weakly non-stationary synchronized between each other at some short periods of time. 
Finally, for very large couplings, most of the nodes become strongly synchronized, leading 
to 0 peaked phase lags. However, even here the links between very weak nodes have 
phase-lags around ±π/2.  

 

 
Figure 35: A) Intra- and B) inter- hemisphere subnetworks based on the strengths of 
the nodes, during the anti-phase synchronization for f = 40 Hz shown in Figure 34.   
Each network consists of the eight strongest/weakest nodes at each hemisphere, corresponding to the spatial 
organization in the sorted matrix in Figure 34. The links between strong nodes within the same hemisphere 
have phase lags around 0, while between the hemispheres those are around ±π. The strong-link combinations 
have very few links with significant coherence, and weak-weak links have phase lags without a distinctive 
peak. 

 
It should be noted that by increasing the significance level even higher (e.g. between 0.8-
0.9), the smaller peaks, together with the flatly distributed delays at lower coupling 
strengths, become insignificant, yielding single or double peaked distributions around 0 
and ±π. Thus, by simple readjusting the level of significant coherence, or the length of the 
time-windows, the model can account for different methodological experiments. 

Due to the invariance to scaling of the time, the relative value of the time-delays 
compared to the period of the oscillations determines the synchronization. Thus, 
increasing the frequencies for constant transmission velocities impacts the coherence and 
the spatial organization of the oscillators.  The anti-resonance phenomenon of the time-
delays, which was theoretically predicted, also occurs in the connectome-based model. In 
Figure 34 the network dynamics alternates between in- and anti- phase, imposing spatial 
reorganization in the brain. Similarly, the periodicity of the delays/frequencies is also 
visible: after becoming bimodal at 40 Hz, the phase lags become flatly distributed due to 
the global incoherence at 50 Hz, before they return to the unimodal 0 peaked distribution, 
at 80 Hz similar as for low frequencies, <20 Hz.  
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Figure 36: Comparison (from left to right) between the dynamical repertoires of the 
bimodal-delta reduction, logistic distribution with fixed width, best-fit logistic 
distribution and the full connectome.  

Upper and the middle row: sorted by strength and matrix of the static phase lags, respectively, with the 
overall color-coded histogram. Bottom row: time series of the order parameter and its mean phase for the 
global network as well as the left and the right hemisphere.  

 

The same organization based on the strengths of the nodes is also visible during coherence. 
The within hemisphere links between strong nodes have 0 phase lags and between 
hemispheres are either around 0 or around ±π (Figure 34). The links between weaker nodes 
on contrary are usually flatly distributed, while for the links between weak and strong 
nodes the significant PLV barely occurs for most of the frequencies. These distributions of 
the links between the anatomical regions are illustrated in Figure 35, for eight of the 
strongest and weakest nodes in each hemisphere (out of 34 in total).  The in-strength 
based weak nodes are mostly in the frontal lobe and they form a subnetwork with links 
that have flatly distributed phase lags. The strong intrahemishere links mostly connect 
frontal and the occipital lobes and these are expected to have stronger coherence with 
phase lags around 0, while intrehemisphere links between those nodes with high in-
strength of the weights have phase lags distributed around ±π.  

 

Comparison between the reduced model and full connectome 

Besides the extensive analysis of the reduced model for parameters (frequencies, coupling, 
transmission velocity) at realistic range, we also compared its dynamical repertoires with 
similar model but on full connectome, and two other more realistic approximations. First 
of these were bimodal distributions accounting for the same modes as the delta-peaks 
approximation, but with non-zero width. The second were more realistic fits of the actual 
distribution within and between the hemispheres (Figure 32D). The comparison was 
performed over different frequency bands and global coupling, and the results are shown 
in Figure 36. In order to focus on the importance of the different network topologies, 
these analyses were performed without adding noise to the dynamics and PLV and the 
phase lags are obtained only at the whole time-series.  
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Figure 37: Phase lag spatial distribution over the brain links showing high phase 
synchrony  
for A) the bimodal-delta reduction, B) the logistic distribution with fixed width, C) best-fit logistic distribution, 
and D) the full connectome. Spatial structure of the different phase lags amongst brain regions is shown on the 
large-scale brain network.  

The results show that for higher frequencies and lower couplings, the heterogeneity of the 
full connectome prevents the spatial organization (intra-hemispheric synchronization in 
anti-phase, as observed in the time series of the order parameters, but also the static PLV 
value and phase lags). Thus, higher coupling is needed to compensate for the additional 
heterogeneity of the connectome, for achieving similar large-scale dynamics.  

The spatial structure of the networks defined by the different phase-lag of their links is 
also analysed (Figure 37). The [-π, π] range is divided in 8 equal bins and networks are 
constructed based on the binning of the phase lags of the links. This is performed across 
different frequencies and couplings for full connectome and the three approximations. 
Results show that the zero phase lags always correspond to local (intrahemisphere) links 
and they appear for all the networks at all the frequencies and couplings. The differences 
between the networks appear in the organization of the intrahemisphere links, which are 
usually around ±π, and depending on the parameters space could be more prominent 
either in the full connectome or in the simplest delta approximation. 

 

Discussion  

We have here provided a first theoretical framework, which allows treating the space-time 
structure of network couplings as a whole with regard to its effects upon network 
synchronization. By decomposing the spatial distribution of time delays into spatial 
patterns within the couplings’ space-time structure, we could analytically compute the 
synchronization characteristics of the network. This analysis was performed on idealized 
networks of phase oscillators with a connectivity structured by time-delays. We found that 
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oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters as a 
function of the delay structure and computed their stability boundaries analytically for 
different frequencies. These synchronization patterns can be controlled by rearranging the 
time delays in the network, while maintaining the connectivity identical. We thus clearly 
demonstrated that it is not just the connectivity that matters in oscillatory large-scale 
networks, as the brain, but time delays are of equal importance.  

 

List of publications. 

Petkoski S, Spiegler A, Prois T, Temprado JJ, Jirsa VK (2016) Delay-imposed structure on 
network dynamics of oscillators. Under review in Physical Review Letters 
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1.5 Visual Recognition 

Task T3.1.1 - Rafael Malach (WIS), Stanislas Dehaene (CEA), Clément Moutard (CEA) 

Introduction 

Mental representations and mental models of visual objects are thought to play an 
important role in visual cognition. Starting from a retinal projection, the visual system is 
thought to construct an invariant representation of objects that also enables simulation, 
anticipation or problem solving. Even though these properties can be multi-modal, their 
visual implementation – and notably visual imagery – has been thought to be particularly 
central to human abilities, and has focused interest as soon as the end of the 19th century. 
For instance, the sensory physiologist Hermann von Helmholtz stated in 1894: “equipped 
with the awareness of the physical form of an object, we can clearly imagine all of the 
perspective images which we may expect upon viewing from this or that side, and we are 
immediately disturbed when such an image does not correspond to our expectations” 
(translated in (Warren and Warren, 1968) pp 252). Thus, visual recognition implies the 
existence of an internal model capable of assembling together, in a coherent manner, the 
collection of the different possible views of an object. Furthermore, this object model 
must be capable of being dynamically manipulated in a purely mental manner, in the 
absence of any physical stimulation, for instance through mental rotation (Shepard and 
Metzler, 1971). Finally, it can be spontaneously recalled or evoked during spontaneous 
thoughts.  

While visual recognition is extensively investigated, the high-level representation of 
internal models of objects, detached from direct perception, is rarely studied. In the 
present task, therefore, we deliberately addressed this high-level of representation. First 
we reviewed what is currently known about the “ignition” of large-scale brain networks 
that supports conscious representation and mental manipulation during perception, recall, 
and spontaneous thought; and then collected new data sets on the links between 
perception and mental imagery (data set 1) and on the relations between brain activity 
during movie watching and spontaneous resting-state activity (data set 2). 

Review of the cortical architectures underlying spontaneous fluctuations and 
non-linear ignitions 

Clément Moutard, Stanislas Dehaene, Rafael Malach “Spontaneous Fluctuations and Non-
linear Ignitions: Two Dynamic Faces of Cortical Recurrent Loops”, Neuron, Volume 88, 
Issue 1, p194–206, 7 October 2015 

Abstract 

Recent human neurophysiological recordings have uncovered two fundamental modes of 
cerebral cortex activity with distinct dynamics: an active mode characterized by a rapid 
and sustained activity ("ignition"), and a spontaneous (resting state) mode, manifesting 
ultra-slow fluctuations of low amplitude. We propose that both dynamics reflect two faces 
of the same recurrent loop mechanism: an integration device that accumulates ongoing 
stochastic activity and, either spontaneously or in a task-driven manner, crosses a dynamic 
threshold and ignites, leading to content-specific awareness. The hypothesis can explain a 
rich set of behavioural and neuronal phenomena, such as the perceptual threshold, the 
high non-linearity of visual responses, the subliminal nature of spontaneous activity 
fluctuations, and the slow activity buildup anticipating spontaneous behaviour (e.g. 
readiness potential). Further elaborations of this unified scheme, such as a cascade of 
integrators with different ignition thresholds or multi-stable states, can account for 
additional complexities in the repertoire of human cortical dynamics.  
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Data set 1: MEEG recordings of the time course and manipulation of view-
specific and view-independent models of objects  

 

The present project aims at collecting detailed magneto-encephalograpy (MEG) data on 
predictive mental models and the brain dynamics associated to visual perception and 
visual imagery of spinning objects. Notably, the following key questions concerning mental 
models in the visual modality were addressed: can we identify two successive perceptual 
stages in the human brain, one view-specific and the other one view-independent? Can 
humans learn to attach a new view to an internal model of an object, and build a mental 
model binding these two levels? Can we follow the mental representation of an object 
through time, both during overt perception and during a purely mental manipulation 
exploiting visual imagery? And how are mental models used to predict the upcoming state 
of an object? 

 

Methods 

The experiment systematically recorded human MEG and EEG signals, respectively from 
306 and 60 sensors, while 20 participants were watching stimuli on a screen, following a 
sequence of different paradigms as described below. To include the interplay of both 
levels of mental representations, the stimuli were designed to provided different views of 
two objects (3D cartoons of a head and of a coffee-maker) both having their own view-
independent identity, and their respective view-specific poses corresponding to a rotation 
in depth (from 0° to 360°). Because faces (and to a lesser extent coffee machines) are 
common objects for humans, mental models for these two categories are probably already 
available, arising from previous learning of the statistical perceptual regularities of this 
category. In order to study the learning of a novel view of these objects, a non-natural 
texture was added on the back face of each object: a checkerboard behind the head, and 
a colorful wallpaper of flowers behind the coffee-maker (for half of the subjects; and the 
inverse texture-object association for the other half). Thus, subjects needed to discover 
and learn a complete model of each object: front and profile views conforming to 
everyday life, and a back view with an unusual pattern.  
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Figure 38: Experiment Design & Behavioural results 
A) Experimental design comprising three different experimental paradigms: (1) rapid serial visual presentation 
(RSVP) of the 4 views of the 2 objects; (2) Learning by visual exposure to the rotating objects; (3) prediction 
task where subjects maintain a mental image of the rotating object throughout an occlusion period. B) 
Accuracy over a 100-trials sliding window of one subject in the behavioural version of the prediction task across 
the 4 sessions. The subject performed well above chance (accuracy>75%). C) Fraction of responses that the 
post-occlusion figure was congruent with the pre-occlusion figure, as a function of occlusion duration (x-axis) 
and degree of angular deviation (angular difference between the correct view and the one that was 
presented). The responses are “tuned” around the correct view, indicating that subjects were able to generate 
an accurate prediction of the outcome of the occlusion period. Angular precision decreases only slightly with 
occlusion duration. 

The protocol was divided into 4 different phases. All the raw data (each phase, each 
subject) were acquired at Neurospin (CEA, Saclay – France) and can be found at 
http://sp3.s3.data.kit.edu/3_1_1/MEG_PredictiveVisualInternalModel/Raw/ accompanied 
by a text document named “readme.pdf” describing them. This data set is complete. The 
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first of the 4 phases, using a Rapid Serial Visual Presentation (RSVP) paradigm, aimed to 
provide detailed information about the perceptual stages of each view of each object. 
Eight images (the four cardinal views of both objects: front and back views, left and right 
profiles) were displayed for 100ms at a rate of 2.5Hz, each of them being repeated 60 
times in a random order. The RSVP block was presented before and after extensive 
learning of the object model, with the goal to evaluate whether the novel view was 
eventually integrated into the internal object model. To eliminate shape cues, which may 
have allowed subjects to determine the assignment of views to objects even prior to 
learning, the back view textures were presented in a disc instead of with the shape of the 
object (Figure 38A). 

The second phase consisted in four sequences of slow rotation in depth at 12 rpm: each of 
the two object spinned successively in both rotation directions (clockwise – cw, and 
counterclockwise – ccw) for 30 periods. This phase enabled the participant to become 
familiar with the stimuli, and notably to associate the unusual textured back views with 
the relevant objects and their other views. It also allowed us to collect data on the brain’s 
responses to a physically rotating object, and to ask whether we could decode the object 
identity and orientation. 

During the third phase, while the object was rotating, an occluder hid the object for a 
variable duration (1⁄4, 1⁄2, 3⁄4 or a full turn). The occlusion could only start and end on 
one of the 4 cardinal views of the objects (F1-F2-F3-F4-O1-…-O4). The participant was 
asked to pursue the rotation mentally with the same velocity. This phase therefore 
allowed us to probe the brain correlates of the mental model of a rotating object. Using 
multivariate decoders (L2-penalized logistic regression) trained for each object and also 
for each orientation, and applying generalization of decoding, we probe the presence of a 
shared internal model of objects during overt (physical) and covert (mental) rotation. 

After a few seconds, the screen dropped, revealing either the appropriate object or the 
wrong object, in either the appropriate rotation or the counter-rotation direction, and 
with either the appropriate angle or a different angle. The subject’s task was to press one 
of two buttons to distinguish congruent trials (in which the appropriate object appeared in 
the expected view and rotation direction) from incongruent ones (any other cases). Great 
care was taken to ensure that the numerous independent variables were balanced and 
crossed. Presenting objects with an incongruent view or identity provide a test of the 
predictive nature of the models on the two levels of representation (view-specific and 
view-independent). If the predictive coding hypothesis is correct, each of those 
mismatches should elicit error signals detectable via MEEG.  

Finally, the fourth phase was fully identical to the first RSVP phase. The only difference 
relied on the learning experience of the participant. If the subjects acquired a model of 
the objects in the previous phases, including the unusual textures associated with each 
object, the presentation of the texture within a disc would elicit the activation of the 
view-invariant representation coding for the object identity. Thus, this design enabled us 
to test the integration of a novel view to an internal model of objects. 

To obtain detailed psychophysical data, a behavioural version of the 3rd phase was also 
run outside of MEG. To improve the resolution of the psychometric measures, there were 
in this version 8 different occlusion durations (from 1/8 to a full turn) and the occluder 
could start and end on one of 8 different poses of the object (0°, 45°, 90°, 135°, …, 315°). 
Five subjects were tested during 4 sessions of 2.5 hours. Two subjects were rejected 
because they responded at chance level to the task of post-occlusion congruency 
determination. Figure 38B shows that subjects, when performing the task, were really able 
to mentally rotate the two objects. As depicted in Figure 38C, their accuracy was 
negatively correlated to the occlusion duration, and positively to the intensity of the 
incongruency (difference between the expected angle of view and the actual one). No 
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other factor was found. 

 

Results and Discussion 

The RSVP phases 1 (before learning) and 4 (after learning) with exactly the same stimuli 
enabled us to test if any association was made between textures and objects. Indeed, if it 
was the case, after learning the internal models, the textures should evoke the activation 
of the view-invariant information associated to an object (e.g. the checkerboard would 
elicit the face’s identity representation). Thus, two decoders of the identity of the objects 
based on their natural views (F1/F2/F4 versus O1/O2/O4) were trained for each phase, 
and tested on their ability to generalize to the novel views.  

 

Decoding of a static object: view-specific and view-invariant stages 

Figure 39 demonstrates the high decodability of the identity of the object in both phases 
(first column). These decoders were then applied to the back view (F3 vs. O3): according 
to the hypothesis, one should expect no information concerning the object’s identity 
before learning, but on the contrary its generalization from familiar to unusual views after 
learning. However, no such generalization was observed (Figure 39, second column).  

One possibility is that no view-invariant information is processed by the brain. The next 
analysis was designed to test the latter possibility. To probe the existence of view-
invariant content in the MEEG signal, four view-specific classifiers were built on the RSVP 
data to distinguish pair-wise poses of the two objects (e.g. F1 vs. O1). These pairs of view 
are correctly classified with a high accuracy as depicted in the matrices on the diagonal in 
Figure 40, and in the brown curves in the bottom row and in the right column. Each of 
these classifiers can also be applied to the other three pair-wise views to check the 
generalizability of the classification, and in which extent its nature is view-invariant. As 
shown in the matrices off the diagonal in Figure 40, the classifiers also generalized well to 
any other pairs of views, with the sole exception of the back view (in agreement with the 
above results, see above). While the peak of view-specific classification was reached 
around 85ms, the one associated to generalization – a.k.a. view-invariant – peaked around 
140ms. Such delay rule out the possibility that this may be explained by low-level features 
alone. Thus, the evidence indicates the presence of two successive stages, view specific 
and view invariant, corroborating the hypothesis formulated in the introduction. 
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Figure 39: Decoding the identity of objects and generalizing to unusual views 

Classification of the identity of the objects in the RSVP data set. Identity decoders were trained indistinctively 
on all objects’ familiar views acquired before the learning phase (first row, i.e. upper two matrices) and after 
the learning phase (second row). For each time point from -50ms before to +450ms after picture onset, a 
distinct classifier was trained (training time = y-axis in the generalization matrices). It was then tested on each 
time point to evaluate generalization across time (testing time = x-axis in the generalization matrices). For 
each pair of training time/testing time, the performance of the associated classifier is calculated with the Area 
Under the Curve (AUC), and is plotted in the generalization matrices. The diagonal of each matrix is shown in 
the lower row and in the right column. While identity is easily decoded on familiar views, both before and 
after learning, there was no generalization to the unusual view in either case.  
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Figure 40: From view-specific to view-independent representations 

Similarly to Figure 39, 16 generalization matrices are presented with their respective color-coded diagonals in 
the bottom row and right column. Each of the four rows corresponds to a pair-wise view-specific classifier (see 
pictures of the pairs of views), which is then applied to each of the same 4 pairs (four first columns). As shown 
by the matrices, classifiers do generalize from one familiar view to another familiar one, but there is no 
generalization to the unfamiliar one. The diagonal curves show a delay in generalization, with an earlier onset 
of the view-specific decoding (brown curve) compared to the view-invariant decoding (above chance non-
brown curves). 

 

Unfortunately, the data provide no evidence for learning of a novel view. Two possibilities 
may explain this negative result. First, the experiment in total lasted 2h30: maybe the 
neural encoding of new models need more time, and particularly to be consolidated during 
the sleep. However, other studies have shown that 1 hour is sufficient for a neuron to 
become sensitive to two different views and associate them (Li and DiCarlo, 2008). 
Another explanation is that the association is effective, but the related signal is too weak 
to be measured. 

 

Decoding of a rotating object 
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The previous analyses were based on the static stimuli of the RSVP. The following ones will 
focus on the dynamic manipulation of the objects, during either overt or mental rotation. 
Some classifiers were trained to decode either the view-independent identity of the 
objects during overt rotation, or one of their view-specific pair-wise poses for all the angle 
of views (from 0° to 360°). This procedure was replicated during the mental rotation. 
Despite a successful decoding of the view-specific information in the physical rotation, no 
generalization across views was observed. Coherently, the decoder of the view-invariant 
identity of the objects was very low. Furthermore, no decoders were able to decode 
neither the identity nor the specific views of the objects that were mentally rotated.  

 

 
Figure 41: Transient decoding of object identity just after the beginning and the end of 
the occlusion period 
A) Decoding object identity around the end of the occlusion period. Before the occluder disappears (left part 
of the curve), decoding remains at chance level, but the performance of the decoder rises suddenly and 
transiently upon reappearance of the object (end of the occlusion period). B) Decoding of object identity 
around the beginning of the occlusion period: again, decoding performance increases sharply with the 
transient, although in this case the object is not even present on screen. 

Remarkably, however, further analyses found that it was locally possible to decode the 
identity of the object at two special times: just after the occluder appearance (Figure 
41A) and just after its disappearance (Figure 41B). Furthermore, during the latter stage, 
we could also decode the congruity or incongruity of the view that appeared at the end of 
the occlusion period. This finding provides direct evidence that an internal model of the 
object was being sustained mentally throughout the occlusion period (in agreement with 
subjects’ reports) and that its occasional mismatch with the view that eventually appeared 
led to a measurable error signal 

 

Conclusion 
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This experiment led to mixed outcomes. On the negative side, in spite of major efforts, we 
could not detect any evidence of the acquisition of a novel view of an object, nor decode 
the mental model of a continuously rotating object, even when it was physically present 
on screen. However, we discovered that transient changes in this object could be 
decoded. Indeed, the entire data set is fully compatible with the idea that only transients 
(i.e. error or update signals) could be identified in MEG signals. It is particularly striking 
that view-independent information about object identity could not be identified in brain 
responses when the object was physically seen, but could be retrieved just after its 
occlusion, while the object was no longer present on the screen. 

Altogether, these results can be interpreted as follow: any unpredictable occurrence (such 
as a rapid flash of an image in the RSVP, or the appearance and disappearance of the 
occluder in the 3rd phase) evokes a highly decodable signal, which fits with a prediction 
error consistently with the frame of predictive-coding theory. However, any predictable 
view yields very little or no detectable brain activity, as the incoming signal is being 
entirely cancelled out by the prediction arising from the internal model. 

While the presence of error signals gave clear evidence of an internal model, we could not 
yet identify how this mental model was encoded in brain signals. Nevertheless, a cue is 
provided by a similar result in the literature: at the beginning of a sound, a transient 
neuronal activity is seen, but if the sound remains stationary, the neural activity returns 
back to baseline (deCharms and Merzenich, 1996). During the subsequent stationary 
period, only a change in the coherence of brain signals correlates with the perception of 
this continuing sound. By analogy, we speculate that oscillatory or synchrony mechanisms 
provide a potential candidate for the brain’s continuous and sustained representation of an 
internal model of objects. In the future, time-frequency analyses will be conducted to 
evaluate this intuition. Meanwhile, the present work (which will be submitted for 
publication in the next few months) provides a high-quality data set against which to test 
new hypotheses concerning the internal representation of visible and hidden objects. 
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Data set 2: The patterns of co-activation during natural sensory processing 
uncovered through resting state and naturalistic stimulation paradigms 

 
The work of the Malach group has focused on uncovering the fine details of visual cognitive 
architecture of the human brain using fMRI. The approach was based on the discovery that 
in the absence of stimulus or task, cortical networks spontaneously generate rich and 
consistent coherent patterns (also termed "functional connectivity"). While originally 
assumed to reflect large scale anatomical pathways, more recent studies revealed that 
these spontaneous (resting state) patterns show a highly detailed and intricate patterning 
also at the level of individual cortical areas and systems. In particular, previous research 
has demonstrated that in human retinotopic visual cortex, these spontaneous patterns are 
organized according to eccentricity lines rather than merely linking neighboring cortical 
sites. However, the underlying source of these intricate organizations has remained 
elusive. We and others have previously hypothesized that the fundamental process that 
shapes the organization of the spontaneous patterns is their habitual activation during the 
daily life of the individual. One prediction of this hypothesis is that the spontaneously 
emerging patterns should be more similar to patterns of co-activations produced by 
naturalistic stimuli that may better capture the natural statistic of such daily activations 
compared to more conventional laboratory-controlled stimuli. Here we tested this 
hypothesis by comparing resting state connectivity patterns to those induced by free 
viewing of naturalistic stimuli (a repeated  movie segment), as well as patterns produced 
by more standard retinotopic stimuli- such as expanding and contracting eccentricity rings, 
and rotating wedges , as well as patterns predicted by a simple anatomical distance 
measure. Our results show that the movie driven correlations showed a significantly higher 
similarity to the resting state patterns compared to either eccentricity or polar mapping 
stimuli. These results could not be accounted for by higher reliability of the movie driven 
responses. These results were duplicated when subjects engaged in an auditory beep 
detection task- arguing against intentional visual imagery of naturalistic stimuli as the 
underlying source of the spontaneous patterns. Our results demonstrate the power of 
understanding cognitive architectures through resting state connectivity – and extend this 
discovery to the domain of naturalistic stimuli- and hence illustrate that such cognitive 
architectures reflect ecological cognition. The results thus successfully fulfill the central 
aims of the proposed HBP project. The entire work has been published recently (Wilf et 
al., 2015).So below I presented a shorter summary, while full details can be obtained from 
the published manuscript.  

 

Methods 

The main experimental procedures employed are depicted in Figure 42. 

Our basic paradigm consisted of two resting state periods with eyes closed, and two 
repetitions of a naturalistic movie segment. In addition participants conducted an auditory 
beep detection task (Figure 42A). All participants also took part in an additional session for 
standard retinotopic mapping using two presentations of rotating wedge and expanding 
ring stimuli (Figure 42A).  
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Figure 42: Experimental design and methodological approach 

(A, left) The experiments in the main experimental session included resting state, auditory task and free 
viewing of a movie segment. Note that each condition had two repetitions, and the session always began with 
resting state. (A, right) In the retinotopic mapping session each visual condition was presented twice. These 
stimuli were used to define retinotopic visual areas for each participant (see methods).  The order of the two 
sessions was counterbalanced between participants. (B) In order to avoid non stimulus-driven effects in 
analyzing visually-induced conditions, an inter-run approach was used. Stimulus driven functional connectivity 
was calculated by taking the seed voxel from one movie repetition and correlating it with all the other voxels 
in the other movie repetition (see methods). (C) Schematic illustration of the sorting procedure of the 
correlation matrices according to the resting state correlations (see methods).   

 

Our results centered on quantifying the similarity between resting state patterns and the 
stimulus-driven patterns under all conditions (Figure 42).  Figure 43 depicts a summary 
histogram of the similarity between the connectivity patterns under the different 
conditions. The Y axis depicts how similar the stimulus-driven pair-wise correlation pattern 
in each condition was to the pair-wise correlation pattern during rest, separately for areas 
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V1 to V3. Two aspects can be discerned: First, all stimulus-driven visual correlations 
showed a significant similarity to the resting state pattern (smallest t(13) = 8.9;  p < 0.001 
for all conditions ; one-sample t-test, Bonferroni corrected). Second, the movie-driven 
correlation pattern showed a significantly higher similarity to the resting state pattern 
compared to all other visual conditions. Overall, this similarity was significantly higher in 
V1 compared to the other regions (repeated measures ANOVA showed F(2,26) = 5.04, p = 
0.02 for visual area; F(3,39) = 38, p = 0.000005 for condition; and no interaction; post-hoc 
tests show that the movie driven correlations were more similar to rest compared to all 
other conditions p < 0.0001). As a control, we computed a correlation matrix between 
resting state periods, assuming no consistent pattern should emerge. Indeed, this cross-
rest condition failed to show a significant similarity to the within-rest condition, in 
accordance with the spontaneous nature of the fluctuations in each of the resting state 
runs. These effects reveal the striking correlation between the connectivity architecture 
during naturalistic conditions and resting state.  

 

 
Figure 43: Naturalistic movie pattern shows significantly higher correlation to resting 
state pattern than other visual conditions.  
All visual conditions showed significant correlation to resting state, but the movie produced significantly higher 
correlations than all other visual conditions. Cross-resting state matrix failed to show a significant correlation 
to the within run resting state patterns.  Error bars denote standard error of the mean (±SEM); *p < 0.05  **p < 
0.000005.   

 

Discussion 

Our results constitute a successful fulfilling of the aims as outlined in the HBP project for 
our group- namely to uncover the cognitive architecture of visual representations under 
conscious perceptual states.  We have extended beyond these aims by demonstrating the 
tight link between such cognitive architecture and naturalistic, ecological vision.  This 
work has now been published (Wilf et al., 2015).  

More specifically, our findings show that the correlation patterns that emerge 
spontaneously in retinotopic visual cortex during resting state resemble those that are 
generated by naturalistic visual stimuli. The movie-driven patterns exhibited a significantly 
higher similarity to the spontaneous connectivity patterns compared to the patterns 
evoked by more conventional retinotopic mapping stimuli. Our study confirms and extends 
previous findings that support the notion that the resting state correlation patterns are not 
merely a reflection of large scale anatomical networks, but show additional intricate 
patterning at finer detail - i.e. within sensory systems and within individual visual areas as 
well. 

It is important to emphasize that the main focus of the present study was on the type of 
visual stimuli that may induce activations that best mimic the spontaneously emerging 
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patterns. The space of such possible stimuli is obviously enormous and impossible to 
exhaust. We therefore opted to compare specifically three types of stimuli - two types 
that are commonly used in retinotopic mapping experiments (eccentricity rings and polar 
wedges) and one that was aimed to simulate naturalistic vision.  We also compared the 
movie driven patterns to four putative organizational principles, in which the patterns 
followed eccentricity, polar, retinotopic location, surface distance and volume distance.  
In all these comparisons, the cross-movie correlations proved to be significantly more 
correlated to the resting state patterns.   

However, we acknowledge that we cannot rule out the possibility that additional stimuli of 
different kinds may produce patterns of activations that will show yet higher similarity to 
the spontaneous connectivity patterns.  Nevertheless, even within this rather limited range 
of principles, our results are robust and informative as we discuss below. 

This result is significant in offering a potential solution to the more general problem of 
using the uncontrolled resting state paradigm. Thus, our results demonstrate that it is 
possible to employ controlled tasks even when examining spontaneous "resting state" 
connectivity patterns, as long as the networks under study are not driven by the task. 

Thus, our results show that the naturalistic, free viewing conditions indeed induced visual 
activation patterns that were closely reflected in the patterns that emerged spontaneously 
in retinotopic visual areas, both during rest and during the auditory task.  This is 
particularly remarkable because, the naturalistic paradigm, lacking eye movement controls 
and specific tasks, substantially degraded the reliability of the movie-induced patterns. It 
is likely that under more reproducible conditions, such as repeating the movie several 
times (at long intervals), the correlations between the spontaneous and movie-driven 
patterns could become even higher. Thus, our results clearly demonstrate that the 
spontaneous, stimulus free patterns, while showing significant similarity to co-activations 
driven by conventional visual stimuli such as eccentricity and polar mapping, nevertheless 
contained  

The observed reflection of naturalistic movie patterns in the spontaneous connectivity 
patterns is nicely compatible with our proposed hypothesis (Harmelech and Malach 2013), 
that an important factor that shapes the resting state patterns is a Hebbian-like 
strengthening of functional connectivity, induced by habitual co-activations of cortical 
networks during daily life. Such co-activations presumably lead to synaptic changes that 
later modulate the correlation patterns appearing spontaneously during rest. Compatible 
with this suggestion, animal studies have shown that the similarity between naturalistic 
stimulation and spontaneous activity increases with development, while the similarity 
between non-naturalistic (moving grating) visual stimuli and spontaneous activity does not 
(Berkes et al. 2011). Here we propose that habitual visual experience plays a role in 
shaping cortical connectivity during adult life as well.  

While our results are compatible with the notion that the spontaneous connectivity 
patterns capture aspects of naturalistic vision, this does not rule out the possibility that 
important aspects of the spontaneous connectivity patterns are guided by intrinsic factors 
that are not necessarily experience dependent. 

Because of the rich, multi-scale and diverse nature of naturalistic stimuli, it is extremely 
difficult to uncover the full set of organization principles and statistical tendencies that 
characterize them. Hence it is difficult to point out what aspect of the activations 
endowed the movie-driven patterns with their higher similarity to the spontaneous 
connectivity patterns compared, to, for example, the eccentricity-driven correlations.  
Future studies, moving gradually from highly controlled, schematic stimuli such as the 
eccentricity rings to more naturalistic stimuli could help in answering this question.  
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Finally, it is important to caution, that although our study shows a highly significant 
correlation between movie-driven patterns and the spontaneously emerging ones, this 
correlation does not prove causation. At this point, we cannot rule out the possibility that 
the movie stimuli simply activated a complex of intrinsically connected structures that also 
appear in the spontaneous fluctuations. Examining individuals that engage in drastically 
different visual environments in their daily life may provide important clues to this 
question. Thus, studying individuals with retinal abnormalities, those that work in artificial 
lighting conditions or are exposed to long periods of outdoor, peripheral visual stimuli, 
could further test the notion that the environment shapes the patterns of correlations that 
emerge spontaneously in the absence of visual stimulation. To conclude, our results show a 
new complete study demonstrating a new link between resting state activity and 
naturalistic cognitive architecture.  These results accomplish the set goal of the part of 
our research supported by HBP. The data has so far not been used by others.   

 

A Dataset Card Information has been completed (see DIC Task T3.1.1 “Architecture of 
functional visual cognitive networks of the human brain”). 

Data Provenance and Location 

All data were acquired by Meytal Wilf and Francesca Strappini at the Weizmann Institute 
Human brain Imaging center. Stimuli and Data are available at the Weizmann Institute of 
Science, Department of Neurobiology, Rehovot, Israel. 

Publication 

The data has been published in Cerebral Cortex: 
Wilf M, Strappini F, Golan T, Hahamy A, Harel M, Malach R. “Spontaneously Emerging 
Patterns in Human Visual Cortex Reflect Responses to Naturalistic Sensory Stimuli.” Cereb 
Cortex. 2015 Nov 15. pii: bhv275) 
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1.6 Circuits linking perceptions to actions  

Task T3.1.2 - Martin Giese (EKUT) 

 

Review of the cognitive architecture for action processing 

Martin A. Giese, Giacomo Rizzolatti “Neural and Computational Mechanisms of Action 
Processing: Interaction between Visual and Motor Representations”, Neuron, Volume 88, 
Issue 1, p167–180, 7 October 2015 

Abstract 

Action recognition has received an enormous interest in the field of neuroscience over the 
last two decades, with a strong impact also in many other disciplines such as philosophy 
and robotics. In spite of this interest and impressive numbers of publications on this topic, 
the knowledge in terms of fundamental neural mechanisms that provide constraints for 
underlying computations remains rather limited. This fact stands in contrast with a wide 
variety of speculative theories about how action recognition might work, and how it might 
interact with other cognitive brain functions. This review focuses on new fundamental 
electrophysiological results in monkeys, which provide constraints for the detailed 
underlying computations, where we focus particularly on mirror mechanisms and 
interactions between visual and motor processing. In addition, we review models for action 
recognition with concrete mathematical implementations, as opposed to purely conceptual 
models. We think that only such implemented models can be meaningfully linked 
quantitatively to physiological data and have a potential to narrow down the many possible 
computational explanations for action recognition. In addition, only concrete 
implementations allow to judge whether postulated computational solutions are feasible 
and can be implemented with real cortical neurons.  

 

  

http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
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Data set: Benchmark data set constraining computational mechanisms for the 
recognition of goal-directed hand actions 

We provide two data sets that have been essential for the development of a quantitative 
neural model for the recognition of goal-directed actions (Fleischer et al., 2012, 2013), 
and for our newest modelling work that links perceptual and motor representations of 
actions (Christensen et al., 2011). Data from monkeys will not be provided since the HBP 
decided not to support research on monkeys in the Ramp-Up Phase. As consequence, 
primate researchers in Tübingen decided not to provide any data. Data on imaging and 
MEG were never promised by the task leader (M. Giese). We deny any responsibility for 
these claims in the work program, nor do we have access to such data sets. 

The provided data contains the following parts: a) psychophysical data from a study by 
(Christensen et al., 2011), testing the influence of time delays and spatial transformations 
between concurrent execution and visual feedback for actions on the visual detection 
performance for action stimuli. The data set contains data from three experiments, 
varying the delay and the spatial congruence of the visual feedback, and one control 
experiment where the correspondence between the observed and the executing arm in 
terms of the body side (right or left) was varied. Data are provided as Excel spreadsheet. 
b) Psychophysical data from an experiment (Fleischer et al., 2012) that compared 
naturalistic hand actions and causality stimuli consisting of moving discs. Both stimulus 
classes were parametrically modified in ways that reduce the perceived impression auf 
causality (adding shifts, rotations, delays, and pause intervals to the motion of the hand). 
Subjects reported the perceived causality impression and the naturalness of the stimuli on 
Likert scales. Data are provided as Excel spreadsheet. c) For the testing of computational 
vision and neural models we also provide a stimulus set form this experiment as videos. 
Shown actions are pushing and grasping, with different amounts of the manipulations for 
destroying causality that were described above.  

 

Neural models for the recognition of goal-directed actions and its interactions 
with motor representations 

The available funding in the HBP (equivalent to 1/2 PhD student) did not allow us to 
embed or adapt large-scale models for HBP simulation frameworks. Instead, we decided to 
focus on a small number of innovative theoretical problems that could be treated with the 
small available manpower. In addition, we focused on linking a simplified model for the 
coupling between perceptual and motor representations of actions with HBP tools for the 
simulation of large-scale spiking networks. This simplified model is made available as part 
of the HBP data sharing initiative. Until the end of the Ramp-Up Phase, we plan to extend 
this core model by a visual pathway that works on real images and an output stage that 
simulates full-body motor output. These additional stages will not be integrated in the HBP 
framework since the available manpower is not sufficient for the realization of the 
relevant interfacing work, and because EKUT is going to leave the HBP after the Ramp-Up 
Phase.  

The work described in this Deliverable consists of three parts: a) extension of an existing 
model for action recognition for the treatment of multi-stability and the perception of 
different stimulus views, and development of new theoretical methods for its analysis; b) 
extension of existing model by a new pathway for the processing of depth cues derived 
from shading, and related psychophysical experiments; c) development of a new 
neurodynamical model with spiking neurons that captures interactions between visual and 
motor representations of body movements, and implementation in NEST simulator 
framework. The following gives a short description of these three parts. 
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Neurodynamical model for multistability and the perceptual organization effects 
including multiple views in action recognition 

This work focused on the neural dynamics that underlies the representations of multiple 
views of actions and the temporal integration of visual information of action stimuli. 
Extending previous models (Fleischer et al., 2013; Giese and Poggio, 2003), we extended 
the core circuits, which represents temporal sequences of perceived body postures as 
travelling activity peak in a one-dimensional neural field, consisting of shape-selective 
snapshot neurons by extending it to a two-dimensional neural field whose dimensions 
encode the stimulus frame within the movie and the stimulus view. By devising an 
appropriate lateral interaction kernel we were able with this model the psychophysically 
observed multi-stability of action stimuli without depth cues (Vanrie et al., 2004), where 
perceptual switching occurs between different perceived stimulus views. In addition, the 
model contains adaptation processes whose parameters were fitted in detail to adaptation 
experiments in area IT since corresponding data from action selective neurons is largely 
absent. A simple version of this model was presented in (Giese, 2014). The actual version 
that reproduces multi-stability and adaptation effects of action perception, exploiting 
mechanisms that are also reproducing details of the much better studied adaptation 
effects in area IT, is defined by the following equation system:  

 

 
 

This model for the mean-field dynamics of body-shape selective neurons in action-selective 
cortical areas (e.g., the STS or area F5 in monkeys) contains stochastic fluctuations, two 
different adaptation processes (firing rate fatigue (FF) and input fatigue (IF)) in order to 
account for details of the relationship between adaptation and selectivity of neurons 
derived from data in area IT (De Baene and Vogels, 2010), and spike rate (SR) adaptation, 
accounting for he observed signal shape of real cortical neurons. The parameters of this 
model were carefully fitted to data sets from area IT (assuming that the underlying 
adaptation processes are similar the ones in action-selective areas) and to data from area 
F5 in premotor cortex. The model accounts with one parameter set for a variety of 
phenomena observed in electrophysiological experiments: (i) perceptual switching 
between different stimulus views for action stimuli without depth cues; (ii) size and time 
course of high-level adaptation effects in shape recognition, including subtle dependencies 
between stimulus selectivity and adaptation size which necessitate the assumption of a 
contribution of input fatigue (De Baene and Vogels, 2010); (iii) the result that action-
selective neurons in area F5 show only very weak or even no adaptation effects for single 
stimulus repetitions (Caggiano et al., 2013; Kilner and Lemon, 2013).(iv)The model 
predicts a new stimulus type that should result in strongly increased adaptation effects in 
such action representations. (See (Giese, 2014) for further details.)  
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Figure 44: Modeling of the neurodynamics of action perception 

A) Ambiguous silhouette stimulus that can be disambiguated by shading cues. B) Perceptual switching 
reproduced by the neurodynamic model (output activity of two neurons encoding the different views). 
C) Simulated adaptation effects for action-selective neurons for a normal action stimulus that is repeated 
once, and for a new type of adaptation stimulus that (according to the model) should, lead to much stronger 
adaptation effect.  

 

The developed new two-dimensional sequence selective neural field shows a special form 
of multi-stability that leads to switching between two alternative travelling pulse 
solutions. We have exploited a new approach to analyse the dynamics of two-dimensional 
neural field using a level-set approach to analyse this multistable solution (Coombes et al., 
2012). This analysis is based on a simplified version of the model above without adaptation 
and random noise processes. The key idea is a multi-dimensional extension of a method 
(Amari, 1977) that characterizes the dynamics of localized solutions by their behaviour on 
the boundary points of the excited region (i.e. the region in the field where neurons are 
activated). It can be shown that for the two-dimensional case on the boundary contour of 
the excited region r(σ) (where 0 ≤ σ ≤1) the neural activity of the field )),(( tu σr and its 
gradient )),(( tσrz fulfil the differential equation system:  

   
 

In this equation the vector field F fulfils the differential equation )()( div rrF sw= , where 

)(rsw specifies the lateral interaction kernel of the neural field for a coordinate system 
that moves with the traveling solution. By linearization a stability condition can be derived 
from the last two equations. To our knowledge, this is the first time that such a localized 
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traveling solution has been analysed within an analytical framework for such two-
dimensional field with a relatively general form of the lateral interaction kernel, which in 
our case needs to fulfil constraints derived from the experimental data, so that not just a 
mathematically convenient form can be chosen that simplifies analysis. (A manuscript 
about this work is in preparation; see (Giese et al., 2015a, 2015b) for conference 
presentations.) 

 

Model for new pathway that accounts for the influence of shading cues on action 
perception  

Shading provides relevant depth cues that influence the 3D perception of human bodies. A 
known phenomenon in the perception of surfaces is its dependence of light-source 
direction, and a set of studies has demonstrated that the human visual system embeds a 
‘lighting-from-above prior’ which, in absence of other cues, results in interpretations of 
shapes that are compatible with illumination from above (D. Brewster, 1847; 
Ramachandran, 1988). We have discovered a new visual illusion that demonstrates the 
efficiency of such lighting-from-above priors also in body motion perception. We have 
developed a new type of body motion stimulus, which is a biological motion stimulus that 
consists of volumetric elements that can be illuminated from different directions (insets 
Figure 45A). Consistent with the multi-stability with respect to the perceived view of 
actions discussed in a), this stimulus without illumination cues results in a bistable percept 
where the walker is alternately perceive as walking away from the observer into the image 
plain, or as walking straight towards the observer. An addition of shading cues 
disambiguates this stimulus. We found that if the stimulus shown in Figure 44A, if 
illuminated from above, always is perceived with the physically correct veridical walking 
direction. Changing the light-source direction to lighting from below, however, the walking 
direction is misperceived as rotated by 180 deg. Lighting from below thus flips the 
perceived walking direction. Figure 44A shows the accuracy (percent correct 
classifications) of walking direction as a function of the direction of illumination, which 
was varied systematically. Further experiments investigated the critical features that drive 
this perceptual reversal effect, showing that particularly the shading patterns of the thighs 
and the lower arms are critical. This experiment proves the relevance of internal shading 
cues, beyond the external silhouette of the body, for the perception of body motion.  

We have extended an existing mean-field models for body motion perception (Giese and 
Poggio, 2003) in order to account for this illusion. Detailed simulation experiments show 
that the original model, which contains a form pathway that is mainly responding to the 
outer contours of body stimuli, was not sufficient to account for this influence of the light-
source direction. This made the development of a new shading pathway necessary which 
processes the internal luminance gradients within individual body parts in order to extract 
3D shape cues that are helpful for deriving of the walking direction. The neural model for 
the new postulated pathway is sketched in Figure 45B. It exploits only physiologically 
plausible computational steps and consists of a hierarchy of filters (deep network). The 
first level is formed by a layer of simple cells (Gabor filters) that extract contour as well as 
internal luminance gradients. By a special nonlinear pooling operation a representation of 
the boundary contours of the body is derived from these cell responses. This contour 
representation is then used to suppress the influence of the strong luminance gradients on 
the boundary in the shading pathway by a gating mechanism (since otherwise the 
pathway’s response would be entirely dominated by the luminance edges along the 
boundary contours of the silhouette). Using the responses of the uneven Gabor filters, a 
neural population representation of the internal luminance gradients of the moving body is 
constructed. The resulting filter responses are pooled over neighboring spatial positions in 
order to make the representation partially position invariant. We apply a feature selection 
algorithm to the resulting invariant feature vectors, selecting a subset of inputs for radial 
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basis function units that are trained with the shading patterns of individual keyframes 
(‘snapshots’) from training action movies with illumination from above. The highest level 
of the model is given by a recognition layer with neurons that respond either to walking 
towards or away from the observer.  

The model reproduces the correctly the disambiguation of perceived walking direction if 
shading cues are present. The model, if trained with stimuli with illumination from above, 
correctly predicts the perceived walking direction for test stimuli with illumination from 
above (Figure 45C, upper panel). For testing with walking towards the observer the output 
neuron in the recognition layer for walking towards (the observer) is much more strongly 
activated than the one for walking away. If the model is tested with the same stimulus 
illuminate from below, consistent with the psychophysical results, the perceived walking 
direction flips, and the walking away neuron is more activated than the walking towards 
neuron. A detailed analysis of the relevant luminance gradient features allows to 
understand why this illusion occurs: The gradient features for illumination from above 
resemble the features for illumination from below for the opposite walking direction. The 
model also reproduces the results from the experiment investigating the critical feature 
that drive the visual illusion. Two articles about this work are in writing, and we are 
presently integrating the new shading pathway in the existing classical architecture (Giese 
and Poggio, 2003). Poster presentations see, e.g., (Fedorov, 2014; Fedorov and Giese, 
2015). 

 
Figure 45: Visual illusion demonstrating lighting-from-above prior in body motion 
perception and shading pathway for an action recognition model 
A) New biological motions stimulus with shaded elements and psychophysical results from a study that 
investigated the perceived locomotion direction for a walker walking away from the observer in dependence on 
the light-source direction. Changing the light source from above (180 deg) to below (0 deg) flips the perceived 
walking direction to walking towards the observer (Accuracy: percent correct direction judgements). B) Model 
of a new visual pathway for the processing of internal luminance gradients. It consists of a hierarchy of neural 
detectors, realizing invariance to position by nonlinear pooling. The highest level contains neurons that signal 
walking towards or away from the observer. C) Simulation result reproducing the illusion. After training with 
stimuli with illumination from above, the output neurons signaling walking away are more strongly activated by 
a walking away stimulus than the towards neurons. Testing with the same walking stimulus illuminated from 
below flips the monotonic order of the output activations, predicting a percept of walking in the opposite 
direction.  
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Spiking neuron model for a key circuit linking visual and motor representation of 
actions  

It is well established that visual and motor representations of actions are tightly coupled 
and potentially even overlapping (Prinz, 1997; Rizzolatti and Luppino, 2001). We have 
started to develop a quantitative modelling framework for the neural substrate of such 
interactions within the HBP simulation framework, using the programming package NEST in 
collaboration with SPs4 and 5 (M. Diesmann and S. Grün). In addition, we have extended 
experiments that provide data in humans about the influence of motor execution on the 
visual processing of action stimuli. The data from one key experiment, which investigates 
the influence of time delays between motor execution and visual input on the detection of 
action patterns, has been simulated qualitatively in this new neural modelling framework. 
The efficient implementation of the underlying spiking architecture within the NEST 
framework is still ongoing, and it is not yet entirely clear if the existing components of this 
framework permit an optimal implementation of our architecture. Further work in terms 
possible necessary extensions of the NEST framework are planned. The existing 
implementations of the model have been provided as part of the HBP model data basis.  

The testing of the developed new neural model is based on psychophysical data from an 
experiment that tested the influence of concurrent motor activity on the detection of 
point-like stimuli in noise (Christensen et al., 2011). Using a Virtual Reality (VR) setup, 
participants had to detect a point-light arm in background noise. The movement of the 
arm was controlled by the subject’s own arm movement, which was online motion-
captured (Figure 46A). The experiment compared the detection thresholds (in terms of the 
number of tolerable noise dots) for different conditions that introduced time delays 
between the movement of the observed arm and the real movement of the participant. In 
addition, the detection performance without concurrent motor behaviour was tested. 
Figure 46B shows the results from the experiment, indicating that compared to visual 
detection without concurrent motor behaviour, a high level of synchrony between motor 
behaviour and visual stimulus (delay smaller than 300 ms) results in a reduction of the 
detection threshold while longer time delays, inducing an asynchrony between observed 
and executed motor behaviour result in an increase of the detection threshold. This 
dependence of visual detection performance on motor behaviour can be explained by a 
coupling between visual and motor representations of actions. In more recent work we 
were able to show a differential involvement of different cerebellar regions in this 
sensorimotor coupling (Christensen et al., 2014).  

As basis for the modelling of such couplings between visual and motor representations in 
the context of our previous physiologically-inspired models, and as basis for a model which 
later can be compared to electrophysiological data in monkeys that are presently being 
prepared at EKUT, we developed a spiking neuron model. This model combines a dynamic 
neural representation of visually observed actions, consistent with our earlier models 
(Fleischer et al., 2013), with a dynamic neural representation of motor programs e.g. 
(Cisek and Kalaska, 2010; Erlhagen and Schoner, 2002). The architecture of the model is 
based on a neural mass / field model that was implemented by a careful approximation of 
a mean-field model by spiking networks using biophysically realistic models for single 
neurons. As model for individual neurons we used an exponential integrate-and-fire model, 
which was shown before to provide best approximation quality for a benchmark 
competition, where data from cortical neurons were modelled using different neuron 
models (Jolivet et al., 2008). The basic unit for the development of the neural mass model 
are elementary ensembles, consisting of 80 excitatory neurons and 20 inhibitory neurons 
that are connected randomly, controlling the average connection strength within and 
between the excitatory and inhibitory populations (Figure 46C). The behaviour of such an 
ensemble if stimulated with medium input current is illustrated in the right panel of Figure 
46C. Many (30) such ensembles are then integrated in a larger network that approximates 
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a neural field with asymmetric lateral interaction kernel. The kernel determines the 
average connection strength between the different ensembles dependent on their location 
within the field (Figure 46D). The form of this lateral interaction kernel and its 
relationship to the dynamic behaviour of the field has been extensively studied in the 
mean field limit, where we exploited specifically work on the realization of stimulus-
locked traveling pulse solutions in such distributed networks (Xie and Giese, 2002). By 
extensive simulations, we established that this fully spiking architecture behaves very 
similar to an Amari type of neural field (by realizing different architectures implementing 
memory, winner takes all selection, and traveling pulse solutions). For the model we used 
an interaction kernel that stabilizes a travelling pulse solution, which either is self-
stabilizing, or is induced by a travelling external stimulus (for the vision representation). 
Two fields of this type were then integrated within an architecture that realizes coupled 
distributed representations of visual and motor patterns (Figure 46E). In the visual field 
the travelling peak solution follows a travelling input peak that is derived from the visual 
stimulus information (Giese and Poggio, 2003). In the motor field the travelling solution is 
induced by a go signals that injects local activity in the field that initiates a self-stabilized 
autonomously travelling solution. The travelling speeds of both solutions are adjusted in a 
way so that in the normal case, where the visual input and the motor behaviour are in 
synchrony, both solutions travel with the same speed. Both fields are reciprocally coupled 
by interaction kernels that result in a mutual excitation of the fields if the travelling 
solutions are at the same position along the field, and which induce inhibition if the peak 
positions strongly differ. As consequence, the motor representation enhances the activity 
in the visual field when the motor peak propagates with the same speed and phase as the 
observed visual input.  

This simplified model reproduces the results from the experiment described above, as 
shown in Figure 46F. Compared to baseline (without concurrent motor execution, i.e. 
without activity in the motor field) higher activity emerges in the visual field when the 
visual input is synchronous with the motor execution (‘synchronous’). However, when the 
visual input follows the motor execution with a strong delay (560 ms; condition 
‘asynchronous’) the activity in the visual field is substantially reduced.  (All differences are 
significant according to t tests with p < 0.05). The model reproduces thus the basic 
phenomenology of the experiment by (Christensen et al., 2011). 

Ongoing work focuses on the following problems: (i) We have started to implement this 
core model using the HBP simulation software NEST, which is developed as part of the 
work in SPs 4 and 5. This step was realized in close collaboration with M. Diesmann and S. 
Grün (Forschungzentrum Jülich) who are members of SP4 and SP5. Meanwhile, individual 
neuron ensembles have been successfully implemented. However, the software does not 
optimally support structured connections as required for neural field models, and we are 
collaborating on efficient ways to implement such networks with speed advantages 
compared to standard tools like MATLAB. (ii) The demonstrated result is only the first 
proof of concept for the architecture. We plan to simulate many other experiments and 
also fMRI results on perception-action coupling with this architecture. In addition, the 
physiology group in Tübingen will start in the near future recordings that will allow the 
verification of aspects of the proposed architecture in comparison with single-cell data in 
monkeys. (iii) Until the end of the Ramp-Up Phase of the HBP we plan to extend the model 
by a back-end that simulates motor behaviour on a human avatar, and by a front-end that 
is part of an architecture that we developed previously, and which realizes the recognition 
of actions from real images and videos (Fleischer et al., 2013). 
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Figure 46: Experiment and spiking neuron model for the interaction between 
perceptual and motor representations of actions. 
A) Experiment investigating the influence of the temporal congruency between motor execution and visual 
stimulation on the detection of a point-light arm in dynamical noise dots. The stimulus is generated using a VR 
setup by online motion-capture of the participant’s arm movement. B) Main result showing Recognition Index 
(detection performance relative to baseline without concurrent motor execution) as function of the time delay 
between visual stimulus and motor execution. C) Ensemble model and generated spike trains consisting of 100 
adaptive exponential integrate and fire units. (We could demonstrate similar performance for implementations 
in MATLAB and NEST environment.) D) Neural field / mass model consisting of 30 coupled ensembles that are 
mutually coupled by an interaction kernel w(x,x’). E) Architecture consisting of two coupled neural fields, 
modeling visual and motor representations of actions. The visual field is driven by stimulus activity from body-
shape selective neurons. The motor field stabilizes a traveling solution that is initiated by a transient local 
activity that represents a go signal. Coupling between the fields is mediated by interaction kernels that are 
adjusted for the modeling of psychophysical data. F) Reproduction of the basic result from the experiment in 
A. Compared to the condition with silent motor field (’Baseline’), small time delays between visual stimulus 
and motor execution (’Synchronous’) lead to higher activation in the visual representation. In contrast, a 
strongly delayed activity in the motor representation (‘Asynchronous’) reduces the amplitude of the traveling 
solution in the visual representation, and by this the detectability of the visual stimulus.  

 

Data Provenance 

The stimulus data basis is available in Tübingen. 

The data available to identify key mechanisms for action recognition are available from 
our own experiments. Electrophysiological data to narrow down mechanisms for the 
interaction between action execution and recognition are being produced outside the HBP 
in our own experiments in Tübingen. A proposal to acquire conclusive physiological data 
about such mechanisms within the HBP SP3 in the future was rejected. Psychophysical data 
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and neuropsychological that helps to narrow down spatio-temporal tuning of perception-
action coupling was provided from our own psychophysical experiments and is partly 
captured by the developed model. Extension of the model using more data from the 
literature is in progress and will be continued after leaving SP3. 

 

A Dataset Information Card has been completed (see DIC Task T3.1.2 “Perception Action”). 

The data were deposited on a server: http://sp3.s3.data.kit.edu/3.1.2/ 

  

http://sp3.s3.data.kit.edu/3.1.2/


 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 114 / 
281 

 

1.7 Body Perception and the sense of Self  

Task T3.1.3 - Olaf Blanke (EPFL), Nathan Faivre (EPFL), Mel Slater (UB) 

 

Review of the cognitive architecture for bodily self-consciousness 

Olaf Blanke, Mel Slater, Andrea Serino “Behavioral, Neural, and Computational Principles 
of Bodily Self-Consciousness” Neuron, Volume 88, Issue 1, p145–166, 7 October 2015 

Abstract 

Recent work in human cognitive neuroscience has linked self-consciousness to the 
processing of multisensory bodily signals (bodily self-consciousness, BSC) in fronto-parietal 
cortex and more posterior temporo-parietal regions. We highlight the behavioral, 
neurophysiological, neuroimaging, and computational laws that subtend BSC in humans and 
non-human primates. This includes body-centered perception (hand, face, trunk), based on 
the integration of proprioceptive, vestibular, and visual bodily inputs, spatio-temporal 
mechanisms, and the importance of signal integration within peripersonal space (PPS). We 
develop four major constraints of BSC (proprioception, body-related visual information, 
PPS, embodiment) and argue that the fronto-parietal and temporo-parietal processing of 
trunk-centered multisensory signals in PPS is of particular relevance for theoretical models 
and simulations of BSC and eventually of self-consciousness.  

 

  



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 115 / 
281 

 

Data set: Multisensory mechanisms in temporo-parietal cortex support self-
location and first-person perspective 

The main goal for this task is to delineate the brain regions associated with the building 
blocks of bodily self-consciousness, namely self-identification (“owning my body”), self-
location (‘‘Where am I in space?’’), and the first-person perspective (‘‘From where do I 
perceive the world?’’) (Blanke, 2012). We relied on the full-body illusion (FBI), in which 
participants feel tactile stimulations on their back, while seeing this stimulation displayed 
on the back of their own body (a ‘virtual body’) seen from a third-person perspective 
(Lenggenhager et al., 2007). In synchronous visuo-tactile stroking conditions, participants 
typically self-identify more with the seen virtual body, judge their positions as closer to it, 
and feel the tactile stimulus as coming from it. We used fMRI coupled with robotics in 
order to measure changes of BOLD signal associated with the FBI. Participants saw a virtual 
rod moving vertically along the midline of the virtual body's back. A custom-made robotic 
device generated the same movement profile on the participant's back, either 
synchronously or asynchronously with the virtual rod (respectively inducing synchronous vs. 
asynchronous visuotactile stroking). An ultrasonic motor placed at the level of the feet 
actuated the stimulation sphere over a rack-and-pinion mechanism. Motion was 
transmitted over a guided fiberglass rod, which held the stimulation sphere over a 
compliant blade in order to follow the participant’s back with constant pressure. In a 
control condition, the virtual body was replaced by an object, for which no full-body 
illusion is expected to occur. Therefore, analyses was performed according to a 2 x 2 
factorial design, with Object (body; object) and Stroking (synchronous; asynchronous) as 
main factors.  

Differences of activity in synchronous vs asynchronous stroking for body vs. object were 
found in bilateral temporo-parietal junctions (parietal operculum), right middle-inferior 
temporal cortex (including the extrastriate body area). In addition, we found an increase 
of functional connectivity between the bilateral TPJ and the supplementary motor area, 
ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex (Ionta et 
al., 2011, 2014). The raw and analysed data from the publication by (Ionta et al., 2011) 
can be found on our lab server (restricted access), along with Matlab scripts used to 
perform automatic anatomical characterisation of the activation cluster from (Ionta et al., 
2011) and the outcoming results.  

In addition to this functional analysis, we performed an anatomical classification of the 
right and left temporo-parietal junctions (rTPJ and lTPJ). Based on cytoarchitectonically 
defined regions of the human parietal operculum (OP; (Eickhoff et al., 2006)) and of the 
inferior parietal cortex (IPC; (Caspers et al., 2006)), the rTPJ cluster overlapped with 
regions of the OP (OP1: 25.8%) and of the IPC (PFcm: 36.0%, PFop: 16.7%, PF: 8.8%), 
whereas the rest of the activity was predominantly located on the posterior end of the 
superior temporal gyrus (pSTG). The lTPJ overlapped with the OP (OP1: 25.8%) and the IPC 
(PFcm: 21.2%, PFop: 11.9%, PF: 9.6%), again with the rest of the activity in pSTG. OP1, 
which is presumably the human analogue of area S2 in non-human primates (Eickhoff et 
al., 2010), is considered to be a “perceptive” area strongly interconnected with the IPC 
and potentially associated with some of the more complex functions of the OP, such as 
perceptual learning, tactile working memory and stimulus discrimination. The IPC, on the 
other hand, is known to integrate basic modalities (somatosensory, visual and auditory) but 
has also been involved in higher order cognition (e.g. (Silani et al., 2013)). These results 
were presented at the 2015 HBP summit in Madrid by Nathan Faivre. 

Effort is still ongoing to collect and integrate anatomical and functional connectivity data 
from human and non-human primates to refine our knowledge about the functions of these 
regions and their contributions to the construction of a coherent image of the ‘self’. The 
data used for these analyses comes from an fMRI study conducted on 22 healthy 
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participants at the 3T scanner at the University Hospital Center of the canton de Vaud 
(CHUV), Lausanne, Switzerland. The aim of the study was to assess the neural correlates 
related fundamental aspects of bodily self-consciousness, namely the subjective self-
location in space, the direction of the first-person perspective and self-identification, 
using a bodily illusion (full-body illusion) relying on multisensory conflicts. The results of 
this study were published in the Journal Neuron in 2011, along with lesion data from 
neurological patients suffering from out-of-body experiences. The aim here was to better 
characterise activation clusters from (Ionta et al., 2011) in terms of brain 
cytoarchitecture, to be able to refer more specifically to both human and primate 
scientific literature to find which types of stimuli/experimental paradigms also engage 
these regions (region-of-interest analysis). The ultimate goal was to try to explain the 
origin of the relatively complex effects from (Ionta et al., 2011) (subjective self-location 
and first-person perspective) in terms of processing of simpler bodily signals in the brain. 
The relevant analyses are completed. All data will be made available to the European 
Commission together with Dataset Information Cards for the duration of the project and 
for a period of up to five years after the end of the project by the end of the Ramp-Up 
Phase. 

 

A Dataset Information Card has been completed (see DIC Task T3.1.3 “Neural correlates 
of self-location and first-person perspective”). 

Data Provenance 

All data were acquired by Silvio IONTA at the Centre Hospitalier Universitaire Vaudois, 
(CHUV – P23) in collaboration with the Centre d’Imagerie BioMedicale at EPFL. 

Collaborations 

We plan to renew a previous collaboration with Wulfram GERSTNER (SP4, EPFL), with 
whom we previously developed a model of the rubber hand illusion. 

Publications 

Grivaz, P., Serino, A., & Blanke, O. Meta-analytical assessment of neural correlates of 
spatial, temporal and social perspective-taking in humans. In prep.  

Faivre, N., Doenz, J., Scandola, M., Bernasconi, F., Salomon, R., Bello Ruiz, J., & Blanke 
O. Illusory Hand Ownership Modulates the Position of After-images: a Case for Self-
grounded Vision. Journal of Neuroscience, under review. 

Salomon, R., Galli, G., Lukowska, M., Faivre, N., Ruiz, JB., & Blanke, O. (2015). An 
Invisible Touch: Body-related Multisensory Conflicts Modulate Visual Consciousness. 
Neuropsychologia, doi: 10.1016/j.neuropsychologia.2015.10.034. 

Faivre, N.*, Salomon, R.*, & Blanke, O. (2015). Visual Consciousness and Bodily-Self 
Consciousness. Current Opinion in Neurology, 28(1), 23-28. (* equal contributors). 

Blanke, O., Slater, M. & Serino, A. Behavioral, Neural, and Computational Principles of 
Bodily Self-Consciousness, in Neuron, vol. 88, num. 1, p. 145-66, 2015. 
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The Study of Body Ownership and Agency Using Immersive Virtual Reality 
Methods 

Decreased cortical excitability after the illusion of missing part of an arm 

Previous studies on body ownership illusions have shown that under certain multimodal 
conditions, healthy people can experience artificial body-parts as if they were part of their 
own body, with direct physiological consequences for the real limb that gets ‘substituted’. 
In this study we wanted to assess (a) whether healthy people can experience ‘missing’ a 
body-part through illusory ownership of an amputated virtual body, and (b) whether this 
would cause corticospinal excitability changes in muscles associated with the ‘missing’ 
body-part. Forty right-handed participants saw a virtual body from a first person 
perspective but for half of them the virtual body was missing a part of its right arm. Single 
pulse transcranial magnetic stimulation was applied before and after the experiment to 
left and right motor cortices. Motor evoked potentials (MEPs) were recorded from the first 
dorsal interosseous (FDI) and the extensor digitorum communis (EDC) of each hand. We 
found that the stronger the illusion of amputation and arm ownership, the more the 
reduction of MEP amplitudes of the EDC muscle for the contralateral sensorimotor cortex. 
In contrast, no association was found for the EDC amplitudes in the ipsilateral cortex and 
for the FDI amplitudes in both contralateral and ipsilateral cortices. Our study provides 
evidence that a short-term illusory perception of missing a body-part can trigger inhibitory 
effects on corticospinal pathways and importantly in the absence of any limb 
deafferentation or disuse. 

 

 
Figure 47 

(A) For both groups, a gender-matched virtual body was seen from 1PP with the same posture with the real 
body, as if they were spatially coincident. (B) For both groups, a virtual ball touched the right virtual hand 
various times while the real hand was physically touched at the same timings (2 minutes). (C) For the 
amputation group, part of the right virtual arm disappeared, as if amputated (3 minutes). (D) Following, the 
virtual ball touched the area previously occupied by the right virtual hand and part of the forearm (i.e. the 
table surface) without triggering any physical touch to the participant’s right hand (10 minutes). 

The session started for both groups identically. Through the HMD, participants saw a 
complete gender-matched virtual body from a 1PP, spatially coincident with their real 
body. In order to make the participants’ posture as comfortable as possible while being 
motionless, a virtual mirror was placed just opposite so that they could see the virtual 
body both when looking down but also when looking straight ahead (Figure 47). 
Participants were asked to move their head and describe what they saw around 
themselves, including the virtual body (1 minute). Once the scene was described, the 
experimenter asked them to focus on the virtual hands for the rest of the session either by 
looking either directly or through the mirror. Then, a virtual ball appeared and tapped 
various times the right virtual carpal, bouncing between the virtual hand and the virtual 
mirror in random velocities for 2 minutes (Figure 47). Every time the ball made contact 
with the virtual carpal and for the whole duration of this contact, the vibrator on the 
participants’ right hand was triggered and the vibrationSkin sound file was reproduced. 
Therefore, all seen and heard tactile events on the virtual hand were temporally 
registered with physical touch on the real hand.  
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Overall questionnaire scores showed that participants in the condition where the virtual 
arm was missing tended to agree with statements supporting this. An amputation score, 
calculated as the average of the five amputation statements, was significantly and 
positively correlated with arm ownership (ownarm - rs=0.528, n=40, p<0.001) and full body 
ownership (ownbody - rs=0.464, n=40, p=0.002)), and with feelings of not being able to 
move the right hand (nomoveright - rs=0.689, n=40, p<0.0001). No other significant 
correlations were detected between the amputation score and the rest of the items. See 
Figure 48. 

 

For the EDC muscle, there was no main effect of condition (F(1,37)=0.45, p=0.507), nor of 
time (F(1,37)=0.56, p=0.460) but a main effect of hemisphere (F(1,37)=4.76, p=0.035) was 
detected. None of the two or three way interactions were significant. Residuals errors 
were not normally distributed (Shapiro Wilk test, p<0.0001). Visual inspection of the 
residuals’ plot clearly identified four outlier values. After removal of the outliers, the 
ANOVA revealed again no main effect of condition (F(1,36)=0.58, p=0.452), nor of time 
(F(1,36)==0.11, p=0.747) but a main effect of hemisphere (F(1,36)==4.68, p=0.037, partial 
η2=0.370) was detected. None of the two-way interactions were significant. However, the 
three-way interaction condition × time × hemisphere had significance level p = 0.053 
(F(1,35)==3.98). Residual errors were normally distributed (Shapiro Wilk test, p=0.575). Post-
hoc t-tests revealed that the EDC amplitudes for the left hemisphere (right hand) were 
significantly lower than those for the right hemisphere (t(74)= -4.61, p< 0.001, CI[0.13, 
0.33]). 

 
Figure 48: Scatterplot of the difference between and pre and post-VR MEP amplitudes 
with the illusion of amputation per each muscle and hemisphere (on the right).  
The difference in amplitudes was significantly correlated with the amputation illusion only for the EDC muscle 
of the left hemisphere. Similarly, only in this case, the amputation illusion predicted significantly the MEPs’ 
difference (b = 174.33, t =2.53, p = 0.016) and explained a significant proportion of its variance (R2 = 0.12, F(1, 
37) = 6.39, p = 0.016). Scatterplot of the difference between and pre and post-VR MEP amplitudes with the 
illusion of arm ownership per each muscle and hemisphere (on the left). The difference in amplitudes was 
significantly correlated with the arm ownership illusion only for the EDC muscle of the left hemisphere. 
Similarly, only in this case, the ownership illusion predicted significantly the MEPs’ difference (b = 139.27, t 
=2.10, p = 0.043) and explained a significant proportion of its variance (R2 = 0.08, F(1, 37) = 4.40, p = 0.043). 
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Our study demonstrates the possibility of inhibitory effects on corticospinal pathways, 
triggered by a short-term illusory perception of missing a body-part and importantly in the 
absence of any physical intervention (e.g. ischaemic nerve block or movement restriction); 
just a few minutes of a novel body experience seem to be sufficient to produce direction 
specific effects on the excitability of sensorimotor system. Although future studies are 
needed to investigate whether the origin of the effects is primarily cortical or spinal, as 
well as their temporal prevalence, our results indicate new possibilities for inducing short-
term functional reorganization and plasticity of the sensorimotor system by emphasizing 
the contribution of body experience. Experience is a known modulator of the brain in both 
functional and structural terms (Makin et al., 2013; May, 2011) and its role has widely 
discussed in relation to increased use, disuse and transient deafferentation of a body-part 
in healthy participants . A novel perception of the body that suggests that a body-part is 
missing may also entail psychologically both the body- part’s disuse (inability to move it) 
and deafferentation (inability to receive afferent input from it), since it is no longer there 

 

Illusory Agency over Walking 

 

 
Figure 49: Illusory Walking setup 

(A) Participants were seated still on a stool, except for head movements. (B) Initially participants saw the 
standing virtual body reflected in a mirror (1PP condition). (C) Participants saw the walking virtual body from 
1PP, or (D) from 3PP. The walking body always cast a shadow. 

 

Here we show that participants can have the illusion of agency over the walking action of a 
virtual body even though in reality they are seated and only allowed head movements. This 
paper follows on from previous work in (Banakou and Slater, 2014). This between-groups 
experiment had two binary factors (Figure 49): Perspective (1PP or 3PP) and Head Sway 
(Sway or NoSway). In 1PP participants saw a life-sized virtual body spatially coincident 
with their real body from a first person perspective. In 3PP participants saw the virtual 
body from third person perspective (3PP). In the Sway condition the viewpoint followed a 
walking animation, and in NoSway it was solely determined by head movements. The 
results show strong illusions of body-ownership, agency and walking, in the 1PP compared 
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to the 3PP condition. Sway reduced the level of agency. In order to test the effects of 
perspective and body-ownership on the feeling of agency over walking movements, we 
immersed participants in a virtual environment, where a virtual body, seen either as 
spatially coincident with the real body and from a first person perspective (1PP) or 
separate from the viewpoint of the real body from third person perspective (3PP), was 
walking forward across a field (Figure 49). Moreover, in order to test the importance of the 
optic flow, a second factor was whether a sway animation was applied or not to their 
viewpoint. This sway was based on a pre-recorded animation of real walking. In other 
words there was a sway applied to the head as one factor (Head Sway) that had two levels 
Sway or NoSway. 

 

A questionnaire on body ownership and agency resulted in strong illusions of ownership 
over the virtual body, and agency over the walking in the 1PP but not in the 3PP conditions. 
The Sway factor reduced the illusion of agency. 

 
Participants experienced the walking for 4 minutes. For the first three minutes the walking 
was over level ground, but then continued up a hill for 44s. We predicted that agency over 
the walking would result in heightened physiological responses during the hill climbing 
period compared to a baseline period that started 90s before the hill climbing and lasted 
for as long (44s). We recorded skin conductance, ECG and respiration. Physiological data 
from one participant (belonging to the Sway condition) were not available due to a failure 
in recording. To compare the responses across the conditions, we used as a response 
variable the differences between the mean skin conductance amplitudes in the hill-
climbing period and the baseline (dSC = mean(Hill Climbing) - mean(Baseline)) (see 
Methods - Response Variables). A mixed effects ANOVA for dSC on Perspective and Sway and 
their interaction found no effect for the interaction or Sway terms (P = 0.87 and 0.96, 
respectively) but for Perspective  P = 0.025. The result for Sway does not change when the 
interaction is removed, and Perspective has P = 0.005 when Sway is also removed. The 
coefficient for Perspective (3PP=0, 1PP=1) is 0.28  ± 0.10 (SE), with 95% confidence 
interval 0.08 to 0.48. This reflects what can be seen in Table 1: that 1PP resulted in 
greater change in SC than 3PP, but that there are no other effects.  

 

 
Table 1: Means and SEs of change in skin conductance (microsiemens) from baseline to 
hill climbing (dSC). 

 
Our results show that even while participants are seated in a chair and not walking, seeing 
the virtual body from a first person perspective when it is walking can result in high levels 
of body-ownership and self-attribution of the walking action. This is supported by both 
subjective and physiological responses.  

 

Our results highlights an important difference from the setup of Banakou and Slater 3 since 

 NoSway Sway Overall Mean 

3PP 0.40 ± 0.31 0.17 ± 0.15 0.29 ± 0.17 

1PP 0.64 ± 0.27 0.64 ± 0.24 0.64 ± 0.17 

Overall Mean 0.52 ± 0.20 0.41 ± 0.15 0.44 ± 0.09 
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from the outset participants saw their virtual body doing something that they were 
definitely not doing, whereas in the earlier study the talking occurred only after several 
minutes into the experiment. Agency only on the basis of 1PP is unlikely. This might be 
explained by  the work of Patla and colleagues who explored the importance of vision of 
the body while walking (Patla, 1997; Patla et al., 1996). According to their results, viewing 
the limb position and movement plays an important role in planning and regulating the 
swing limb trajectory. Given this notion, it is possible that when the legs of the collocated 
virtual body (1PP) were observed while walking forward, an action representation for the 
planning of the next movement might have been initiated. Actually, this is not surprising at 
all, since in our whole life when we look down and see our legs walking, we are walking. 
Hence, it is possible that a combination of the seeing the walking legs plus possible 
intention created by the walking experience contributed to the illusory agency. Further 
studies will need to carefully investigate this possibility and the relative importance of the 
two. 

 

The work on agency is continuing in collaboration between EPFL (Dr Olaf Blanke’s group – 
Task T3.1.3) and UB as our final experiment in the HBP. We are preparing an fMRI study, 
based on the experiment of (Banakou and Slater, 2014) in order to assess brain correlates 
of this type of illusory agency. 

 

The questionnaire and physiological data from these experiments will be publicly available 
on the web sites of the open access journals to which the papers have been submitted 
(assuming that they are eventually accepted). 

 

The following paper has been accepted now: 

Kilteni K, Maselli A, Kording KP and Slater M (2015) Over my fake body: body ownership 
illusions for studying the multisensory basis of own-body perception. Front. Hum. 
Neurosci. 9:141. doi: 10.3389/fnhum.2015.00141 

 

When the above paper is finally published, the data set will be deposited as 
'supplementary information' with the paper. The other paper is still in review in Scientific 
Reports, and if it is accepted then the data will be available there. 
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Motivation, Decision and Reward  
WP3.2 Coordinated by Mariano Sigman 

  

This work-package aims at making progress in understanding how decisions are computed, and how 
these computations are implemented in neural circuits.  
A common computational approach subtends the four tasks of this work-package. All use the 
computational level as a starting point to model decisions. Models are used to formalize decision 
algorithms, and theoretical predictions from different models are compared with actual behavioral 
data to identify the best computational models, and also the best fitting values to parameterize 
these models. These models can then provide quantitative estimations of the variable computed by 
the decision algorithms, which in turn are used to investigate their neural underpinnings. 
The different tasks also share a common conceptual framework. Decision algorithms can be cast as a 
maximization problem: they aim at maximizing accuracy, which in many situations also corresponds 
to maximizing reward associated with correct decisions. 
Motivation is the process that translates a reward prospect into the invigoration of the processes 
involved to obtain this reward. Motivation therefore plays a key role in decision making, both in 
normal and impaired condition. The group of Talma Hendler (T3.2.4) investigates this process at 
different scales in humans, from neuronal spikes recorded with implanted electrodes, to macroscopic 
neural assemblies recorded with surface electrophysiology and functional magnetic resonance 
imaging (fMRI). The group of Mathias Pessiglione (T3.2.2) investigates motivation from the clinical 
viewpoint, by characterizing patients with different motivational disorders. 
Maximizing accuracy and improving decisions is also typically achieved by learning and taking 
advantage of the data at hand at any given moment. This requires the detection of one's own error 
to improve future decisions. Importantly, the likelihood that a given decision or estimate is 
erroneous can also be anticipated, prior to any feedback. Task T3.2.1 investigates how confidence in 
one's own computation is estimated and used in a variety of contexts. Florent Meyniel, Stanislas 
Dehaene and Mariano Sigman investigate confidence in perceptual decision and in statistical learning 
in humans using fMRI; the group of Rui Costa investigates confidence in motor task performed by 
rodents. In task T3.2.3, the group of Tobias Donner investigates how the brain weights the incoming, 
momentary evidence to make perceptual decisions. They explore the possibility that such gating of 
information relies, at least in part, on the modulation of brain-scale cortical networks by 
neuromodulators such as noradrenaline, whose endogenous release can be tracked non-invasively 
with pupillometry and brainstem fMRI in human. 
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2.1 Mapping and understanding the neuronal circuits involved in 
decision making, confidence and error correction 

Task T3.2.1 - Mariano Sigma (CEA), Florent Meyniel (CEA), Rui Costa (FCHAMP), Rodrigo 
Freire Oliveira (FCHAMP) 

 

Review of the cognitive architecture for decision and confidence 

Florent Meyniel, Mariano Sigman, Zachary F. Mainen “Confidence as Bayesian 
Probability: From Neural Origins to Behavior”, Neuron, Volume 88, Issue 1, p78–92, 7 
October 2015 

Abstract 
 
Research on confidence spreads across several sub-fields of psychology and neuroscience. 
Here, we explore how a definition of confidence as Bayesian probability can unify these 
viewpoints. This computational view entails that there are distinct forms in which 
confidence is represented and used in the brain, including distributional confidence, 
pertaining to neural representations of probability distributions, and summary confidence, 
pertaining to scalar summaries of those distributions. Summary confidence is, normatively, 
derived or ‘‘read out’’ from distributional confidence. Neural implementations of readout 
will trade off optimality versus flexibility of routing across brain systems, allowing 
confidence to serve diverse cognitive functions. 
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Data set 1: Confidence during probabilistic reasoning, behavioural and fMRI 
recordings  

 

Rational of the work 

The sense of confidence has been defined as “a belief about the validity of our own 
thoughts, knowledge or performance that relies on a subjective feeling” (Grimaldi et al., 
2015). It is the capability of the brain to estimate the reliability of its own processing, and 
use such estimation to optimize further processing and behaviour. We reviewed the 
current state-of-the art and proposed a general conceptual framework, or “cognitive 
architecture”, to understand the implementation of the sense of confidence in the brain 
(see above; (Meyniel et al., 2015a)). Here we summarize the main points that motivated 
the three experimental studies reported below.  

 
Study #1 Choice and confidence readouts in a perceptual decision. Our review 

stressed that a principled origin for confidence information in perceptual decisions should 
be the very sensory data that guide decisions. We therefore postulate that there should be 
two different readouts of the same data: one to select a response (readout of choice) and 
another one to quantify the level of evidence supporting this decision (readout of 
confidence). This view is parsimonious, but is poses a conundrum: if choice and confidence 
are readouts of the same sensory data, why does confidence sometimes depart from choice 
accuracy? We suggest that reading out choice and confidence from sensory data is unlikely 
to be innate, and instead it should be learned, which leaves room for imperfections and 
biases (Baranski and Petrusic, 1994; Meyniel et al., 2015a). In this study, we specifically 
aimed to test another source of dissociation between confidence and choice: different 
aspects of the same data may be processed (read out) differently. We capitalized on a 
previous study in which sensory data at each trial was provided as a series of data samples. 
Behavioural results suggested that subjective confidence level stemmed mostly on initial 
data samples, whereas choice stemmed on a more protracted integration of data samples 
(Zylberberg et al., 2012). Here, we conducted a new study to test this effect while 
recording brain activity with fMRI. Note that we selected a perceptual decision paradigm, 
since our review stresses that such paradigms are well suited to test humans and non-
humans animals (Kepecs and Mainen, 2012a; Kepecs et al., 2008; Kiani and Shadlen, 2009a). 

 
Study #2 A normative account subjective confidence during probabilistic learning. 

Human subjects (and maybe other animals) experience confidence feelings when they are 
engaged in perceptual decisions; however, such feelings extend to other cognitive process, 
although they receive little attention in neuroscience. Confidence in the course of learning 
is an illustrative example: this subjective feeling has been overlooked both in the 
traditional fields of confidence studies, but also in learning. We adopted Bayesian 
computations as our conceptual framework and we hypothesized that learning some 
quantity and estimating whether this inference is accurate should both derive from the 
same algorithm. In other words, they should be two different readouts of the same 
inferential data. Note that this proposal is similar to the one made above in the perceptual 
domain, but it is extended to statistical learning. We designed a new behavioural task and 
the optimal solution of this problem – the so-called Bayesian ideal observer – to test the 
normative origin of confidence feelings in learning and characterize their properties. 

 
Study #3 A computational role for confidence in the brain during probabilistic 

learning. While studies #1 and #2 investigate how confidence is estimated by humans 
subjects, Study #3 investigate how confidence is used, an aspect that is often overlooked 
(Meyniel et al., 2015a). We followed-up study #2 to probe the computational role of 
confidence in learning, and its functional consequences in the brain. In any learning 
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situation, the new incoming evidence must be balanced against prior knowledge in order to 
update what has been learned. This weighting of information is critical in a world that is 
both stochastic and changing, where observations are governed by probabilities that 
change over time. If one favours the incoming evidence too much, the learned estimates 
will be dominated by random fluctuations in momentary evidence instead of converging to 
the true underlying probabilities. Conversely, excessive reliance on the previously acquired 
knowledge will slow the learning process and impede a quick reset when the environment 
changes. A normative solution to this general combination problem requires weighting 
each source of information according to its reliability (Jaynes, 2003; Knill and Pouget, 2004; 
Ma et al., 2006; Meyniel et al., 2015b; Pearl, 1988). In the context of learning, we propose 
that the subjective sense of confidence in what has been learned serves in the brain as a 
weighting factor to optimally balance prior and incoming evidence.  

 

Experimental and theoretical work 

 

Study #1 Choice and confidence readouts in a perceptual decision (behaviour and 
fMRI) 

We first adapted the seminal luminance discrimination task by (Zylberberg et al., 2012) to 
fMRI (Figure 50A). Two pilot subjects were run. The psychophysics results were consistent 
between subjects and similar to what is shown in Figure 50B. However, we could not find 
any correlate of perceptual evidence in their visual cortex. We reasoned that since the 
early visual cortex encodes contrast rather than luminance (Hubel and Wiesel, 1962), our 
perceptual task may not drive sufficient activity in fMRI. We therefore modified the task 
and used Gabor patches with slightly different contrast levels (Figure 50A). Six subjects 
performed this version of the task in the fMRI. We also run a localizer to identify, for each 
subject, the portions of their visual cortex that responded retinotopically to the location 
of Gabor patches. During the task however, the difference in contrast levels between the 
left and right Gabor patches did not elicit a noticeable lateralization of fMRI signals in the 
visual cortex, even when focusing specifically on the regions defined with the localizer. 
Given that behavioural performance was kept at a 75% of correct trials by adapting the 
difficulty for each subject, our negative fMRI result suggests that the corresponding 
difficulty level elicits differences that cannot be detected with the current signal-to-noise 
ratio of fMRI (despite our 1.5mm isotropic resolution, and a sampling frequency of 0.5Hz). 
Since tracking a neural variable corresponding to perceptual evidence could not be 
achieved, we aborted the study. We nevertheless report below the behavioural results. 
Subjects' choices were parametrically impacted by the direction of the evidence 
presented: whether the right patch is more contrasted than the left one on average in a 
given trial. Confidence, on the other hand, was impacted by the strength of the evidence 
supporting the choice, be it “right” or “left”: the absolute average difference between 
contrast levels in a given trial. We also performed a similar analysis for each sample of 
evidence presented (instead of their average per trial) to characterize the so-called choice 
and confidence “kernels”. Interestingly, each sample contributed fairly equally to choices, 
whereas confidence was impacted more by the first samples presented (Figure 50B, 
bottom). These results concur with the previous data by (Zylberberg et al., 2012): choice 
and confidence seem to derive from the same sensory data, but with dissociable readouts. 
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Figure 50: Choice and confidence in a perceptual task with multiple samples  

(A) Task design: at each trial, subjects discriminate whether the Gabor patch presented on the left or right is 
on average more contrasted, knowing that ten samples are provided. In a given trial, contrast levels are 
sampled from two Gaussian distributions with equal variance and slightly different means. Subject reported at 
the same choice (left/right) and confidence level (high/low) with dedicated response buttons. (B) 
Psychophysics results for choices (left) and confidence reports. The top row shows choice and confidence as a 
function of the average difference in contrast level at each trial. The bottom row shows regression weights of a 
logistic regressions (linear effect of contrast difference for choice; quadratic effect of contrast difference for 
confidence) computed independently for each sample position. The plots show mean and s.e.m.  

 

Study #2 A normative account of subjective confidence during probabilistic learning 
(behaviour) 

To investigate confidence in learning, we developed a new statistical learning task, in 
which subjects (n=18) occasionally reported (1) statistics that their learned from the input 
they were presented with and (2) the subjective confidence level associated with their 
estimates (Figure 51A). The input was a sequence of binary stimuli and critically, the 
statistics of the input changed over time. This instability of the statistics induced 
variations of confidence levels over time. Our working hypothesis was that learning and 
estimating confidence in what has been learned both derive from the same inference. We 
used as a benchmark inference the optimal Bayesian inference (the so-called Ideal 
Observer), which computes with full probability distributions. Confidence in this 
framework can be formalized as the log precision of the posterior probability distribution.  
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Figure 51: Confidence in a probabilistic learning task  

(A) Sequences of two stimuli (As and Bs) were generated randomly following specific transition probabilities. 
These probabilities were selected randomly, and they were fixed only for a limited period of time: they 
changed unpredictably. (B) Example sequence of stimuli generated. The transition probabilities that are 
learned from this sequence by an Ideal Observer are presented as likelihood distributions, as a function of the 
number of stimuli observed so far. (C). Questions were occasionally asked to subjects (ex. at trials indicated by 
red dots in panel A) about their estimates of transition probabilities and their confidence in those estimates. 
Subjects also reported when they detected changes in the probabilities. The fMRI version of the task (bottom) 
was a simplified version of the original behavioural task (top): subjects were only asked about their confidence 
in their probability estimates, although these probability estimates remained covert (they were not reported to 
the experimenter). (D) Behavioural results of the “behavioural task”, adapted from (Meyniel et al., 2015a). 

 
The results were published (Meyniel et al., 2015b); the main findings are outlined below. 
Subjects reports related linearly to the optimal statistical estimates, and also to the 
optimal confidence levels in these estimates (Figure 51D). Subjects also reported changes 
in the statistics that they tracked based on the evidence conveyed by the sequence of 
observations and quantified with the Ideal Observer. Subjective confidence reports 
fulfilled several properties of an optimal inference: (1) confidence increased with the 
amount of observations received since the last change (2) confidence decreased when 
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optimal learned estimates of the statistic changed from one observation to the next and (3) 
confidence was lower when the statistics made observations less predictable (it is 
technically the effect of entropy). Interestingly, subjective confidence still covaried with 
optimal confidence levels even when the three above effects were linearly regressed out, 
suggesting that subjective confidence is more sophisticated than this list of factors taken 
together that instead, it may derive from the full probabilistic inference itself. Last, the 
accuracy (with respect to optimal levels) of statistical estimates and confidence levels 
were positively correlated. This was true across subjects and also across trials of each 
subject, indicating that both statistical estimates and their associated confidence levels 
share a common origin. Overall, our data support the hypothesis that confidence in 
learning is derived from the learning algorithm itself, and that this algorithm is 
fundamentally probabilistic and that it operates close to the optimum.  
 

Study #3 A computational for confidence in the brain during probabilistic learning 
(fMRI) 

In this last study, 21 subjects performed the task presented in Figure 52 in an fMRI scanner, 
in order to probe the functional consequences of different confidence levels in the brain 
during learning. This work was presented in conference talks and submitted for publication, 
we summarize here the main findings.  

Our central computational assumption is that confidence in what has been learned serves 
as a weighting factor in the updating process, to balance our prior knowledge on the one 
hand, and the momentary incoming evidence on the other. One should update more the 
current estimates when new observations are highly surprising – this is the logic of any 
learning algorithm (Rescorla and Wagner, 1972; Sutton and Barto, 1998) – and when there 
is low confidence in the current state of knowledge – which is sometimes referred to as 
adjustable learning rates (Sutton, 1992), a feature that is handled automatically when one 
computes with full distributions (Meyniel et al., 2015a) as illustrated in Figure 52A. Regions 
whose activity co-vary with the  updating process were identified by regression analysis 
using the optimal levels of update computed by the Ideal Observe. A fronto-parietal 
network was identified, see Figure 52B. We then refined our description of this process by 
identifying regions whose activity tracked more specifically the likelihood of current 
observations (the “surprise” levels) or the uncertainty in the current knowledge (the 
“confidence” levels) or both. We sorted trials according to the Ideal Observer estimates so 
as to reveal unique signatures of a “confidence” signal, a “surprise” signal and an “update” 
signal, see Figure 52C, and use these expected profiles as a diagnostic tool to characterize 
brain regions. Several regions tracked “surprise” (the SMA, FEF, pSTS), other tracked 
“confidence” (the IPS, DLPFC, OFC) and other the combination of surprise and confidence 
(IFG). A follow-up analysis of the IFG revealed that its activity may be subtended by a 
hierarchical inference. We can test unambiguously this aspect in our task because the 
statistics that must be learned were transition probabilities, and not simple frequencies, 
which makes specific predictions in the case of hierarchical inference. Together, our 
results suggest that a sophisticated probabilistic learning algorithm may indeed be 
implemented in the brain. 
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Figure 52: Confidence weighting of surprise during learning 

(A) Update of the estimated probability distribution upon observing a new outcome. Note that the shift before 
(grey) / after (purple) is larger when confidence in the initial estimation is lower (case 1 vs. 2). (B) fMRI signal 
correlating positively (red) and negatively (blue) with the optimal level of update computed by the Ideal 
Observer during the probabilistic learning task. (C). While surprise, confidence and update are all correlated, 
focusing on particular trials reveals unique expected responses for each of these variables. Trials were sorted 
based on three factors: predictability of the outcome (low, medium, high), confidence in the probability of the 
outcome (low, high) and expectation violation (the outcome was expected – blue; or unexpected – orange). The 
values plotted here were computed with the Ideal Observer across all sequences and stimuli presented to our 
subjects.  
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Research outputs 

Here are the main conclusions of our studies: 
• Choice and confidence seem to derive from the same sensory data and with 

dissociable readouts. 
• This hypothesis of a common origin seems general and extends in a non-perceptual 

domain like abstract statistical learning: confidence in learning may derive from 
the same inferential data as the single point estimates reported by subjects. 

• We can provide a normative account of confidence in learning. Several learning 
algorithms that work with single point estimates only cannot account for learning in 
humans. Instead, the human learning algorithm seems essentially probabilistic – this 
feature should be explored more in the future. 

• Confidence in learning is not only estimated accurately, it also seems to play a 
specific computational role in the learning algorithm: it balances prior and current 
evidence.  

• Functional correlates of confidence in the brain suggest that confidence modulates 
the weights of previous estimations and the momentary likelihood of observations 
in the updating process. 
 

These results were disseminated as follow: 
• Study #1 (confidence in learning): given that fMRI is not an appropriate tool to track 

perceptual evidence at the neural level in this kind of task, Mariano Sigman and 
Florent Meyniel extended their project and invited Tobias Donner (University of 
Hamburg, Germany; also member of this work package) to follow-up this 
collaboration and test whether MEG would be better suited to track perceptual 
evidence in the brain. A noticeable advantage of MEG over fMRI is that its temporal 
resolution may allow to track the contribution of each individual sample of 
evidence that are presented sequentially to subjects. 

• Study #2 was published in Plos Computational Biology by F. Meyniel, D. Schlunegger 
and S. Dehaene. It presented by F. Meyniel at a joint SP3-SP4 workshop (EITN, 
France June 2014). Study #2 and study #3 both suggest that learning in the brain 
relies on a powerful probabilistic algorithm. This feature motivated the 
organization of a joint, two-day SP3-SP4 workshop (organized by S. Dehaene, F. 
Meyniel (SP3) and A. Destexhe, W. Maass (SP4 – EITN) at Collège de France, France, 
September 2015) with several international speakers to share current results and 
theories about probabilistic inference in the brain. Both studies were also 
presented by F. Meyniel at a workshop on confidence organized by S. Dehaene and 
Z. Mainen (Les Treilles, France, June 2015) and at a workshop on confidence at the 
Cosyne conference (Salt Lake City, USA, February 2016). Study #3 has been 
submitted for publication (Meyniel and Dehaene). 
 

A Dataset Information Card has been completed (see DIC Task T3.2.1 “Human networks 
involved in confidence (fMRI and behaviour)”). 
 
Data Provenance 
The fMRI and behavioural data were collected by Florent Meyniel at Neurospin, CEA, 
France. 

 
Location of our data storage 

The data were made available: 
− Study #1: data were deposited on a server at 

http://s3.data.kit.edu/SP3/3_2_1/Study1_PerceptualConfidence  
− Study #2: data are available as on-line supplementary material of the Plos 

http://s3.data.kit.edu/SP3/3_2_1/Study1_PerceptualConfidence
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Computional Biology publication; they were also deposited on a server at 
http://s3.data.kit.edu/SP3/3_2_1/Study2_ProbabilitistLearning_behavior   

− Study #3: data were deposited on a server at 
http://s3.data.kit.edu/SP3/3_2_1/Study3_ProbabilisticLearning_fMRI 

 

  

http://s3.data.kit.edu/SP3/3_2_1/Study2_ProbabilitistLearning_behavior
http://s3.data.kit.edu/SP3/3_2_1/Study3_ProbabilisticLearning_fMRI
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Data set 2: Confidence estimation on motor skill performance in mice 

 

Abstract 

When a musician performs a difficult piece, actions have to be performed with striking 
accuracy. Previous work has shown that after a self-paced action sequence has been 
rehearsed, the trial-to-trial variability in performance decreases (precision increases). 
Furthermore, if the action is complex the modulation of behaviour and neural variability is 
contingent to the relevance of each dimension (e.g. speed, duration) to the task. 
However, it is unclear whether animals can monitor and report their performance on a 
particular trial before the outcome is presented or not. We train mice to execute 4 or 5 
sequential presses in order to obtain a cached reinforcement. After training, animals are 
asked to wait for 8 secs before the outcome is known; animals can wait to know the 
outcome or abort the trial and start again. Mice abort more trials after incorrect than 
correct sequences. Logistic regression analysis shows that the probability of current trial 
abortion depends on the recent history of trial abortion (with slow dynamics) and current 
trial performance (with faster dynamics). These results show that mice learn to perform 
sequences of movements within narrow constraints and that they are capable of 
monitoring their own performance in the absence of outcome. Moreover, the data shows 
that variables with different time dynamics are involved in assessing action performance. 

 

Introduction 

In various daily endeavours (e.g. sports and music) humans perform uniquely accurate 
actions so that an expected outcome can be achieved. These complex actions require 
extensive training before an expertise level is reached. Even after such actions are 
mastered they are seldom performed fully automatically, on the contrary, continuous 
monitoring allows for compensating unpredictable noise (either in the environment, 
sensory perception or in the motor commands) (Miall and Wolpert, 1996; Maidhof, 2013; 
Maidhof et al., 2013; Ma and Jazayeri, 2014). In addition, when the effort/cost of such 
actions is high, monitoring helps in informing how likely the current performance is to fall 
within the acceptable range which generates the expected outcome (Giovanni Pezzulo, 
2012) and promotes a stronger sense of agency (Demanet et al., 2013). Monitoring can be 
further helpful in allocating the energy/vigour when facing similarly demanding tasks with 
similar internal states (e.g. motivation, deprivation or attention) (Krebs et al., 2012; 
Salamone and Correa, 2012; Skvortsova et al., 2014; Varazzani et al., 2015; Verguts et al., 
2015). It is unknown if the capability to learn and execute this class of motor skills is 
uniquely human. Nor it is known the dynamics of the variables modulating the monitoring 
of action policies or what are the brain areas responsible for keeping track of one's own 
actions and calculating confidence on one's own performance. 

So far, confidence estimation has been studied in perceptual decision making tasks  
including its neural substrates in primates (Kiani and Shadlen, 2009b); in rodents (Mainen 
and Kepecs, 2009; Lak et al., 2014) and; in humans (Hebart et al., 2014; Meyniel et al., 
2015b). The estimation of confidence after one’s own performance has received 
considerably less attention and has, to our knowledge, not yet been studied in rodents. In 
order to properly investigate the neural substrates of confidence estimation of actions a 
robust behavioural rodent assay for confidence estimation in action performance was 
developed. In this operant assay mice perform self-paced trials where, first, an action 
sequence is executed and later the confidence about the motor skill execution is explicitly 
reported. 
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In this manuscript, we describe the task, results, analysis and a computational model that 
helps explaining the temporal dynamics of the variables mediating confidence 
computation. 

 

Results 

 

Accurate motor skill learning in mice 

Animals (N = 12, BL6/C57) were introduced to the operant box (Med Assoc.) for 30 min 
(magazine training; MT, Figure 53A) where reinforcements (10% sucrose solution) were 
delivered in a pseudo random schedule. Next, animals were trained in continuous 
reinforcement (CRF) for 5 days, where each lever press was reinforced. Next, for 13 days 
animals were trained in an accurate fixed ratio schedule (AFR45) where only sequences of 
either 4 or 5 consecutive presses uninterrupted by visits to the magazine lead to the 
delivery of the cached reinforcement when animals reached the magazine (recorded by an 
IR beam break). The target (4 or 5 consecutive presses) was covert and animals had to 
explore different sequence combinations until the covert target was finally learned. 
Incorrect sequences resulted in no reinforcement delivered and the sequence was reset. 
Furthermore, the sequences were self-initiated and self-paced. Sessions were finished 
after 60 reinforcements were delivered or 2 hours had passed. As training progresses the 
sequences of presses become more organized (Figure 53A and B), in parallel the 
distribution of sequence length shifts to the right (Figure 53C); the fraction of short (1 and 
2 presses) sequences decreases from 0.66 to 0.27 (early - sessions 1 and 2; late - sessions 
12 and 13) while longer sequence fractions increase from 0.12 to 0.36 (4 and 5 presses; 
from early to late sessions) and the efficiency improves from 11.2% (session 1) to 37% 
(session 13) (p<0.01, Figure 53D). The average sequence length quickly and significantly 
increases (sessions 1,2 v 5,6 or 12,13 p<0.01, Figure 53E) and stabilizes after session 5,6 
while within sequence press rate monotonically increases (p<0.01, Figure 53F). The inter-
sequence interval (ISI) decreases (sessions 1,2 v 5,6 p<0.01, Figure 53G) and stabilizes 
after sessions 5,6 while sequence duration decreases monotonically but not statistically 
significant (p>0.05, Figure 53H). Interestingly, while the CV of the sequence length and the 
CV of within sequence press rate quickly decrease and stabilize after sessions 5,6 (sessions 
1,2 v 5,6 or 12,13 p<0.01, Figure 53I,J), the CV for ISI and the CV for sequence duration 
show a sharp significant decrease (sessions 1,2 v 5,6, p<0.01) followed by a rebound after 
sessions 5,6 (sessions 5,6 v 12,13, p>0.05, Figure 53K,L). Sequence length is a task relevant 
dimension while action duration and ISI are not. The increased CV observed for the 2 later 
non task relevant dimensions in sessions 12,13 is not statistically different from the  values 
observed during sessions 1,2 (p>0.05, Figure 53K,L). Interestingly these rebounds in 
variability are consistent with the original results reported by Santos et al. (2015) which 
show that variability in task relevant dimensions is reduced (speed in the original data) 
while variability in orthogonal non relevant dimensions  increases (length in the original 
data). 
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Figure 53: Detailed description of the accurate motor skill learning 

A-B. Excerpts from session 1 (A) and session 13 (B). Blue circles show lever presses, green circles, leever 
releases and red circles show reinforcement delivery. Sequences become more organized as training 
progresses. Right shift in distribution of sequence length from early to late sessions (C). Increase in efficiency 
measured as (successful trials)/(all trials) (D). E-H, average number of lever presses per sequence (E), within 
sequence press rate (p/s) (F), ISI (G), sequence duration (H), during early (1,2), mid (5,6) and late sessions 
(12,13). I-L,  Variability, measured as coefficient of variance (CV), of sequence length (I), within sequence 
press rate (p/s) (J), , ISI (K) and sequence duration (L), during early (1,2), mid (5,6) and late sessions (12,13). 
Error bars denote s.e.m. * denotes significance (p<0.01) compared to sessions 1,2 and @  denotes significance 
(p<0.01) compared to sessions 5,6. 

 

Though mice can learn a complex motor skill which requires the end-point behaviour to be 
constrained within a strict range, it remains unclear if they keep track of their own 
performance. If so, could mice be trained to provide a report of how confident they are in 
their performance on a trial by trial basis? 

 

Confidence estimation of action performance 

In order to answer the previous question, an extra requirement was introduced in the task 
following the 13 training sessions reported above: the cached reinforcement was no longer 
presented immediately after mice reached the magazine, animals must wait inside the 
magazine for reinforcement delivery. If mice left the magazine and didn't come back 
before the waiting interval had passed, the trial was considered aborted (minor jitter was 
allowed during waiting time; mice could briefly leave and come back as long as the total 
time inside the magazine was superior to 50% of the whole waiting interval). Also, if mice 
were to press the lever while in those brief absences the trial was deemed aborted as well 



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 135 / 
281 

 

(regardless of the duration of the absence). Mice were kept on a daily training regimen and 
the duration of the waiting interval was slowly increased until it reached 8 secs (Figure 
S2). All the other training parameters remained unchanged. In summary, target remains 
covert, reinforcement remains cached and the time waited in the magazine adds extra 
cost to the performance which drives animals to select the trials to which they should 
commit. 

As training progressed the waiting interval is increased and, as expected, the overall 
fraction of aborted trials increased (Figure 54A). Interestingly, mice learned to abort trials 
contingent to their actions as a U shaped distribution centered around the covert target 
emerged (Figure 54B). Moreover, short incorrect sequences are aborted earlier in training 
than longer incorrect sequences likely due to the relative difference in occurrence. The 
absence of major changes in the distribution of sequence length (Figure 54C) during 
training while, in parallel, the fraction of aborted trials increases contingent to 
performance shows that the mice integrate the extra waiting time at the magazine port as 
an added cost to the original trial design. This drives trial abortion without prejudice to 
the execution of the lever press sequence. 

 
Figure 54: Emergence of the implicit confidence report 

As the duration of the waiting interval increased, (A) mice aborted an overall larger fraction of trials. (B) The 
selection of aborted trials is contingent to performance. (C) No significant shift observed in distribution of 
sequence length. Color legends refer to the session number and progressively increased waiting interval. 

 

After the waiting interval is extended to 8 secs the U curve becomes more symmetric and 
sharp (Figure 54B). The fractions of aborted trials for the target sequences (4 and 5 
presses) are lower than the flanking incorrect sequences with either fewer or extra presses 
suggesting mice keep track of their current performance, compare it to a target and abort 
sequences contingent to the difference between the former and the later (Figure 55B). In 
order to better quantify the shape of the distribution of the fraction of aborted sequences 
a fit was performed using a quadratic polynomial as an approximation (AX2 + BX + C; R2 = 
0.98); the parameter A corresponds to the curvature of the fit. Furthermore, a bootstrap 
analysis (100000 permutations) shows that the chances of such U curve occurring by chance 
are virtually zero (Figure 55C). Taken together the data and analysis show mice decided on 
abortion contingent to their performance. Therefore the fraction of aborted trials is 
considered as an implicit confidence report (Kepecs and Mainen, 2012b). 
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Figure 55: Accurate motor skill assay and confidence report 

(A) Schematic representation of the operant box with lever and magazine where reinforcements are delivered. 
(B) Fraction of aborted trials as a function of sequence length. Bar graph shows the distribution of the mean of 
the fraction of aborted trials (with all sessions grouped together) by animal (error bars correspond to s.e.m. 
over animals). The red line is the quadratic fit to the data with an R2 = 0.98. (C) Comparison between 
experimental and permuted data shows the distribution of the curvature parameter of the quadratic fit derived 
from 100000 permutations of the original data. The permutation distribution is centered near zero (flat 
distribution of fraction of aborted trials vs sequence length, mean dark blue) away from the experimental 
value observed (light green). The odds of the experimental U shaped distribution happening by chance are 
statistically much smaller than 0.01 (red lines). 

 

Finally, an important step in understanding how confidence is estimated is determining 
when it is calculated. It is unknown if mice compute confidence only when probed during 
report time (after they reach the magazine port) or before (in parallel with sequence 
performance or on their way to the magazine).  
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Confidence estimation timeline 

Trials can be divided into 2 major epochs. The first encompasses the press sequence 
execution (from first lever press to last release) and includes the approach towards the 
magazine port. The second epoch starts when the animal performs the head entry which 
starts the clock and ends when the waiting interval is over or when the animal decides to 
leave the magazine (aborting the trial). If mice compute confidence before reaching the 
magazine, one could expect to see an analog (and early) confidence report in the latency 
to reach the magazine. In other words, one should expect faster movements (shorter 
latencies) when confidence is high and slower movements (longer latencies) when 
confidence is low. 

 

The plot in Figure 56A shows (for all trials in the last sessions 31 to 37, waiting time = 8 
secs) (black - aborted trials, red - committed trials) that while latency to check the 
magazine doesn't seem clearly different between aborted vs non aborted trials, the 
distribution of times waited in the magazine is bimodal: animals are more likely to either 
stay the whole waiting time or leave  shortly after arriving (this is expected given that the 
wagering interval is constant; for a more detailed explanation see Kepecs and Mainen, 
(2012b). If instead just the means (+/- s.e.m.) are plotted for the same data (Figure 56B) 
it becomes clear that for aborted trials the animals move towards the magazine on 
average much slower than in committed trials (p<0.01). Interestingly, this is consistent 
with the strategy of minimizing the waiting cost by quickly aborting a perceived incorrect 
trial so that another can be started. Alas, examining the distribution of latency to check 
the magazine as a function of sequence length (Figure 57A), the U shaped curve observed 
in the previous confidence report (fraction for aborted trials vs sequence length, Figure 
55B) is not mirrored in the latency to check (R2 = 0.86). Furthermore, the odds of such 
curvature not occurring by chance are not statistically significant (Figure 57B). 

 

It could be hypothesized that the magazine waiting time is very expensive for it requires a 
mandatory long delay added to immobility. Also it is an order of magnitude longer than the 
latency to check and therefore more relevant in controlling the flow of task execution (and 
maximizing the reinforcement rate), therefore clouding the latency to check (as an analog 
implicit confidence report) in the current task design. In order to better investigate this 
hypothesis another mice group (N = 12, BL6/C57) was trained in a similar task with one 
major difference: mice didn't have to remain inside the magazine; the waiting could 
happen anywhere inside the operant box; the reinforcement was delivered after the same 
delay (as in the original design). In order for a trial to be aborted mice had to, during the 
waiting time, perform a lever press (hence aborting the previous trial and initiating 
another). This new design keeps the delay for reinforcement delivery unchanged but 
relaxes the behavioral requirements for trial commit during waiting time. This variation in 
the task led to a much lower overall fraction of aborted trials (and no clear indication that 
fraction of aborted trials held information on performance monitoring) but yielded an 
analog confidence report in the latency to check the magazine. The curve observed in the 
distribution of latencies to check the magazine vs sequence length (Figure 57C) mirrors the 
U shape of fraction of aborted trials vs sequence length graph (Figure 55B). A fit analysis 
shows that the same polynomial approximation is perfectly adequate (R2 = 0.97). In 
addition, a bootstrap permutation analysis (100000 permutations) shows the odds of such 
shape happening by chance are indeed statistically significant (p<0.01; Figure 57D). 
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Figure 56: Latency to check as a confidence report 

(A) Scatter plot of Time Waited in Magazine vs Latency to Check the Magazine (black - aborted trials; red - 
committed trials). (B) Same data as in (A) plotted as means (error bars are s.e.m. in both dimensions). 
Differences in latency to check the magazine between aborted and committed trials are more clear in B and 
statistically significant (p<0.01).  

 

 
Figure 57: Two task designs: Differences in waiting time requirements for trial commit 

(A) Latency to Check the Magazine as a function of Sequence Length for the original design. Bar graph shows 
the distribution of the mean of latency to check the magazine (with all trials grouped together; error bars 
correspond to s.e.m.). No clear indication of a U shape. (B) Permutation analysis shows that shape could 
happen by chance. (C) Same analysis for the task variation (see text for details). U shape Latency to Check the 
Magazine as a function of Sequence Length mirrors (Figure 1B) fraction of aborted trials vs sequence length. (D) 
The odds of the experimental U shaped distribution (green line) happening by chance are statistically much 
smaller than 0.01 (red lines). 

 

Latency to check holds information that can be used as an analog report of confidence 
estimation before the time when trial abortion is probed. This is consistent with 
confidence being computed independent of (and ahead of) the report. While animals are 
capable of evaluating their performance on a fast trial to trial basis, it is not known 
whether variables other than the immediate performance could affect the decision to 
abort a trial. 
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Confidence estimation dynamics 

When performing cognitive or motor tasks, animals regulate engagement depending on 
many variables: attention, satiation, exhaustion (Krebs et al., 2012; Salamone and Correa, 
2012; Schouppe et al., 2014; Skvortsova et al., 2014; Varazzani et al., 2015; Verguts et al., 
2015). If other variables than the immediate performance are pertinent for aborting a trial 
in the accurate motor skill task, further analysis might show distinctive temporal dynamics 
in the history of decision to abort. In order to dissect the dynamics of the decision to abort 
in a trial by trial basis, we performed a logistic regression (with lasso regularization, 
(James et al., 2013; Kass et al., 2014)) to probe the effect of performance and history of 
abortion in the current trial abort decision. The logistic regression analysis confirms that 
the performance in the current trial has a higher loading in the probability of aborting than 
previous (or future trials). It hints that another variable correlated to the history of 
abortion also predicts the probability of aborting (Figure 58A). The loadings on the history 
of abortion suggest a slower dynamics. A model where trial abortion is determined by 2 
variables: 1) current performance (fast) and; 2) task engagement (slow), could account for 
the experimental data. 

 
Figure 58: Logistic Regression analysis (traces of lagged trials) 

(A) Logistic regression analysis of trial abortion probability. Logistic regression analysis predicting abort 
decision using different trial events (abortion, performance and feedback) at different lags (trials relative to 
predicted trial). The blue trace shows the average (over animals +/- s.e.m.) loading for abort decision (1 for 
aborted trials and 0 otherwise) on prior and future trials, i.e. the extent to which aborting on a given trial 
predicts aborting on nearby trials. The symmetric high loadings in previous and future trials suggests that a 
slow variable (i.e. engagement in task) is a strong determinant of the likelihood of current trial abortion. The 
black line shows the loadings for incorrect performance (of sequences; 1 for incorrect trials and 0 otherwise), 
i.e. the extent to which incorrect performance on a given trial predicts aborting on nearby trials. It has a large 
loading only on the current trial consistent with performance monitoring. Finally, the light green trace shows 
the loadings for feedback (which takes values of 0 on aborted trials, -1 in incorrect completed trials and +1 on 
correct completed trials). This variable aims to capture the effect of reinforcement obtained in correct vs 
incorrect sequences). 

 

An alternative hypothesis is that a single variable affecting performance and abortion with 
the same dynamics could explain the data. If so, abort decision could be a direct 
consequence of low motivation (or lack of attention) and both performance and abort 
decision could be explained by a single underlying cause. We explore this hypothesis by 
numerically implementing a slow continuous variable (S) upstream to both performance 
and abort decision (Figure 59A). This is integrated in a system of logistic equations to 
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model, as binary variables, trial performance (P: correct vs incorrect) and trial abortion 
(A: committed vs aborted). Logistic regression can then be used to compare experimental 
and simulated time series of trial performance and abortion. The single variable model 
produces highly correlated time series for abort decision and performance (Figure 59B). 
This is translated in superimposed traces for A (blue) and P (black) in the logistic 
regression analysis (Figure 59C). This is due to: 1) the common slow component equally 
integrated in performance and abort decision and; 2) no performance integration in abort 
decision. If, on the other hand, the weight of the slow component on performance is 
decreased (formally equivalent to decreasing the correlation between S and P) and 
performance itself, is integrated in abort decision (equivalent to increasing the correlation 
between P and A), the simulation results change and the logistic regression analysis shows 
good agreement between simulation and experimental data (compare Figure 59D to Figure 
58). 

  

The simulation results show that a model where both decision to abort and performance 
are defined by a single upstream slow variable fails to approximate the experimental 
results (compare Figure 59C to Figure 58). On the other hand, a model where decision to 
abort (A) integrates 2 separate and uncorrelated variables, slow (S) and performance (P), 
correctly approximates the temporal dynamics of the time series for decision to abort 
(Figure 59D and Figure 58). 
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Figure 59: Single variable model and 2 variable equivalent model 

(A) Slow variable time course of upstream variable.  (B) Illustrative time series of the simulated abort decision 
(A, blue; 1 for aborted trials and 0 otherwise) and simulated performance (P, black 1 for incorrect trials and 0 
otherwise) both determined by the upstream slow variable (S) in A (single variable model). (C) Logistic 
regression analysis for the single variable model data shows an overlap of the abort decision and performance 
incongruent with the experimental data. (D) Same analysis applied to a model with 2 uncorrelated variables (S 
and P) correctly approximate the experimental data (see Figure 2 for details). 

 

Conclusions 

In this report we describe a mice motor skill task with an implicit confidence report. Mice 
are capable of learning a self-paced operant accurate task with an end point constrained 
by strict upper and lower limits. The results also show, consistent with previous reports 
(Santos et al., 2015), that behavioural variability is differentially modulated depending on 
task relevance. Besides, when given the chance to wager on their most recent 
performance (by aborting trials), mice do so by selectively aborting trials contingent to 
error. This shows that mice keep track of their own performance and compute the 
difference to a target performance before feedback is provided (Figure 55). 
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The time spent in the magazine during the waiting interval follows a bimodal distribution: 
mice on average wait the whole interval (when committed) or leave shortly after arriving 
(in aborted trials). Furthermore, in addition to the decision to abort a trial when given the 
chance, mice approach the magazine on average faster when the decision to commit is 
selected and slower when abort is chosen. This suggests that the abort decision is defined 
before the mice reach the magazine and the report is collected. A similar analog (but 
explicit) report of confidence was observed in human's reaction time correlated with 
difficulty of a perceptual decision task (Kiani et al., 2014). One interpretation is that 
confidence estimation is more ubiquitous than originally expected and might be computed 
regardless of a trial structure where abort decision is probed. 

When evaluating a just performed action, animals integrate variables beyond the temporal 
scope of execution. Such variables as motivation, attention, satiation and exhaustion 
might affect confidence estimation of actions. Logistic regression analysis shows that a in 
addition to a fast variable correlated to task performance, a slower variable correlated 
with trial abortion determines the choice to commit to a given trial (Figure 58). 
Computational modeling further reinforces the legitimacy of a 2 variable hypothesis. It 
remains unclear what are the neural substrates of the slow variable observed in the 
Logistic regression analysis. 

Commonly referred as the sense of agency, the experience of being in voluntary control 
over one’s own actions and, as a result, operating on the environment through goal-
directed actions, is thought to be a defining human quality. The current report shows that 
animals are capable of monitoring their own performance. Moreover, the longer the 
waiting interval (analogous to the cost) the sharper the U shaped fraction of aborted trials 
vs sequence length. This result is consistent with previous data that support the hypothesis 
that effort increases the sense of agency (Demanet et al., 2013) but it is at odds with 
other data that suggest that the sense of agency is decreased when the contiguity between 
action and outcome is increased (which diminishes the temporal binding) (Moore et al., 
2009). 

This task paves the way for the investigation of the brain circuitry required for the 
calculation of confidence in action policies. The brain areas implicated in the estimation of 
confidence of action performance remain unknown. We are investigating the role of the 
Anterior Cingulate Cortex (ACC) previously implicated in error detection as well as the 
somatosensory system (especially S1 and M1) which have been implicated in sensory-motor 
integration. We predict that optogenetic inactivation of ACC would increase the overall 
fraction of aborted trials without changing the accuracy of the performance monitoring 
while inactivation of S1 will lead to a flat distribution of fraction of aborted trials, 
therefore a degradation of the ability of the animals for confidence estimation in action 
performance. 

 
Data Provenance 
The mouse data set on confidence estimation and action performance were collected at 
the Champalimaud Centre for the Unknown in Lisbon, Portugal by Rodrigo Freire Oliveira 
(post-doc at the Neurobiology of Action under the supervision of Dr. Rui M. Costa). 
 
Data Location 
Behavioral data were deposited on a server at 
http://sp3.s3.data.kit.edu/3_2_1/Dataset2/SP3.mat 
 
 
 
 
 

http://sp3.s3.data.kit.edu/
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Completeness of data sets and models 
The data collected so far includes all the behavioural experiments. The behavioural data 
were used to develop the first iteration of the model described in the text. Further 
development in the models is ongoing. 
 
Data quality and value 
The data collected shows the development of an implicit report of confidence estimation 
in action performance. It suggests that animals keep track of their own performance and 
decide on aborting ongoing trials based on a fast variable (depending on performance) and 
a slow variable (depending on motivation/engagement in task). The model simulation and 
analysis further reinforces this interpretation. 
 
Publication: in preparation. 
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2.2 Mapping and understanding the neuronal circuits involved in 
motivation, emotion and reward 

Task T3.2.2 - Mathias Pessiglione (ICM) 

Overview 

Mathias Pessiglione, Mauricio R. Delgado “The good, the bad and the brain: Neural 
correlates of appetitive and aversive values underlying decision making”, Current Opinion 
in Behavioral Sciences. 5:78-84. 

 

Abstract 

Approaching rewards and avoiding punishments could be considered as core principles 
governing behavior. Experiments from behavioral economics have shown that choices 
involving gains and losses follow different policy rules, suggesting that appetitive and 
aversive processes might rely on different brain systems. Here we contrast this hypothesis 
with recent neuroscience studies exploring the human brain from brainstem nuclei to 
cortical areas. A strict anatomical divide seems difficult to draw, as appetitive and 
aversive stimuli appear to be processed in a flexible manner that depends on a context-
wise subjective reference point. However, some valence specificity can be defined in the 
sense that net values (discounting appetitive by aversive values) are signaled with 
enhanced activity in some circuits, versus reduced activity in others. This dichotomy might 
explain why drugs or lesions can produce valence-specific effects, biasing decisions 
towards approaching a reward or avoiding a punishment. 

 

Highlights 

- The same brain regions process rewards or punishments across reinforcer modalities.  
- No strict separation of brain systems processing appetitive and aversive events. 
- Appetitive or aversive depends on a context-dependent subjective reference point. 
- Some brain regions integrate appetitive and aversive aspects into net values. 
- Net values are positively encoded in some brain regions, negatively in others. 
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Data set: Pharmacological manipulation of motivational processes 

 

Dissociation of motor and motivational functions of dopamine in humans 

Raphaël Le Bouc1,2,3, Lionel Rigoux1,2, Liane Schmidt4,5, Bertrand Degos2,6, Marie-Laure 
Welter2,6, Marie Vidailhet2,6, Jean Daunizeau1,2, Mathias Pessiglione1,2  

 

 (1) Motivation, Brain & Behavior (MBB) Team, Brain & Spine Institute (Institut du cerveau et de la Moelle 
Epinière - ICM), Hôpital de la Pitié-Salpêtrière, 75013, Paris, France  
(2) INSERM UMR 1127, CNRS UMR 7225, Université Pierre et Marie Curie (UPMC-Paris 6), Hôpital de la Pitié-
Salpêtrière, 75013, Paris, France 

(3) Urgences cérébro-vasculaires, Hôpital de la Pitié-Salpêtrière, APHP, Paris, France 
(4) INSEAD Faculty & Research, Centre Multidisciplinaire des Sciences Comportementales Sorbonne 
Universités-INSEAD, 6 rue Victor Cousin, 75005 Paris 

(5) Economic Decision-Making Group, Laboratoire des Neurosciences Cognitives, Ecole Normale Supérieure, 
Département d’Etudes Cognitives, 29 rue d’Ulm, 75005 Paris, France 

(6) Département des Maladies du Système Nerveux, Centre Expert Inter-Régional de la Maladie de Parkinson, 
Hôpital de la Pitié-Salpêtrière, APHP, Paris, France 

 

ABSTRACT 

Motor dysfunction (e.g., bradykinesia) and motivational deficit (i.e., apathy) are hallmarks of Parkinson’s disease (PD). Yet it 
remains unclear whether these two symptoms arise from a same dopaminergic dysfunction. Here, we developed a 
computational model that articulates motor control to economic decision theory, in order to dissect the behavior of 24 PD 
patients, tested On and Off dopaminergic medication, in motivation and choice tasks that both involved a trade-off 
between physical effort and financial reward. Model-based analyses in both tasks captured two differences, in reward 
sensitivity and movement dynamics, with two independent parameters, which predicted clinical improvement in apathy 
and motor dysfunction, respectively. We conclude that dopamine has independent roles in motivational and motor 
processes: it increases the amount of effort that subjects are willing to produce for a given reward, and accelerates the 
production of this effort irrespective of reward level. 

SIGNIFICANCE STATEMENT 
Many neurological conditions are characterized by motor and motivational deficits which both result in reduced behavior. It 
remains extremely difficult to disentangle whether these patients are simply unable or do not want to produce a behavior. 
Here, we propose a model-based analysis of the behavior produced in tasks that involve trading physical efforts for 
monetary rewards, so as to quantify parameters that capture motor dynamics and sensitivity to reward, effort and fatigue. 
Applied to Parkinson’s disease, this computational analysis revealed two independent effects of dopamine enhancers, 
which predicted clinical improvement in motor and motivational deficits. Such computational profiling might provide a 
useful explanatory level, between neural dysfunction and clinical manifestations, for characterizing neuropsychiatric 
disorders and personalizing treatments. 

 

INTRODUCTION 

Why don’t we make more effort? Is it because we don’t 
want to, or just because we can’t? This question is 
particularly hard to address in the case of patients with 
pathological conditions that combine motivational and 
motor deficits, such as Parkinson’s disease (PD). Some of 
the motor symptoms that characterize PD, such as akinesia 
(paucituy of movement) or bradykinesia (movement 
slowness) are difficult to disentangle from apathy 
(motivational deficit), usually defined as a reduction of 
goal-directed behavior.  

Candidate neurobiological mechanisms underlying motor 
and motivational deficits both involve dopamine. Motor 
symptoms (Rodriguez-Oroz et al., 2009) are primarily 

caused by the degeneration of dopaminergic neurons in the 
substantia nigra pars compacta (SNpc) that project on 
dorsal parts of the striatum(Ehringer and Hornykiewicz, 
1960; Kish et al., 1988). Apathy, one of the most frequent 
non-motor symptoms in PD (Brown and Pluck, 2000; Marin, 
1991; Starkstein et al., 1992), might also relate to dopamine 
depletion (Czernecki et al., 2008; Schmidt et al., 2008; 
Thobois et al., 2010), but more specifically to the 
degeneration of dopaminergic projections to the ventral 
striatum (Remy et al., 2005) arising from the ventral 
tegmental area (VTA) (Brown et al., 2012; Javoy-Agid and 
Agid, 1980). Thus, dissociation of motor and motivational 
deficits in PD requires a proper articulation of the putative 
roles of dopamine in motivation and motor functions, an 
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issue that has only recently received consideration in 
theoretical neuroscience (Rigoux and Guigon, 2012; 
Shadmehr et al., 2010). 

Recent investigations of motor deficits have suggested that 
the kinematic characteristics of movements are preserved 
in PD, and that bradykinesia can be explained by a shift in a 
cost/benefit optimization process (Baraduc et al., 2013; 
Mazzoni et al., 2007). This optimization has been formalized 
in optimal control theory, which assumes that movement 
speed is adjusted so as to minimize a cost, related to the 
accuracy of the movement end point, or to the energy 
expended during movement execution (Guigon et al., 2007; 
Harris and Wolpert, 1998; Todorov and Jordan, 2002). 
However, the benefit is typically not taken into account in 
optimal control theory (Rigoux and Guigon, 2012), and 
consequently reward level has not been manipulated in 
previous investigations of motor deficits exhibited by 
Parkinsonian patients. 

On the other hand, investigations of motivational deficits 
following dopamine depletion have generally neglected 
motor processes, even if testing motivation involves 
reading a motor output (Berridge, 2004). Incentive 
motivation can be construed as an implicit mechanism 
invigorating action execution in proportion to the expected 
reward, or as an explicit choice to exert more effort in 
order to get more reward. It has been formalized in 
economic decision theory, as well as in optimal foraging 
theory, as an optimization process that maximizes reward 
value while minimizing effort cost (Stephens and Krebs, 
1986). The role of dopamine in promoting high effort – high 
reward behavioral policy has been well established in 
animals (Walton et al., 2006), and more recently evidenced 
in humans (Treadway et al., 2012; Wardle et al., 2011). 
However, the paradigms and analyses used in these 
seminal works did not allow specifying the pro-motivational 
effect of dopamine as either an enhancement of reward 
value or an alleviation of effort cost, which was also 
confounded with delay of reward delivery. 

The aim of the present study is to provide a principled 
account of the motor and motivational functions of 
dopamine. For this, we developed a computational model 
that allows dissecting the effects of dopamine enhancers 
on the behavior produced by Parkinsonian patients in a 
cost/benefit trade-off task. The task was adapted from a 
behavioral paradigm in which payoff depends on a physical 
effort – the force exerted on a handgrip. More precisely, 
payoff was based on force peak, because it is a measure of 
action vigor that avoids confound with delay. This paradigm 
has been used previously in fMRI and lesion studies to 
demonstrate the implication of the ventral striato-pallidal 
complex in translating higher monetary incentives into 
greater physical effort (Pessiglione et al., 2007; Schmidt et 
al., 2008, 2012). Here, we implemented two versions of the 
paradigm (Figure 60), to capture both the processes that 
have been described as implicit invigoration and as explicit 
decision-making. The first version is an incentive force task, 
in which participants were free to exert any force between 
zero and their maximum, knowing that the payoff would be 
proportional to the force peak and to the monetary 
incentive, which was varied on a trial-by-trial basis. The 
second version is a binary choice task in which participants 

had to select either a variable high-reward/high-effort or a 
fixed low-reward/low-effort option.  

 
Figure 60: Behavioral tasks 

Successive screenshots displayed in one trial, with duration 
in milliseconds. (A) The incentive force task. After a fixation 
cross, subjects are shown the monetary incentive as a coin 
image (0.1, 0.2, 0.5, 1, 2, 5 €). This is the trigger to exert a 
force on a hand grip. Online feedback on the force 
produced is provided as a cursor moving up and down 
within a scale graduated from 0 to the maximal force of the 
subject. The height reached by the cursor determines the 
fraction of the monetary incentive earned in the current 
trial. (B) The binary choice task. After a fixation cross, 
subjects are shown two options side by side, each 
corresponding to a potential monetary reward (coin image) 
associated with a required force level (orange bar). Subjects 
select their preferred option on a keyboard and must then 
produce the associated force (i.e., raise the cursor up to the 
orange bar). In both tasks, cumulative total of monetary 
earnings is indicated at the end of the trial. 

The model combines formalisms of optimal control theory, 
with minimization of the cost linked to the timing of force 
production, and decision-making principles, with 
optimization of the financial benefits relative to effort 
costs. When adjusted to the behavior observed in the two 
tasks through model fitting procedures, the free 
parameters give a computational profile for each patient 
and session. By comparing two sessions, one performed 
after 12-hour withdrawal of medication (Off state) and one 
performed one hour after last intake of dopamine 
enhancers (On state), we were able to specify the 
computational parameters that are under the influence of 
dopamine: namely reward sensitivity and motor dynamics. 
These two independent computational effects of dopamine 
enhancers respectively predicted the clinical manifestations 
of motivational and motor dysfunction. 

RESULTS 

Patients 

Demographic data and clinical assessments have been 
summarized in Table S1. Patients (n=24) and controls 
(n=25) did not differ in terms of gender (13/12 vs 7/17, 
χ2

(47)=2.64, p=0.10), age (61.2 vs 57.0, T(47)=1.63, p=0.11), or 
education (5.9 vs 5.2, T(40)=1.15, p=0.26). As one could 
expect, we found higher apathy scores in Off-PD patients 
than in controls (Starkstein score: 14.3 vs. 5.2, T(42)=6.63, 



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 147 / 
281 

 

p<0.001). In PD patients, dopaminergic medication (either 
levodopa or dopamine receptor agonists) not only 
significantly decreased motor symptoms (UPDRS-III score: 
32.8 vs. 11.7, T(22)=9.75, p<0.001), but also significantly 
reduced apathy scores (Starkstein score 14.3 vs. 8.9, 
T(16)=6.63, p<0.001) yet without normalizing them to 
controls (Starkstein score: 8.9 vs. 5.2, T(44)=3.52, p<0.001). 
In the following, we report comparisons between controls 
and Off-PD patients to assess disease effect, and between 
Off-PD and On-PD patients to assess medication effect.  

 

Dopamine effect on force pulse dynamics 

We first assessed how disease status and dopaminergic 
treatment affected motor contraction during force pulse, 
irrespective of monetary incentives (Figure 61A and B).  

Controls and On-PD patients produced on average higher 
force peaks than Off-PD patients in both the force task 
(T(43)=2.41, p=0.010; T(19)=2.29, p=0.019) and the choice 
task (T(43)=4.53, p<0.001; T(19)=3.27, p=0.002). In addition, 
the force rise was faster, i.e. produced with higher peak of 
yank (the temporal derivative of force) in controls and On-
PD compared to Off-PD patients in both the force task 
(T(43)=4.51, p<0.001; T(19)=2.51, p= 0.011) and the choice 
task (T(43)=4.07, p<0.001; T(19)=3.19, p=0.002). A similar 
difference was observed during the relaxation phase 
(Figure 61C): the decline in force also exhibited greater 
negative yank peak in controls and in On-PD compared to 
Off-PD patients (T(43)=7.64, p<0.001; T(19)=4.84, p<0.001). 
These slowing effects of dopamine depletion on contraction 
and relaxation yanks were correlated across patients 
(Pearson’s rho=0.56, p=0.01; see Figure 61F). Below, we 
intend to demonstrate that the effects on force and yank 
peaks stem from independent motivational and motor 
functions of dopamine. 

Dopamine effect on binary choice 

We then tested whether PD and dopaminergic medication 
affect the amount of effort allocated to the different 
reward magnitudes in the choice task (Figure 60B), by 
looking at the indifference points obtained after 
convergence of the stair-case procedure. The three groups 
displayed a significant effect of incentives on choices 
(Figure 61D), meaning that they were willing to produce 
higher force peaks for higher incentives (all p<0.001). 

However, this effect (regression slope) was significantly 
reduced in Off-PD patients compared to both On-PD 
patients (T(19)=2.19, p=0.021) and controls (T(43)=1.76, 
p=0.039). Post-hoc comparisons showed that controls and 
On-PD patients chose higher force peaks than Off-PD 
patients specifically for the highest (T(43)=3.51, p<0.001; 
T(19)=2.76, p=0.006), but not for the lowest incentive level 
(T(43)=0.41, p=0.341; T(19)=0.50, p=0.312).  

 
Figure 61: Behavioral results 

(A,B,C) Average force dynamics for controls subjects 
(black), On-PD (green) and Off-PD (red) patients. 
Histograms show the average force peaks and yank peaks. 
Yank is the derivative of force with respect to time (df/dt). 
Force is expressed as a fraction of the subject-wise highest 
measure, and yank as this fraction per second. (A) 
Contraction phase in the choice task. (B) Contraction phase 
in the force task. (C) Relaxation phase in the force task. (D, 
E) Mean effects of incentives on selected forces (indifferent 
points) in the choice task (D), and on produced force peaks 
in the force task (E). Incentives are expressed in euros. (F) 
Correlation between dopaminergic effects on contraction 
and relaxation yank peaks in the force task. Each dot is a 
patient. (G, H, I) Scaling law relating yank peak to force 
peak. (G) Contraction phase in the choice task. (H) 
Contraction phase in the force task. (I) Relaxation phase in 
the force task. In all graphs, error bars are ± inter-subject 
SEM. 
 

Dopamine effect on incentive motivation 

Next, we tested in the force task (Figure 60A) whether 
disease status and dopaminergic medication affect 
incentive motivation, the process by which higher expected 
rewards are translated into greater efforts. The force peak 
significantly increased with incentive level in the three 
groups (Figure 61E, all p<0.001), but this effect (measured 
by the regression slope) was smaller in Off-PD compared to 
On-PD patients (T(19)=2.11, p=0.024), and to controls 
(T(43)=2.35,  p=0.012). As in the choice task, post-hoc 
comparisons showed that control subjects and On-PD 
patients produced more force than Off-PD patients for the 
highest (T(43)=4.15, p<0.001; T(19)=2.92, p=0.004) but not for 
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the lowest incentive level (T(43)=0.49, p=0.315; T(19)=1.36, 
p=0.096).  

Dopamine effect on motor scaling law 

The preceding results indicate that dopamine has a similar 
role in the two tasks: it amplifies the weight of monetary 
incentives on effort production. Besides these motivational 
effects, motor effects were observed when examining the 
coupling of force kinematics parameters. Higher force 
peaks were linearly associated with greater yank peaks 
during both the contraction phase (Figure 61G and H, all 
p<0.001), and the relaxation phase (Figure 61I, all p<0.001). 
As shown in preceding analyses, the range of force peaks 
displayed by PD patients, in response to incentive levels, 
was narrower than in controls, and even more when Off 
compared to On. Yet the linear relationship between force 
and yank peaks was conserved in patients. Dopamine 
depletion manifested as a downward shift, meaning that 
equivalent force peaks were associated with lower yank 
peaks. This shift in the force-yank scaling law was significant 
in both the choice task (contraction phase, HC vs Off-PD: 
T(43)=3.11, p=0.002; On-PD vs Off-PD: T(19)=2.34, p=0.015) 
and the force task (contraction phase, HC vs Off-PD: 
T(43)=4.79, p<0.001; On-PD vs Off-PD: T(19)=1.92, p=0.035; 
relaxation phase, HC vs Off-PD: T(43)=7.50, p<0.001; On-PD 
vs Off-PD: T(19)=3.44, p=0.001). Thus, on top of the 
motivational effect of dopamine depletion that narrowed 
down the range of force peaks observed for the different 
incentive levels, a motor effect diminished the speed with 
which these force peaks were attained.  

Computational analysis 

We then studied how these dopamine-dependent 
modulations of effort production could be explained at the 
computational level. We developed a normative model that 
predicts how force dynamics should be selected in 
principle, depending on two contextual factors (incentive 
level and trial number) and four free parameters (reward 
sensitivity, cost sensitivity, fatigability and motor time 
constant: Kr, Kc, Kf, and τ). The predictions arise from a two-
step optimization. The first step uses motor control 
equations to calculate the cost associated to each force 
peak (Figure 62, top). This estimation determines the 
dynamics of force rise over time (and therefore the yank 
peak): the one that minimizes the motor cost. The second 
step uses decision theory to calculate the net value 
(benefits minus costs) of each force peak (Figure 62, 
bottom). This valuation process determines which force 
peak will be produced in the force task, or selected in the 
choice task: the one that maximizes the net value. Note 
that one additional parameter was included in the model to 
fit the choices: this is choice temperature (beta), which 
captures the stochasticity of decisions. 

We used simulations to verify that each parameter 
controlled a specific behavioral pattern. We then examined 
which free parameters best explained the effects of 
dopaminergic medication on choices and force and yank 
peaks. These effects could a priori be accounted for by a 
modulation of any of the four parameters. We considered 
the 24 possible combinations (modulation or no modulation 
for any of the four parameters). These 16 models were 
estimated and compared by families for each parameter 

using Bayesian model selection. The winning model was the 
one where dopaminergic medication affects both Kr and τ 
(with family exceedance probabilities xp>0.95), increasing 
the weight of monetary incentives and decreasing the time 
constant of motor contraction/relaxation (Figure 63A). This 
model provided a good fit for the three behavioral 
measures, i.e. force peak (mean R2=0.94), choice (mean 
accuracy=0.70), and yank peak (mean R2=0.92). We also 
tested whether the same parameters could account for the 
two tasks, by comparing this family of 16 models to an 
equivalent family with distinct sets of parameters for the 
two tasks. Although the latter better explained the data 
(xp>0.95), none of the parameters showed a consistent 
effect of task across subjects (all p>0.05). Moreover, we 
separately estimated the effects of dopamine in the two 
tasks, and found correlated estimates across patients for 
both Kr (rho=0.78, p<0.001) and τ (rho=0.43, p=0.049). 

 
Figure 62: Computational principles 

(A) Example of a force pulse (top), with force expressed in 
Newtons. The x-axis indicates time after trial onset in 
seconds. Yank (bottom) was calculated as the temporal 
derivative of force. Active periods of force pulses (in grey) 
were modeled as sigmoid functions (dashed lines) that 
approximate the solutions of an optimal motor-control 
model (see methods). The three colors correspond to three 
a priori possible trajectories in time. (B) Instantaneous cost 
(arbitrary units) for each value of force and yank. Simulated 
force-yank trajectories in time for three force pulses of 
decreasing duration (0.6, 0.3, 0.2 sec) and all reaching 70% 
of the maximal force are shown in the cost space (white 
lines). Circles indicate cost estimated at every 20ms step. 
The total cost of each force pulse is the integral of 
instantaneous costs across the duration of the active period 
of force pulse. (C) Total cost of force pulses (arbitrary units) 
as a function of effort duration (in seconds). This function 
defines the optimal duration (in green) that minimizes the 
cost of the force pulse. (D) Expected cost (arbitrary units) 
associated to every force peak, simulated at the optimal 
duration of force pulse (peak latency). Force peaks are 
expressed as a proportion of the maximal force. (E) 
Expected benefit (arbitrary units) is proportional to the 
incentive at stake and to the force peak in the incentive 
force task. Three possible monetary incentives are 
represented here (0.5, 1, 2€). The model assumes that force 
production is valuable in itself, even if the expected 



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 149 / 
281 

 

financial reward is null. Because of this, the expected 
benefit can be superior to incentive level. (F) Net value 
associated to every force peak, for three incentives (0.5, 1, 
2€). 

Finally, we examined whether the model parameters could 
predict the clinical changes observed in patients after 
dopaminergic treatment. These clinical changes were 
improvement in both apathy and motor dysfunction 
assessed with the Starkstein apathy score and the UPDRS-III 
motor score, two effects that appeared unrelated across 
patients (rho=-0.11, p=0.66). Similarly, the effects of 
dopaminergic medication on Kr and τ seemed quite 
independent (rho=-0.12, p=0.69). Thus we tested the 
correlation between the changes in Kr and τ and the 
changes in apathy and motor dysfunction. We found that Kr 
modulation (rho=-0.52, p=0.02), but not that of τ  (rho=-
0.15, p=0.29), significantly predicted the alleviation of 
apathy, whereas τ modulation (rho=-0.44, p=0.03), but not 
that of Kr (rho=0.02, p=0.54), significantly predicted the 
improvement of motor dysfunction (Figure 63B).  

DISCUSSION 

In this study, we assessed the effects of dopamine 
depletion (comparing Off PD patients to healthy controls) 
and dopamine repletion (comparing Off to On PD patients) 
on effort allocation, using both binary choice and incentive 
force tasks. Model-free analyses showed that dopamine is 
causally involved in 1) amplifying the boosting effect of 
potential rewards on force production and 2) speeding up 
force rise to the peak, irrespective of expected rewards. We 
then developed a computational model of effort production 
in order to further characterize the dissociation of 
motivational and motor effects, focusing on the effect of 
dopaminergic medication in PD patients. Model-based 
analyses showed that dopamine enhancers increase reward 
sensitivity and decrease the time constant in motor drive, 
while leaving unaffected other parameters such as cost 
sensitivity, fatigability or choice temperature. In the 
following, we discuss these computational effects and their 
possible neural implementation. 

Our results are consistent with the idea that dopamine 
helps with producing greater effort in order to obtain 
greater reward, an idea that has received a good wealth of 
evidence in animals (Salamone et al., 2012; Walton et al., 
2009). Recent studies in humans have shown that d-
amphetamine, a dopamine enhancer, enhances the 
willingness to exert effort (Treadway et al., 2012; Wardle et 
al., 2011). Here, we provide the first demonstration in 
humans that dopamine similarly enhances the propensity 
to select high reward / high effort options (in the choice 
task), and the energy actually invested in instrumental 
behavior (in the force task). These two processes could be 
considered as two different components of the behavior: 
orientation (which goal is selected) and intensity (how 
much energy is expended in goal pursuit). Our model 
nonetheless treats them as two instances of a same 
decision problem that consists of choosing a pair of effort 
and reward levels. The difference is that only two options 
are available in one task, whereas the option set is 
continuous (between 0 and maximal force) in the other 
task, making binary choice a special case of the incentive 

motivation problem. Yet from a psychological perspective, a 
crucial difference might be that the selected reward-effort 
pair is explicitly expressed before effort production in the 
binary choice but not in the incentive force task. This could 
change the behavioral output (force peak), as whenever 
possible the decision might be dynamically refined on the 
basis of sensory feedback. Our model is essentially static: it 
determines the best option on the basis of anticipated 
estimation of costs and benefits. Although it provided a 
good fit of force data in both tasks, the absence of dynamic 
adjustment might be one of its limitations.  

Although previous studies did show that dopamine 
enhances the willingness to exert higher effort for higher 
reward, they did not disentangle between the possibilities 
that dopamine could increase reward attractiveness or 
decrease effort painfulness. Our model-based analyses 
suggested that the motivational effect of dopamine can be 
accounted for by an increase in Kr, the subjective weight of 
expected reward in the cost-benefit computation. This 
specific effect on Kr could also account for why dopamine 
helps overcoming various types of costs when seeking 
rewards, from effort (Salamone et al., 2012), to risk (St 
Onge and Floresco, 2009), or delay (Denk et al., 2005). The 
Kr effect is also consistent with the demonstration that 
midbrain dopaminergic neurons respond to stimuli that 
predict future rewards (Schultz et al., 1997), encode reward 
magnitude (Roesch et al., 2007; Tobler et al., 2005), and 
promote responses to reward-predicting cues (Arsenault et 
al., 2014; Tsai et al., 2009). Our finding also echoes a model 
suggesting that action vigor (i.e., frequency of lever press) is 
determined by the average reward rate per time unit, 
which would be encoded by dopamine level (Niv et al., 
2006). This variable can be compared to our Kr parameter, 
which weighted the expected reward per force unit, and 
which was amplified by dopaminergic medication.  

Conversely, dopamine did not change the fatigability 
parameter Kf nor the subjective weight of effort cost, Kc. 
These results are consistent with the absence of support for 
a role of dopamine depletion in fatigue (Willner et al., 
1992), and with the observation that measures of nucleus 
accumbens dopamine or dopaminergic neuron activity are 
much more sensitive to expected reward than to expected 
effort (Gan et al., 2010; Pasquereau and Turner, 2013). 
Note that although costs were subtracted to benefits in our 
model, discounting was not linear. This is because the cost 
function was not linear but concave, following on the 
demonstration that perceived effort increases as a power 
function with force (Stevens, 1957). It has been recently 
shown that concave (parabolic) cost function provide a 
better fit of effort discounting than hyperbolic or linear 
functions (Hartmann et al., 2013). Divisive functions such as 
hyperbolic discounting are well adapted to delay 
discounting, since net values are kept positive, in 
accordance with the idea that an extremely delayed reward 
is still better than nothing. Yet this may not be true of effort 
discounting: climbing a mountain for a peanut may be 
worse than doing nothing. This is the reason why we opted 
for subtractive discounting, which allows for negative net 
values (worse than nothing).  
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Figure 63: Computational dissection of dopaminergic 
functions 

(A, top) Results of a Bayesian model selection comparing 
the plausibility of different possible modulations of 
behavioral response by dopaminergic medication in PD 
patients. For each parameter, the families of models with 
and without a modulation by dopaminergic medication 
were compared. Exceedance probability indicate how likely 
it is that one family is more frequent than the other in the 
population of PD patients. (A, bottom) Estimates of model 
parameters calculated at the session level in controls 
(black), On-PD (green), and Off-PD patients (red). (B) 
Correlation of medication effects on computational 
parameters Kr and Tau with clinical effects on apathy 
(Starkstein score) and motor dysfunction (UPDRS III score). 
Each dot is a patient. 

Crucially, we found another effect of dopaminergic 
medication that was independent from reward level: after 
dopamine depletion, equivalent force peaks were produced 
with lower yank peaks, and this was independent from the 
restriction of force peaks produced for the different 
incentive levels. A similar shift in the motor scaling law had 
already been observed in PD patients performing a non-
isometric task (Baraduc et al., 2013; Hartmann et al., 2013). 
Our results are consistent with the view that PD does not 
fundamentally change movement organization but restricts 
movement kinematics (Baraduc et al., 2013; Mazzoni et al., 
2007). In our model, dopamine depletion decreased the 
time constant τ, which adjusts how motor drive impacts 
movement kinematics. Lower τ translates into slower 
muscle contraction for a given motor drive, and also slower 
relaxation. The mechanisms by which dopamine depletion 
slows down motor dynamics might involve an impaired 

selectivity in basal ganglia processing, leading to a failure to 
activate appropriate agonist muscles, or to inhibit 
antagonist muscles (Mink, 1996; Pessiglione et al., 2005). 
The modulation of τ and its consequences on contraction 
and relaxation slowness could therefore account for both 
bradykinesia and rigidity. 

The motivational and motor functions of dopamine might 
be supported by topographically distinct functional 
networks, namely the mesolimbic and the nigrostriatal 
pathways. Apathy and motor symptoms might therefore 
reflect the heterogeneity in space and time of degeneration 
in PD. The dopaminergic loss occurs sooner and is stronger 
in the SN than in the VTA (Damier et al., 1999; Hirsch et al., 
1988). This translates into a gradient with stronger 
dopamine depletion in the dorso-lateral putamen, 
compared to caudate and ventral striatum (Kish et al., 
1988). On the one hand, the severity and asymmetry of 
motor symptoms in PD correlate with SN 
neurodegeneration (Du et al., 2012; Gorell et al., 1995), and 
with dopamine depletion in the dorsolateral striatum 
(Leenders et al., 1986), supporting involvement of the 
nigrostriatal pathway in motor dysfunction. On the other 
hand, the VTA has been hypothesized to play a key role in 
motivated behaviors (Tsai et al., 2009), through the 
mesolimibic projections to the NAcc (Berridge, 2007; 
Salamone et al., 2012) which has been conceived as a 
functional interface for translating motivational drives into 
motor or cognitive behaviors (Mogenson et al., 1980; 
Schmidt et al., 2012). Consistently, apathy in PD has been 
proposed to depend on the mesolimbic rather than on the 
nigrostriatal pathway, and consequently to dopaminergic 
denervation in the ventral striatum (Brown et al., 2012; 
Javoy-Agid and Agid, 1980; Remy et al., 2005; Thobois et al., 
2010).  

In conclusion, our computational analysis suggests that 
dopamine depletion down-weights expected reward in the 
cost-benefit computation, and thus lowers the acceptable 
effort costs, resulting in a reduction of goal-directed 
behaviors, i.e apathy. On top of this motivational deficit, 
dopamine depletion might also impair how acceptable 
costs are translated into movement kinematics, resulting in 
slower actions, i.e. bradykinesia. The motivational and 
motor effects of dopamine were captured by two distinct 
parameters of the model, which were correlated across 
patients to clinical assessments of motivational and motor 
deficits. We argue that computational phenotyping, i.e. the 
characterization of patients by model parameters adjusted 
on their behavior, might provide a useful intermediate 
explanation level between the clinical manifestations and 
the underlying neurophysiology. This computational 
approach could be applied to various pathological 
situations in order to help with personalizing treatments. In 
the present case, the two computational effects of 
dopamine are likely underpinned by distinct neural circuits, 
the mesolimbic and nigrostriatal pathways. Yet 
demonstrating such a link between computational 
parameters and underlying neural circuits would require 
further investigation.  

METHODS 

Force Task 
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The force task was designed to evaluate how subjects 
adjust their effort to incentive level. Subjects are instructed 
to try and win as much money as possible during the task, 
and are encouraged to perform as if they were playing for 
real money. The task includes 60 trials, corresponding to 10 
repetitions of 6 monetary incentives (0.1, 0.2, 0.5, 1, 2, 5 €) 
presented in a random order. Each trial starts by the display 
of a fixation cross for 500ms. A monetary incentive then 
appears on the top left of the screen, presented as a coin or 
a bill image, simultaneously with a graduated scale (Figure 
60A). The top line corresponds to producing the calibration 
force and winning the full incentive; each graduation 
corresponds to a fraction (10%) of the monetary incentive. 
Subjects are told that payoff was calculated as the fraction 
of the incentive proportional to the height they reached 
within the scale. They are provided with real-time visual 
feedback of the exerted force (with a cursor moving up and 
down within the scale). Appearance of the scale on screen 
is the trigger signal for subjects to start squeezing the 
handgrip so as to move the cursor up as high as possible, 
within a 5000ms interval. After every trial, the cumulative 
total of the money earned so far is displayed for 2000ms.  

Choice Task 

The choice task was designed to assess how subjects 
discount the value of reward prospects with the amount of 
effort that must be invested. Subjects are presented with a 
series of choices between low-reward/low-effort and high-
reward/high-effort options. The low-reward/low-effort 
option is always presented on the left of the screen, and 
yields a reward of 0.05€ after exerting an effort 
corresponding to 10% of the subject’s calibration force. The 
high-reward/high-effort option associates one of 6 possible 
rewards (0.1, 0.2, 0.5, 1, 2, 5 €) with a force level varying 
between 10% and 90%. Each option is presented as a coin 
or a bill image on top of a graduated scale with a red bar 
indicating the required force level (Figure 60B). Subjects 
decide whether or not it is worth exerting a higher effort to 
win a higher reward by pressing on the right or left arrow in 
a keyboard. The chosen option then remains on screen and 
the corresponding effort is implemented with the same 
visual display as in the force task. After every trial, the 
cumulative total of the money earned so far is displayed for 
2000ms.  
A staircase procedure was used to adjust the force level 
associated with every reward level in the high option, 
depending on subjects’ choices, so as to gradually converge 
to indifference points, where subjects equally choose 
between the two options. At the beginning, the 6 possible 
rewards of the high option were respectively associated 
with efforts corresponding to 30/40/50/60/70/80% of the 
calibration force. After each choice, the effort level was 
either increased by 5% for the next occurrence of the same 
incentive, if the high option was chosen, or decreased by 
5% in the opposite case. The task was made up of 15 
repetitions of the 6 monetary rewards presented in a 
random order, for a total of 90 trials. This was sufficient to 
obtain a stable indifference point for each reward level. 

Computational model 

The basic principle of the model is a cost/benefit 
optimization (Eq. 1), where subjects intend to choose and 

produce the optimal force peak F, i.e. the one that 
maximizes a discounted value V(F), calculated as the 
difference between expected benefits B(F) and expected 
effort cost 𝐶(𝐹). We opted for linear discounting to allow 
for negative net values, which accounts for the fact that 
doing nothing is sometimes better. 

(1)  𝑉(𝐹) =  𝐵(𝐹) − 𝐶(𝐹)  

The benefit term B(F) was decomposed into reward-
dependent and reward-independent components (Eq. 2). 
The reward-dependent component was by design 
proportional to the reward at stake R and to the exerted 
force F in the force task (see Fig. 3E), and only to the 
reward at stake in the choice task. It was weighted subject-
wise by a free parameter Kr. The reward-independent 
component reflects the benefits of producing an effort, 
outside financial aspects, and was just proportional to the 
force level F.  

(2)  𝐵(𝐹) = �𝑘𝑟𝑅𝐹 + 𝐹         (Force task)   
𝑘𝑟𝑅  + 𝐹         (Choice task)  

The expected cost C(F) was defined as the total motor cost 
M(F), multiplied by a subjective weight Kc and by a linear 
fatigue function (for the sake of simplicity), where N 
indicates the trial number and Kf the individual 
susceptibility to fatigue (Eq. 3). 

(3)  𝐶(𝐹) =  𝑘𝑐𝑀(𝐹)(1 + 𝑘𝑓𝑁) 

The total motor cost M(F) was defined after motor control 
theory. It was calculated as the integral of the 
instantaneous motor cost over the active period [0,T], i.e. 
from effort onset to force peak of an optimal force pulse 
(Eq. 4).  

(4)  𝑀(𝐹) = min𝑢 ∫ 𝑢(𝑡)2𝑑𝑡𝑇
0 ,   [𝑓(0) = 0, 𝑓(𝑇) =

𝐹, 𝑓̇(0) =  𝑓̇(𝑇) = 0] 

Optimal force pulse (i.e the rising dynamics that minimizes 
the total motor cost for a given target force F) was modeled 
as a sigmoid function (see Figure 62A) that approximates 
the solution of an optimal motor-control model (Rigoux and 
Guigon, 2012) and requires lower computational resources. 
We defined the instantaneous motor cost as the quadratic 
neural drive u(t)2, since motor control theory has shown 
that optimizing this cost minimizes the signal-dependent 
motor variability and reproduces the cardinal features of 
movement production (Guigon et al., 2007; Harris and 
Wolpert, 1998; Todorov and Jordan, 2002). The neural drive 
was calculated at each time point of the force pulse 
through a simplified model of muscular contraction (Eq. 5), 
in which the force dynamics 𝑓̇  (the dot denotes the 
temporal derivative) was determined by the neural drive 
u(t), by a free parameter τ that individually adjusts the time 
constant of motor activation/deactivation, and by the 
current level of force compared to the maximal theoretical 
muscular force of the subject Fmax (Eq. 5). Fmax was modeled 
as another free parameter, superior or equal to the highest 
force produced by the subject. It was meant to reflect the 
total muscular mass, and was thus a priori unaffected by 
pharmacological manipulations.  

 (5)  𝑓̇(𝑡) = 𝜏𝑢(𝑡)[𝐹𝑚𝑚𝑚 − 𝑓(𝑡)] − 𝜏𝑓(𝑡) 
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Equations (Eq. 3), (Eq. 4) and (Eq. 5) result in a cost function 
C(F) that links force peak F with its expected cost. This 
means that for each force level there is a unique motor 
cost, corresponding to the optimal (sigmoid) dynamics of 
force trajectory (the green one in Figure 62A, B and C). In 
other words, selecting a force peak automatically leads to 
selecting a trajectory in time, with a given yank peak, as 
reflected in the scaling law. Note that the cost function is 
explosive (Figure 62D): it goes to the infinite when subjects 
get closer to their maximal force. Thus, even if discounting 
is linear, the resulting net value function (Figure 62F) is not 
linear but follows an inverted U-shape, with a single 
maximum.  

Thus, the free parameters of the model (Kr, Kc, Kf and τ) 
adjust the weights of objective quantities (reward, force 
and trial number) to individual susceptibility, in order to 
compute a subjective net value. The modeled net value was 
then used to predict the behavioral response on each trial 
of both choice and force tasks, with specific policy rules. For 
the force task, the predicted force peak was simply the 
argument that maximized the net value function (Eq. 6). In 
the choice task, there are only two possible reward and 

force levels. The decision was modeled with a softmax 
function (Eq. 7) that converted the difference in net value 
between the two options into choice probability, 
depending on a temperature parameter β. Finally, in both 
tasks, yank peaks were predicted by the equation of 
muscular dynamics (Eq. 4). Thus, the model was inverted by 
fitting three behavioral variables: choices, force peaks and 
yank peaks. 

(6)  𝐹⋆ = argmax
F

 𝑉 

(7)  𝑃𝐵 = 1

1+𝑒
(𝑉𝐴−𝑉𝐵)

𝛽
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2.3 Dissecting the brainstem modulation of cortical decision 
computations  

Task T3.2.3 Tobias Donner (UVA), Andreas Engel (UKE) 

Overview 

Neuromodulation of cortical decision networks 

Research over the past two decades has begun to uncover the mechanisms, by which 
people select actions based on a perceptual interpretation of their sensory environment. 
This process, termed sensory-motor or perceptual decision-making, has been studied 
extensively in non-human primates and more recently in humans. Typically, subjects are 
asked to judge weak sensory signals embedded in dynamic noise and to report their 
judgments with flexibly associated motor actions. At the algorithmic level, a key 
computation in such decisions is the gradual accumulation of multiple, noisy samples of 
“sensory evidence” for particular states of the world into a “decision variable” that forms 
the basis of action selection (Bogacz et al., 2006; Brunton et al., 2013; Gold and Shadlen, 
2007; Ossmy et al., 2013; Ratcliff and McKoon, 2008; Usher and McClelland, 2001). The 
same computation is at play during higher-level decisions, such as choosing the option with 
the highest mean value from multiple streams of fluctuating numbers - a laboratory model 
of stock-market decisions (Busemeyer and Townsend, 1993; de Lange et al., 2010; Tsetsos 
et al., 2012; Yang and Shadlen, 2007). At the level of neurophysiological implementation, 
a large-scale network of cortical regions has been implicated in evidence accumulation 
(Figure 64). The posterior parietal and dorsolateral prefrontal association cortices (Donner 
and Siegel, 2011; Donner et al., 2007; Gold and Shadlen, 2007; Gould et al., 2012; Hebart 
et al., 2012; Heekeren et al., 2004; de Lange et al., 2010; O’Connell et al., 2012; Yang and 
Shadlen, 2007) seem to be the key nodes of this network. When choices are expressed as 
motor actions, pre-motor and motor cortices are also involved (Donner et al., 2009; Gold 
and Shadlen, 2000; Gould et al., 2012; de Lange et al., 2013; O’Connell et al., 2012; Wyart 
et al., 2012). Activity in all these cortical regions gradually ramps up during decision 
formation towards a critical threshold level, the crossing of which is invariably, and after a 
short delay, followed by the execution of the motor action. Biophysically detailed 
modelling has shown that the slow build-up activity is mediated by slow synaptic 
reverberation within recurrent cortical networks (Donner et al., 2007; Honey et al., 2012; 
Siegel et al., 2011, 2012; Wang, 2008). 

Critically, each node of the large-scale cortical network depicted in Figure 64 is under the 
permanent influence of a number of modulatory neurotransmitters released from certain 
brainstem centers that send ascending projections to wide parts of the cortex (Figure 64, 
red). Very little is currently known about their functional impact on cognition, and, 
specifically, on evidence accumulation during decision formation. Three observations 
indicate that neuromodulatory brainstem systems might dynamically sculpt the cortical 
network interactions underlying decision formation, and, thereby, determine the internal 
state dependence of choice behaviour. First, it has recently become clear that some of 
these brainstem centers are phasically engaged (i.e., on a sub-second to second timescale) 
during rapid cognitive acts such as sensory-motor decisions (Aston-Jones and Cohen, 2005; 
Donner and Nieuwenhuis, 2013; Sarter et al., 2009) – causing rapid, cognition-linked 
elevations of physiological arousal. This stands in stark contrast to the traditional views of 
arousal systems as operating only on slow timescales and in an automatic fashion (Haider 
et al., 2013; Harris and Thiele, 2011; Steriade, 2000). Second, the modulatory 
neurotransmitters released from these brainstem centers control key circuit parameters in 
their cortical target networks  (Aston-Jones and Cohen, 2005; Donner and Nieuwenhuis, 
2013; Polack et al., 2013). Thus, neuromodulatory brainstem systems are in an ideal 
position to control the operating mode of the entire cortical network depicted in Figure 64 
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in a coordinated fashion. Third, dysfunctions of neuromodulatory systems go hand in hand 
with disturbed (and often less flexible) choice behaviour in some of the major 
neuropsychiatric disorders (e.g., schizophrenia or depression).  

 
Figure 64: Neuromodulation of decision networks 

During visuo-motor decisions (e.g. discrimination of weak visual motion signals), “sensory evidence” is 
accumulated and translated into an action plan. This process unfolds in a recurrent network of fronto-parietal 
and motor cortices. Each node is under the influence of ascending neuromodulatory brainstem systems, which 
activate phasically during decisions. The modulatory neurotransmitters released by these systems control the 
operating mode of cortical networks. PPC, posterior parietal cortex; dlPFC, dorsolateral prefrontal cortex; 
ACC, anterior cingulate cortex. 

 

The goal of Task T3.2.3 (Dissecting brainstem modulation of cortical decision 
computations) is to uncover how cortical decision computations, the underlying cortical 
dynamics, and the resulting choice behaviour, are flexibly orchestrated by 
neuromodulatory systems – with a focus on the impact of these systems’ phasic activations. 
In this Overview Section 2.3.1, we review recent work in two fields that form the backdrop 
of our project: Research into (i) the network dynamics of sensory-motor decisions in the 
human cortex and (ii) non-invasive monitoring of neuromodulatory transients in the human 
brain. In Sections 2.3.2 and 2.3.3, we then describe our recent progress on linking these 
two research lines by means of our work within the HBP. 

 

Signatures of decision-making in the human cortex 

Recent work on cortical decision dynamics using EEG and MEG in humans has employed 
sensory-motor decision-making tasks analogous to those extensively used in seminal single-
unit recording studies in the macaque monkey cortex. This has helped identify two 
dynamical signatures of decision formation, which, in many ways, resemble the single-cell 
signatures of evidence accumulation in the macaque cortex (Gold and Shadlen, 2007): (i) 
choice-selective lateralization of beta-band power suppression in the cortical motor 
system (Donner et al., 2009; Gould et al., 2012; de Lange et al., 2013; O’Connell et al., 
2012; Wyart et al., 2012) (Figure 65), henceforth referred to as “motor beta-
lateralization”; and (ii) sustained magnetic fields or electrical potentials over parietal 
cortex (de Lange et al., 2010; O’Connell et al., 2012), henceforth referred to as “slow 
parietal potentials”.  
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Figure 65: Build-up of movement-selective motor beta-lateralization during decision 
formation 
a. Build-up of movement-selective activity in primary motor cortex during decisions about the presence or 
absence of coherent motion signals (2 s stimulus duration, followed by delay). Traces show the lateralization of 
beta-band (12-36 Hz) MEG power in motor cortex (contralateral – ipsilateral to hand indicating “yes”), which 
ramps up in opposite directions before “yes” and “no” choices and reflects the integral of the stimulus 
responses in motion-sensitive visual cortex. Adapted from ref.(Donner et al., 2009). b. Similar build-up during 
free response motion discrimination task. Subjects judged the direction of random dot motion. Traces are 
beta-band lateralization for different levels of motion coherence, pooled across choices (always ipsilateral – 
contralateral to chosen hand). Adapted from ref (de Lange et al., 2013). 
 

Motor beta-band lateralization is a well-known dynamical signature of selective motor 
preparation. Recent work has established that this signature shares the hallmark functional 
properties with the choice-selective patterns of single-cell activity observed in several 
cortical areas of the macaque brain (Figure 65). When choices are indicated with left or 
right hand movements, the lateralized suppression of beta-band power 
(contralateral<ipsilateral to upcoming movement) ramps up as a cumulative function of 
the instantaneous sensory evidence encoded in visual cortex; when the decision is then 
maintained in working memory for an instructed delay before response execution, the 
beta-lateralization also maintains an elevated amplitude (Figure 65a) (Donner et al., 
2009). When different mean levels of evidence strength (e.g. motion coherence) are 
presented on the screen, the beta-lateralization builds up at different rates (Figure 65b) 
(de Lange et al., 2013). When averaging the beta-lateralization time-locked to response in 
free-response reaction time tasks, the signals converge on a common level just before 
execution of the response, regardless of evidence strength (Figure 65b); this is consistent 
with an accumulation-to-bound mechanism (de Lange et al., 2013). Finally, and 
importantly, the motor beta-lateralization is selective for the movement choice (Donner et 
al., 2009; de Lange et al., 2013). Consequently, the experimenter can use it to predict, on 
a trial-by-trial basis, the specific upcoming choice of the subject (as quantified by a metric 
termed “choice probability” (Donner et al., 2009)) again just like single-unit activity in 
macaque cortex (Gold and Shadlen, 2007).  

The slow parietal potentials, by contrast, are not selective for the specific choice: they 
ramp up invariably of the identify of the evidence or the evolving the choice (de Lange et 
al., 2010; O’Connell et al., 2012). Two other features make them an informative 
complement to the motor beta-lateralization: (i) they are generated in parietal association 
cortex, rather than motor cortex; (ii) they reflect the decision process even when that 
process is decoupled from action planning, and, therefore, not evident in the motor beta-
lateralization (O’Connell et al., 2012). No signature with the latter property has yet been 
identified in the monkey brain. Because of their non-selective nature, the slow potentials 
might reflect a general confidence signal (i.e., reflecting the absolute value of the signed 
decision variable) and dynamically builds up, along with the unfolding decision itself. In 
sum, motor beta-lateralization and parietal potentials have complementary functional 
characteristics and should thus be tracked concurrently in future research. 
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Both electrophysiological decision signals above reflect local cortical dynamics that 
originate from specific nodes in the large-scale cortical network depicted in Figure 64. In 
that respect, they both differ from a third cortical signature of decision-making identified 
in other work: large-scale beta-band oscillations that are distributed (and coherent) across 
fronto-parietal association cortices (Figure 66). Coupled fronto-parietal beta-band 
oscillations have been found in various contexts during decision formation, in both humans 
and monkeys (Donner and Siegel, 2011; Donner et al., 2007; Gross et al., 2004; Haegens et 
al., 2011; Hipp et al., 2011; Pesaran et al., 2008; Siegel et al., 2012). The fronto-parietal 
beta-band oscillations differ in terms of several functional characteristics from the motor 
preparatory beta-band activity in motor cortex – for example, the strength of beta 
oscillations in fronto-parietal association cortex is enhanced, as opposed to suppressed, 
during decision formation. These oscillations may reflect network reverberations or 
neuromodulatory effects during the decision (Siegel et al., 2011). 

 

Figure 66: Fronto-parietal beta-oscillations 
MEG power in the 12-24 Hz range during a motion detection task in dlPFC and PPC is larger before correct 
choices than before errors. Left, time-frequency representation of power difference. Vertical bars, stimulus 
on- and offset. The beta-enhancement (white box) occurs during decision formation. Right, source 
reconstruction of beta power difference. Adapted from ref. (Donner et al., 2007). 

 

Decision-related neuromodulatory transients  

Many neuromodulatory systems are thought to be involved in some aspect of decision-
making (e.g., the dopamine system in learning action values) (Dayan, 2012). However, 
several lines of evidence implicate one system in particular as an important “orchestrator” 
of the cortical network dynamics underlying evidence accumulation in sensory-motor 
decisions: the noradrenergic locus coeruleus (LC-NA) system (Aston-Jones and Cohen, 
2005). The LC receives descending, top-down projections from frontal regions that are 
connected to the cortical network (such as the ACC; Figure 64) and sends widespread 
projections to the entire cortical network from Figure 64, including visual and parietal 
cortex (Sara, 2009). Recent single-unit recordings from monkey LC revealed phasic 
responses that are specifically linked to sensory-motor decisions (Aston-Jones and Cohen, 
2005). In other words, this low-level brainstem center is continuously informed about 
ongoing decision processes. NA released from the LC, in turn, controls the neural noise 
levels and the gain of synaptic interactions in the cortex (Aston-Jones and Cohen, 2005; 
Donner and Nieuwenhuis, 2013; Polack et al., 2013); on longer timescales, NA seems to be 
an important enabling factor for cortical plasticity mechanisms (Roelfsema et al., 2010). 
For these reasons, Task T3.2.3 focuses on the LC-NA system. This focus does not exclude 
the possibility that other neuromodulators, (e.g., dopamine or acetylcholine) might also 
exhibit phasic activations during decisions and play similar roles in the decision 
computations studied here – in fact, we are also probing into some of these other systems. 
Monitoring transient modulations in the activity of these brainstem systems non-invasively 
in humans is important, not only for studying their basic functions in the healthy brain, but 
also their disturbances in several important neuropsychiatric disorders.  

Such non-invasive monitoring can be performed in two complementary ways. First, the 
activity of specific brainstem centers can be tracked with fMRI (D’Ardenne et al., 2008; 
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Iglesias et al., 2013; Payzan-LeNestour et al., 2013). fMRI of the human LC is possible in 
principle, but it is technically challenging, due to the LC’s small size and vicinity to the 4th 
ventricle (a source of artefacts). Consequently, initial attempts using standard fMRI 
procedures for LC-fMRI have attracted a lot of attention, but were met with skepticism 
(e.g., ref. (Astafiev et al., 2010)). A substantial part of Task T3.2.3 has been devoted to 
developing an fMRI approach that overcomes these challenges (see Section 2.3.1). 

Second, neuromodulatory activity might be monitored indirectly via changes in pupil 
diameter at constant illumination. Indeed, recent studies combining pupillometry with 
advanced neurophysiological techniques in rodents have shown that ongoing pupil diameter 
closely tracks ongoing fluctuations in global cortical state – which, in turn, are thought to 
be caused by ascending neuromodulatory systems (McGinley et al., 2015). In line with 
these observations, anatomical and physiological evidence points to a close anatomical and 
functional link between neural activity in the LC and the peripheral apparatus controlling 
pupil diameter (Aston-Jones and Cohen, 2005; Joshi et al., 2016; Loewenfeld, 1993; 
Nieuwenhuis et al., 2011). Similar links may exist for other neuromodulatory centers. Thus, 
fluctuations of pupil diameter can be used as a peripheral index of the brain’s 
neuromodulatory state.  

 
Figure 67: Modeling pupil dilation response during a visual decision task 

a. Illustration of GLM. Left: Three temporal components that might drive the decision-related pupil dilation 
during a near-threshold contrast detection task in the presence of dynamic noise. Middle, pupil impulse 
response function (IRF) and best fitting beta weights. Right, predicted response for example trial. b. Mean 
decision-related pupil response and s.e.m. (grey), aligned to decision onset and to choice. Black lines, GLM 
prediction. Adapted from ref. (Gee et al., 2014). 

 
Several on-going studies in our laboratory aim to characterize in detail how non-luminance-
mediated pupil dynamics track perceptual decision processes (e.g., Figure 67). One key 
advantage of this pupillometric state index is that it can be seamlessly combined with 
electrophysiological recordings of cortical decision dynamics afforded by, e.g. MEG. In Task 
T3.2.3, we combined pupillometry with fMRI in Data Set 1 to pinpoint the specific 
brainstem regions underlying pupil dilations and map out the associated changes in cortical 
state; we combined pupillometry with MEG in Data Set 2 to identify the impact of 
neuromodulatory state on the decision-related cortical network dynamics described in this 
section above. 

 One influential account of the role of the phasic LC-NA release in sensory-motor 
decisions (Aston-Jones and Cohen, 2005) holds that the phasic LC-responses are triggered 
by the threshold-crossing of one accumulator in the cortex (the distributed nature of the 
accumulation process implies that not all “accumulator regions” might reach that 
threshold at the same time); the LC then broadcasts the decision commitment throughout 
the brain and the resulting cortical gain enhancement induced by NA then facilitates 
(speeds up) the resulting motor act. An alternative possibility is that the LC-NA release 
already occurs during the evidence accumulation process preceding threshold crossing. If 
so, LC-NA release would be in a position to alter the accumulation dynamics as the 
decision unfolds. Recent work from our lab provides initial indirect evidence for that 
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second alternative (Gee et al., 2014). We found that the neural drive of pupil dilation 
during perceptual decisions does not just occur at the final behavioural choice, but already 
throughout the preceding decision process (i.e., a robust contribution of a sustained “box” 
regressor across the decision interval in the simple linear model of the central pupil drive 
illustrated in Figure 67). This finding, in turn, suggests that phasic LC-NA release can shape 
the evidence accumulation process while the decision unfolds. One specific aim of Task 
T3.2.3 is to arbitrate between the two above alternative scenarios: (i) intra-decisional LC-
activity that shapes the accumulation process, and (ii) post-decisional LC-activity that 
controls only the decision threshold and/or motor latency. 
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Data set 1: Pupil-linked brainstem responses and the computation of yes vs. no 
decisions (fMRI) 

We first aimed to model the functional impact of these decision-related, phasic elevations 
in pupil-linked arousal within the theoretical framework of evidence accumulation (also 
referred to as sequential sampling). Further, we aimed to pinpoint their neural correlates 
at the level of the brainstem and the cortical networks.  

Behavioural task 

To this end, in both Data Set 1 (fMRI, described in this Section) and Data Set 2 (MEG, 
described in Section 2.3.3), subjects performed the same yes-no visual choice task as used 
in our previous pupillometry work (Gee et al., 2014) that had revealed protracted pupil 
drive during visual decision-making (Figure 67). On each trial, subjects viewed a flickering 
stream of dynamic white noise and judged the presence (“yes”) or absence (“no”) of a 
target signal (a contrast grating) superimposed onto the noise (Figure 68). Before the main 
experiment, the signal contrast was titrated to each individual’s 75% correct level. The 
signal grating, if present, was oriented either 45° clockwise or counter-clockwise; 
orientation was constant within each scanning run (comprising 40 trials). The dynamic 
noise was continuously present from the onset of the decision interval (cued by a tone) to 
keep overall luminance constant across all trials. The signal was present on half the trials. 
Once sufficiently certain (free response protocol; deadline: 3 s), subjects pressed a button 
with the left or right hand. The choice (button press) was followed by an inter-trial 
interval between 4 and 12 s (uniform distribution). This slow, event-related design was 
chosen to ensure that we could reliably characterize transient fMRI responses even in 
subcortical brainstem structures with unknown hemodynamics. 

 

Data set 

Fifteen healthy subjects (5 females; age range: 22–29 years) participated in the fMRI study. 
Each subject participated in three scanning sessions, on different days: one to define 
retinotopically organized cortical visual areas (about 75 min per session) and two sessions 
to measure fMRI responses in the main experiment (about 120 min per session). One 
subject was excluded from the analyses because the stimulus software did not receive the 
triggers from the MRI scanner in two out of three scanning sessions. 

 

Analysis of pupil data 

We computed task-related pupil response (TPR) on each trial as the mean of the pupil 
values in the window −1 s to 1.5 s from choice minus the mean baseline pupil value during 
the 0.5 s before trial onset. Trials were then sorted by TPR, after removing (via linear 
regression) the effect of signal presence and variations in reaction time (RT). The latter 
was important for the analysis of fMRI data, but we verified that all pupil-linked behavioral 
effects reported below are also evident without removing these components (data not 
shown). For each subject, we pooled trials into three bins containing the lowest and 
highest 40%, as well as the intermediate 20%, of TPR values (Figure 68d,e). This achieved a 
trade-off between maximizing both (i) trial counts in the high and low TPR bins and (ii) the 
disparity between the TPR amplitudes for both bins. In fact, this procedure yielded, on 
average, negative responses (i.e., task-related pupil constrictions) for the low TPR bin 
(Figure 68d,e).  
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Figure 68: General approach 

(a) Behavioral task. Example signal-present trial. The target grating, if present, was superimposed onto 
dynamic noise, until the subject’s choice (button press). Signal contrast is exaggerated for illustration 
purposes; in the experiment it was low (75% correct threshold). (b) fMRI slice prescription. (c) Binning of trials 
by task-related pupil response (TPR) amplitude. (d) Average pre-trial baseline pupil size and TPR for high and 
low TPR trials. (e) Average pupil response time courses for high and low TPR trials.   
 

Modeling the pupil-linked modulation of behaviour 

To model the behavioural effects of the TPR-linked fluctuations in central arousal state, 
we fitted the drift diffusion model (Ratcliff and McKoon, 2008) to RT distributions for yes- 
and no-choices (“response coding”), separately for high and low TPR (Figure 69b). The 
model can be regarded as a dynamic version of signal detection theory. It posits the 
accumulation (without leak) of noisy sensory evidence into a decision variable. Once the 
decision variable reaches one of two bounds (here: for “yes” and “no”), the corresponding 
is made. The model decomposes the RT distributions and choices into a set of parameters 
that describe different mechanistic elements of the decision process at the algorithmic 
level: (i) The mean drift across trials is the “drift rate”. (ii) The “drift criterion” refers to 
a bias in the accumulation process toward one or the other bound, irrespective of the 
evidence. (iii) The trial-to-trial variability in drift rate (“drift rate variability”) is a 
separate parameter necessary for obtaining good fits to empirical RT distributions (Ratcliff 
and McKoon, 2008); this parameter is difficult to estimate and was assumed to be constant 
across TPR bins. (iv) The distance between both decision bounds - “boundary separation” -
dictates how much evidence must be accumulated until a choice is made. (v) “starting 
point” determines a pre-potent tendency toward one or the other bound before the start 
of the decision process. (vi) The “non-decision time” lumps together the latencies of the 
sensory encoding and response execution processes preceding and succeeding the decision.  

To obtain robust individual parameter estimates despite a comparably low number of trials 
(due to the slow event-related fMRI design, see above), we used the python toolbox HDDM 
(version 0.6)(Wiecki et al., 2013) to fit the model to a large group of subjects (total: N = 
32) performing the yes-no contrast detection task including those from ref. (Gee et al., 
2014) and the current fMRI study. Importantly, this was only used to obtain robust group-
level priors on the parameters; the statistical comparisons between the individual 
parameters from high and low TPR bins in Figure 69c are done within the group of the 
current fMRI data set. 
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We found that subjects were conservative in their choices (i.e., inclined to choose “no”, 
regardless of the evidence), and that this conservative bias was reduced on high TPR trials, 
while their sensitivity was unaffected. This effect was evident in either signal detection-
theoretic measures (i.e., criterion and d’, Figure 69a), or the drift diffusion model 
parameters (Figure 69b,c). In particular, diffusion modeling revealed that subjects’ 
accumulation process was generally biased toward “no”, but, under high TPR, this bias was 
reduced, approaching 0 (Figure 69c), as required by our task to optimize performance. 
Importantly, we found no effects of TPR on any other model parameter – in particular, 
neither the drift rate (sensitivity of the decision process), nor the boundary separation or 
non-decision time. These results are in line with the idea that pupil-indexed arousal shapes 
the dynamics of the evolving decision, as opposed to affecting only post-decisional 
processes. In the asymmetric (i.e. yes vs. no) choice task studied here, pupil-linked arousal 
predicts a selective reduction of a conservative accumulation bias, which sets important 
constraints on the changes in cortical decision processing that might mediate this effect. 

 
Figure 69: Pupil-linked modulation of behaviour 

(a) Signal detection theory measures d’ and criterion separately for high and low TPR trials. (b) schematic of 
the drift diffusion model as was fitted to the behavioural data. (c) Fitted DDM parameters separately for high 
and low TPR trials. The dashed line indicates a neutral starting point (half the boundary separation). 

 

To gain deeper insights into the potential mechanisms that might mediate the above pupil-
linked effects, on-going work simulates an abstracted neural (“leaky competing 
accumulator”) model of the yes-no decision under fluctuating levels of neuromodulation. 
The model consists of a neural population encoding the yes-choice and another encoding 
the no-choice, whereby each population is modelled as a single difference equation. 
Building on previous work (Deco et al., 2007), the yes-population accumulates noisy 
evidence for a target, whereas the no-population accumulates a “default” input. Each 
population has slow recurrent self-excitation (setting the accumulation timescale) and 
inhibits the other via lateral inhibition. This inherent asymmetry was introduced to 
account for the asymmetry of the yes-no task, and it was thought to reflect different sizes 
of the two neural populations in the brain. We set the model parameters so that its RTs 
(determined by crossing of a decision bound) and fractions of choices qualitatively match 
the average behaviour of our subjects. We then simulate the impact of different types of 
pupil-linked neuromodulation – e.g. modulating the gain of all synaptic interactions in the 
model (Aston-Jones and Cohen, 2005) with a weight that fluctuates from one decision to 
the next. This work is on-going and will not be part of the paper on this data set. 
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Pupil-linked brainstem responses 

To master the methodological challenges of brainstem fMRI described in section 2.3.1, we 
have established an approach that follows the recommendations of Eckert, Keren and 
Aston-Jones (Eckert et al., 2010) and that entails the following steps: We anatomically 
delineated the LC in each individual by means of melanin-sensitive structural MRI (Shibata 
et al., 2006) (Figure 70a). We performed fMRI covering the brainstem and large parts of 
the cortex at a repetition time (TR) of 2 s, with slices oriented perpendicular the 
longitudinal extent of the LC. To resolve the LC (diameter at least 2 mm) at sufficient 
signal-to-noise ratio, we chose an in-plane resolution of 2 x 2 mm2. To further ensure 
sufficient signal-to-noise ratio, we used a slice thickness of 3 mm, exploiting the fact that 
the LC spans several centimeters along the longitudinal axis. We monitored cardiac and 
respiratory cycles concurrently with fMRI and removed their effects from the functional 
images using an extended version of RETROICOR (Glover et al., 2000). We computed the 
single-trial task-related fMRI response, separately for each imaging voxel, as the mean 
across the time window 2 s to 12 s from the start of the decision interval minus the pre-
trial baseline activation (-2 s to 2 s from onset of decision interval). We verified that all 
effects reported below are also evident after excluding short ITIs (data not shown).  

Task-related pupil responses (TPR) were robustly coupled to task-related BOLD responses 
in the individually delineated LC (Figure 70b-e). This coupling was evident when inspecting 
the fMRI response time courses measured in the LC for high and low TPR bins (Figure 70b, 
c). These exhibited a regular fMRI response pattern with the typical delay (peak at around 
6s from cue onset) for high TPR, and a similar absence of response for low TPR as the 
corresponding pupil time courses (compare to Figure 68e). The coupling persisted after 
regressing out residual signal fluctuations in the 4th ventricle after RETROICOR (Figure 
70c), as well as other factors such as RT and signal presence. Further, the coupling 
between TPR and LC responses was not only evident when binning the trials by TPR, but 
also (and robustly so) at the single trial level (Figure 70d).  

Significant coupling between TPR and fMRI responses was also observed for three other 
brainstem structures: the midbrain nuclei substantia nigra (SN) and ventral tegmental area 
(VTA) (both coarsely defined based on anatomical atlas coordinates; Figure 70e-g), which 
release another catecholamine, dopamine and are (directly and indirectly) connected to 
the LC; and the superior colliculus (SC), which is part of the brain’s orienting system and 
has been linked to pupil dilation in recent invasive work in monkey (Joshi et al., 2016). 
However, the link to pupil dilation was not evident across all neuromodulatory brainstem 
centers. For example, the (partly) cholinergic basal forebrain exhibited a task-related 
deactivation, the amplitude of which was unaffected by TPR (Figure 70g, right panel). A 
complete map of single-trial TPR-fMRI correlations across the brainstem (cluster-corrected 
across the brainstem; see red outline in Figure 70e) revealed that, while there was 
coupling between TPR and neural responses in some regions outside of the LC, this 
coupling was confined to the structures listed above (Figure 70e). Furthermore, the 
correlation between TPR and LC-responses was not accounted for by responses in other 
brainstem regions shown in Figure 70f,g: After removing (via linear regression) their 
effects, we still obtained a robust TPR-LC correlation in the residuals (r=0.176, p<0.001). 
In fact, there was no significant difference in the strength of correlation before and after 
removal of the influence of the other centers. In sum, while significant coupling to 
spontaneous trial-to-trial fluctuations in TPR exists for some other brainstem centers, the 
LC-link is robust and the TPR fluctuations do contain an LC-specific component. Our on-
going fMRI work aims at dissociating the pupil-linked response components between the LC 
and dopaminergic midbrain centers by manipulating, on a single-trial basis, (i) phasic 
arousal, and (ii) reward prediction errors (by means of external feedback, which was 
omitted here to allow spontaneous biases to emerge, see above).  
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Figure 70: Pupil-linked brainstem responses 

(a) Anatomical delineation of the LC in an example subject. In a TSE scan, the LC stands out on each side of 
the brainstem as a hyper-intense spot at the floor of the 4th ventricle. (b) Task-related BOLD responses in the 
LC for high and low TPR trials. (c) As in b but after removing (via linear regression) signal fluctuations 
measured in the 4th ventricle. (d) Single trial correlation between TPR and LC-responses. (e) Cluster-corrected 
map of single trial correlation between TPR and brainstem responses. (f) As in c but for the superior colliculus 
(SC). (g) As in c but for substantia nigra (SN), ventral tegmental area (VTA), and basal forebrain (BF). Similar 
results were obtained by correlating the pre-trial baseline pupil values and fMRI signal levels (data not shown). 

 

Pupil-linked modulation of cortical networks 

As commonly observed, the cortical network depicted schematically in Figure 64 activated 
robustly during the task, while other regions corresponding to the “default mode network” 
became suppressed (Figure 71a). Task-related fMRI responses across large parts of the 
cortex were positively coupled to single-trial TPR (Figure 71b), in line with a largely global 
nature of pupil-linked neuromodulatory influences. However, the spatial correspondence 
between the maps shown in the top rows of Figures 8a and b were relatively weak (mean 
correlation = 0.157), and there were several regions that showed significant modulation 
during task but not by TPR and vice versa (compare top rows between Figure 71a,b).  
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Figure 71: Pupil-linked modulation of task-related cortical responses 
(a) Uncorrected (top) and cluster-corrected (bottom) maps of group average SNR of task-related responses 
(mean divided by standard deviation fMRI responses across trials, computed within each individual). (b) 
Uncorrected (top) and cluster-corrected (bottom) maps of single trial correlation between TPR and fMRI-
response. 

 

Taken together, these results are inconsistent with a simple multiplicative scaling of each 
voxel’s task-related fMRI-response by TPR (as postulated at the single-neuron level for the 
LC-NA effects, see ref. (Aston-Jones and Cohen, 2005)). They point to a more complex 
shaping of cortical population activity through phasic arousal. To better characterize and 
understand that shaping, it will be crucial to compare these maps of pupil-linked 
metabolic (i.e. BOLD-fMRI) activity changes with the maps of pupil-linked changes of band-
limited electrophysiological population activity as assessed by MEG. 

In a complementary characterization of the pupil-linked shaping of cortical network 
dynamics, we parcellated the cortex into 144 regions across both hemispheres. We then 
computed all-to-all correlations between the trial-to-trial fluctuations of each region’s 
task-related fMRI responses, separately for high and low TPR trials. This revealed that, 
under high pupil-linked arousal, cortical inter-area correlations were largely reduced. This 
was quantified by comparing the fraction of region pairs showing an increase with those 
pairs showing a decrease in correlation under high arousal (p=0.006; data not shown). In 
other words, pupil-linked arousal was accompanied by a predominant suppression of co-
fluctuation between the task-related responses of different cortical regions. 

Our on-going analyses of the TPR-related changes in cortical responses specifically aim to 
identify correlates of the TPR-linked reduction in conservative accumulation bias evident 
in behaviour (Figure 69). To this end, we focus on the two peripheral stages of the sensory-
motor decision process: (i) early visual cortical areas encoding the evidence for the 
contrast target; and (ii) movement-selective areas encoding the action choice. Functional 
regions of interest (ROIs) in early visual cortex (V1-V3) were defined, within each 
individual subject, in three steps. First, boundaries between these visual cortical areas 
were identified by retinotopic mapping via population receptive field imaging (i.e., 
quantifying, for each voxel, the preferred polar angle and eccentricity). Second, we 
identified the cortical representation of the stimulus in the yes-no task with a localizer run 
in each session presenting full-contrast gratings in alternation with blank at the same 
retinal position as the task-stimulus (for the map of localizer responses in one example 
subject, see Figure 72a). Third, the ROIs were further constricted by, separately for each 
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scanning session, taking the 50 voxels that responded (the stimulus “center” sub-region) or 
deactivated (the stimulus “surround” sub-region) most strongly to the localizer stimulus in 
the run. Choice-selective regions of interest (ROIs) were identified by mapping significant 
lateralization with respect to the final hand movement (the mapping between “yes” and 
“no” perceptual choice and response movement was flipped between both experimental 
sessions). As expected, we found such movement-selective activity around the hand region 
of primary motor cortex (M1) in the central sulcus, but also in posterior parietal cortex, in 
the junction of the intraparietal sulcus and the postcentral sulcus, here referred to as 
“anterior IPS” (Figure 72g).  

 
 Figure 72: Modulation of selective cortical signals 

(a) Flat map of the responses during localizer scans and delineation of areas V1-V3 in an example subject. (b) 
Task-related fMRI responses in V1-3 center sub-regions, for target present and absent trials. (c) As in b but for 
surround sub-regions. (d) As in (b), but collapsed across stimulus categories, and separately for high and low 
TPR. (e) As in d, but for surround sub-regions. (f) As in d, but after removing (via linear regression) single-trial 
responses from surround, yielding the specific component. (g) Maps of movement-selective lateralization of 
cortical fMRI responses, displayed on a single hemisphere. (h) Lateralization (“yes-side”– “no-side”), in anterior 
IPS and M1, for yes and no choice. (i) As in g, but separately for high and low TPR trials. 

 

During the yes-no task, we found positive responses in the center sub-regions of V1-3 
(Figure 72b) and suppression in the surround sub-regions (Figure 72c). Different from the 
stimulus localizer runs, these spatially-specific responses did not reflect the bottom-up 
stimulus drive: there was no difference between target present vs. absent trials (Figure 
72b,c; we do find a robust response to the target stimulus when assessing orientation-
selective multi-voxel patterns). We, therefore, interpret the spatially-specific responses 
shown in Figure 72b-c as a top-down signal in early visual cortex. The magnitude of this 
top-down signal was modulated by pupil-linked arousal: it was boosted in stimulus sub-
regions (Figure 72d), but not in surround sub-regions (Figure 72e). Thus, the TPR-linked 
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difference was prominent in the spatially-specific component obtained after first removing 
surround responses from the stimulus sub-region (Figure 72f). Similar TPR-linked 
differences of the choice-selective activity were observed in anterior IPS, but not in M1 
(Figure 72i), although the latter exhibited at least as strong choice-selective activity as the 
former overall (Figure 72h). 

Strikingly, the amount of the modulation of the top-down signal by pupil-linked arousal 
predicted the amount to which pupil-indexed arousal reduced subjects’ conservative 
decision bias (Figure 73a-c). Again, similar results were obtained in choice-selective 
regions in posterior parietal cortex (Figure 73d,e) pointing to the interplay between 
parietal and early visual cortex as a possible mechanism underlying the pupil-linked 
modulation of behaviour. 

 
Figure 73: Pupil-linked modulations of selective cortical signals predict behavior 

(a) Signal detection theoretic d’ and criterion as a function of TPR (binned). The spatially selective top-down 
signal in V123 as a function of TPR (binned). (c) Signal detection theoretic d’ and criterion as a function of the 
selective top-down signal in V123 (both binned by TPR). (d) As in b, but for lateralization in anterior IPS. (e) As 
in c, but for lateralization in anterior IPS. 
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Data set 2: Pupil-linked modulation of the cortical dynamics underlying yes vs. 
no decisions (MEG) 

In parallel to the fMRI work reported in the previous Section, we collected an MEG data set 
with this yes-no decision task. The overarching goal here is to study the pupil-linked 
modulation of the cortical decision dynamics, especially the well-characterized dynamical 
signatures of decision-making reviewed in Section 2.3.1. Specific aims were (i) to 
systematically manipulate decision bias within individuals (rather than relying on 
spontaneously emerging biases), and (ii) to study the link between pupil-linked arousal 
state and decision confidence, linking our work to the work reported in Section 2.1.  

The MEG data will be analysed in the coming months. Our initial analyses have focussed on 
the behavioural and pupil data, to establish the relationship to the pupil-linked effects in 
our fMRI experiment, and to look for novel pupil signatures of confidence. 

 

Behavioural task 

Participants performed the same yes-no decision-making task as in fMRI (Figure 68a), with 
the following exceptions: (i) we used two different noise refresh rates (20Hz, and 5Hz), 
which varied randomly across trials; (ii) two independent online staircase procedures 
during the main experiment kept each subject’s performance at around 75% correct for 
each noise refresh condition; and (iii) at the end of each trial, we prompted subjects to 
report how confident they were about their preceding choice and then administered 
auditory feedback. We had observed that manipulation (i) effectively altered decision 
criterion (Figure 74a, see below). 

 

Data set 

Twenty-three healthy subjects (16 females; age range, 21–31 y) participated in the study. 
Each subject participated in two scanning sessions to measure MEG responses in the main 
experiment (two hours per session). 

 

Pupil-linked modulation of behaviour 

The noise refresh manipulation strongly affect subjects’ decision bias: they were slightly 
liberal in the fast noise refresh condition, but very conservative in the slow noise refresh 
condition (Figure 74a). Importantly, we found the same pattern of pupil-linked behavioural 
modulation as in the fMRI data set: a conservative bias (here computed as signal detection 
theory criterion) was reduced on high TPR trials, while sensitivity (d’) was unaffected 
(Figure 74a). Furthermore, we found that TPR also inversely scaled with subjects’ decision 
confidence, with the strongest dilations occurring on the very unsure trials (Figure 74b).  
Our planned analyses will of the MEG data will specifically screen for signatures predicting 
these clear, pupil-linked behavioural effects. 
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Figure 74: Pupil-linked modulation of behaviour 

(a) Signal detection theory measures d’ and criterion separately for each noise refresh condition, and 
separately for high and low TPR trials. (b) Decision related pupil responses scale with decision-confidence. 

 

Two Dataset Information Cards have been completed (see DICs Task T3.2.3 “Brainstem 
modulation of decision processes (human behaviour and MEG)”). 

Provenance of data and location of data storage 

We used the funding from the HBP to collect 2 neuroimaging data sets: an fMRI data set (at 
UvA) and an MEG data set (at UKE). The fMRI dataset was collected by Jan Willem de Gee 
(UKE) and Olympia Colizoli (UvA). The MEG dataset was collected by Jan Willem de Gee 
(UKE) and Niels Kloosterman (UvA). These data sets are described in detail in the 
subsequent sections. In addition, we analyzed several other data sets (collected from other 
funds) to characterize the neuromodulation of cortical decision processing. 

The HBP-funded data sets are located at the following links:  

• Data set #1: http://s3.data.kit.edu/SP3/3_2_3/Study1_yesno_fMRI 
• Data set #2: http://s3.data.kit.edu/SP3/3_2_3/Study2_yesno_MEG 

Self-analysis of the value and completeness of data 

The Data Sets 1 and 2 are complete and were deposited on the HBP server at the above 
links. The analysis and interpretation is close to complete for Data Set 1 and on-going for 
Data Set 2. Further, the (re-)analysis of several other data sets, collected outside of HBP, 
has provided additional, complementary insights into the modulation of cortical decision 
processing (see publications below). Finally, Tobias Donner is working on a review on the 
state-dependent modulation of cortical decision processing that integrates results from 
recent work conducted in the rodent, monkey, and human brain, including the results from 
the HBP Task 3.2 Taken together, our work within HBP has filled an important gap in the 

http://s3.data.kit.edu/SP3/3_2_3/Study1_yesno_fMRI
http://s3.data.kit.edu/SP3/3_2_3/Study2_yesno_MEG
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literature on decision-making. 

Publications, disseminations, collaborations 

a. Peer-reviewed publications connected to HBP work (HBP acknowledged): 

• Tsetsos K, Pfeffer T, Jentgens P & Donner TH. 2015. Action Planning and the 
Timescale of Evidence Accumulation. PLoS One 12;10(6): e0129473. doi: 
10.1371/journal.pone.0129473. (Raw data available at https://osf.io/ju95a/) 

• Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk B, Lamme VAF & Donner 
TH. 2015. Top-Down Modulation in Human Visual Cortex Predicts the Stability of a 
Perceptual Illusion. Journal of Neurophysiology 113: 1063-76. 

b. Conference abstracts on HBP Data Sets and results connected to HBP work (HBP 
acknowledged): 

• De Gee JW, Kloosterman NA, Nieuwenhuis S, Knapen T & Donner TH. 2015. 
Decision-related pupil dilation reflects locus coeruleus activity and altered visual 
evidence accumulation. No. 2015-S-6760-SfN. Chicago, IL: Society for Neuroscience. 

• Kloosterman NA, de Gee JW, & Donner TH. Effects of noradrenaline on visual 
evidence accumulation in human cortex. No. 2015-S-11496-SfN. Chicago, IL: Society 
for Neuroscience. 

• Meindertsma T, Kloosterman NA, Nolte G, Engel AK,  & Donner TH. 2015. Decision-
related oscillatory activity in human visual cortex is linked to pupil dilation. No. 
2015-S-9003_SfN. Chicago, IL: Society for Neuroscience. 

• Urai A, De Gee JW, & Donner TH. Eye opener: Pupil dilation signals decision 
uncertainty. No. 2015-S-2663-SfN. Chicago, IL: Society for Neuroscience. 

c. Manuscripts on HBP work in preparation: 

• Manuscript on Data set #1 (Working title: Pupil-linked arousal systems shape 
cortical state and choice behavior). 

• Integrative review (Working title: State-dependent modulation of perceptual 
decision-making). 

• Manuscript on HBP-connected work (Working title: Pupil-linked modulation of 
decision-related top-down signal in visual cortex). 

• Manuscript on HBP-connected work (Working title: Decision uncertainty drives 
pupil-linked arousal systems and modulates sequential choice bias). 

d. Invited platform presentations by Tobias Donner on HBP-connected work (HBP 
acknowledged): 

• Cosyne workshop Form and function of Choice-related Feedback Signals in Decision 
Making, Snowbird. 1 March 2016. 

• European Institute of Theoretical Neuroscience (EITN) workshop Probabilistic 
Inference and the Brain, Paris. 10 September 2015. 

• Dutch Neuroscience Meeting symposium Perceptual Decision-making. Lunteren. 12 
June 2015. 

• ICPS symposium Model-based Neuroscience of Strategic Decision-making, 
Amsterdam. 13 March 2015. 

• Tübingen MEG Symposium. 27 October 2014. 
• Symposium The Many Faces of Top-Down: an Integrative Perspective. Organization 

for Human Brain Mapping, Hamburg. 10 June 2014. (Chair and Speaker) 
• Donders Institute symposium Dialogues on the Role of Top-down Factors in Sensory 

Processing. Radboud University Nijmegen. 21 May 2014. 

e. Collaborations on this topic within HBP: 
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• Florent Meyniel, Mariano Sigman, Stanislas Dehaene (SP3 T 3.1.1, ongoing): Neural 
bases of decision confidence and uncertainty. 

• Gustavo Deco (SP4 T4.3.1, ongoing): Large-scale modeling of state-dependent 
modulation of cortical networks. 

• Cyriel Pennartz (new SP3, ongoing): Neuromodulation of cortical decision dynamics. 
• Mathias Pessiglione (SP3 T3.2.2, planned): Cost-benefit analysis of perceptual 

evidence accumulation.  
• Avi Karni (SP3 T3.3.1, planned): Pupillometric correlates of motor skill learning. 

f. Collaborations on this topic outside of HBP: 

• Marius Usher (Tel Aviv University): Modeling the neuromodulation of evidence 
accumulation and decision-making. 

• David McCormick, Matthew McGinley (Yale University): Comparison of pupil-linked 
modulation of perceptual decision-making in humans and mice. 
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2.4 Characterizing the brain architecture of decision-related 
motivational states and values 

Task T3.2.4 - Talma Hendler (TASMC), Itzhak Fried (TASMC), Tomer Gazit (TASMC) 

 

Overview 
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Perspective on motivational decision-making 
 
What is motivation?  

As living organisms we all engage in day-to-day 
environmental challenges: we need food, water and sleep 
in order to survive; as social beings we also need love and 
appreciation in order to maintain our emotional wellbeing, 
and as part of the modern society we need money and 
estate in order to provide ourselves with a roof, clothes and 
practically every material need we have. At the same time 
we have to be aware of dangers, which may be actually life-
threatening, or carry the potential for physical and/or 
emotional pain. Since achieving these needs and escaping 
danger is essential for our survival, environmental stimuli 
which meet these needs are experienced as rewarding and 
appetitive, and we are driven to approach them, whereas 
we are driven to avoid the dangerous and painful stimuli 
which are experienced as punishing and aversive. These 
reinforcing accounts and behavioral drives are generated by 
the psycho-behavioral process of motivation, which is one 
of our basic survival mechanisms.   

Motivational processes start with the detection and 
assessment of environmental incentives and threats in 
order to facilitate goal directed behavior that promotes 
survival and wellbeing of the organism. Thus, motivational 
processes can be viewed as a key behavioral modulator, 
mediating interactions with the environment and adaptive 
behavior. Importantly, in the real world these interactions 
are of a dynamic, progressive nature, which require 
complex yet rapid computations regarding optional 
stimulus-response scenarios and effective behavioral 
decision making. Inappropriate choices of motivational 
behavior may lead to overt psychopathology, such as 
generalized behavioral inhibition and avoidance in anxiety 
(Hendler et al., 2014; McNaughton and Corr, 2008) and 
excessive goal directed behavior in the manic state of 
bipolar disorder (Gonen et al., 2014; Johnson et al., 2012). 
Thus, neural characterization of motivational processes as 
well as the interactions between them, may lead to better 
understanding of pathological behaviors.  

However, motivationally driven behavior is determined 
following multidimensional computations encompassing 
different features of the reinforcement: its different 
accounts (incentive and hedonic) and the expected 
outcome (reward or punishment). Thus, motivational 
processing is based on the ongoing assessment of various 
internal and external cues according to their objective and 
subjective value, generating complex estimations aimed at 
producing the most adaptive behavior (approach or 
avoidance) at any given moment. Different aspects of this 
multilayered process, such as the neurochemistry (Berridge 
and Kringelbach, 2013a) and mechanistic circuitry (Haber 
and Knutson, 2009) of the reward circuit, reward learning 
(Dayan and Berridge, 2014; Pizzagalli et al., 2008), or effort-
based decision making (Salamone and Correa, 2012), have 
been widely investigated. Nevertheless, deconstruction of 
the motivational mechanism into its basic elements and 
stages in order to unveil the way they interact and are 

regulated in the human brain in order to promote adaptive 
behavioral decision-making is still lacking.  

The current review aims to provide a general overview 
deconstructing motivation into states (reward, punishment 
and goal conflict), accounts (incentive, hedonic) and 
behavior (approach, avoidance); providing a glance on their 
neural correlates as well. Further, as motivational 
tendencies have been related to individual differences and 
personality (Corr and McNaughton, 2012; Smillie, 2008), we 
characterize these relationships at both the behavioral and 
neural levels.  

 

Motivational states 

The idea that individuals' behavior may be modulated by 
their sensitivity to different kinds of motivational states 
originated at the beginning of the 20th century with the 
seminal work of Ivan Pavlov who discovered the striking 
effect of reward and punishment on behavior (Corr and 
Perkins, 2006). This groundbreaking work laid the 
foundation for a later motivation theory pointing to the 
role of sensitivity to potential rewards and punishments in 
the organism's tendency to act upon or away from a 
stimulus in the environment (i.e. "Reinforcement Sensitivity 
Theory": RST; (Smillie, 2008). Based on animal research 
(Gray, 2000; McNaughton, 2008), a neurobehavioral model 
including three distinct subsystems involved in motivational 
processes was suggested: 1) The "Fight Flight Freeze 
System" (FFFS), mediates sensitivity to punishment (and 
non-reward) via noradrenergic functions (McNaughton and 
Corr, 2004). 2) The "Behavioral Activation System" (BAS), 
underlies sensitivity to reward (and non-punishment) via 
dopaminergic pathways (Depue and Collins, 1999; Smillie, 
2008). 3) The "Behavioral Inhibition System" (BIS), sensitive 
to goal-conflict situations, is thus activated by stimuli of 
mixed or ambiguous values (i.e. reward and punishment) 
and is mediated by serotonin function (Gray and 
McNaughton, 2000). The system serves to compare 
between the current state, previous knowledge and 
expected consequences which are all used for adaptive 
behavioral selection. The RST model provides a 
comprehensive scheme for three separate neural sub-
systems of motivation, describing their relation to 
behavioral interaction with the environment (for the neural 
representation of the three systems see Figure 75).  

While the RST has been established in animal studies, 
evidence regarding the human brain is less comprehensive. 
We have recently found, using an interactive “Domino” 
game, that different motivational states elicited activations 
in brain regions that corresponded to the brain systems 
underlying RST. Moreover, using Dynamic Causal Modeling 
(DCM) for each motivational system, we confirmed that the 
coupling strengths between the key brain regions of each 
system were enabled selectively by the appropriate 
motivational state(Gonen et al., 2012).  
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Importantly, this conceptualization is insufficient for 
capturing the full complexity of motivational processes and 
their manifestation in the healthy and pathological forms, 
since every motivational state – reward or punishment - 
carries two distinct accounts – incentive and hedonic, which 
must be addressed when considering regulation of 
motivational drives. 

 
Figure 75: Neuroanatomy of the RST motivational 
systems.  

According to RST three bio-behavioral systems participate in 
reinforcement modulation of goal directed behavior: 1. The Fight 
Flight Freeze System (FFFS) is activated by all punishment stimuli 
(shown in red). This system includes the PAG (1), Medial 
Hypothalamus (2), central Amygdala (3) and sgACC (4). 2. The 
Behavioral Activation System (BAS) believed to underlie reward 
(and non-punishment) sensitivity (shown in green). The system 
relies on VTA dopamine phasic activity (5) to NAC (6) in response to 
reward. Information regarding integrative stimulus-reward 
associations is projected to the NAC from the basolateral amygdala 
(7). The dorso-medial pre-frontal cortex carries integrative 
representation of complex reinforcement associations with both 
stimuli and responses (8). 3. Behavioral Inhibition System (BIS) 
underlying goal-conflict situations (shown in blue), consists of two 
neural foci: the Septo-Hippocampal System (SHS) (9) which is 
informed comprehensively regarding possible behavioral plans for 
the current situation and their consequences by the entorhinal 
cortex (10) and ACC (11). The ventro-medial pre-frontal cortex (12) 
is considered a behavioral control modulator. (This figure is 
adapted from (Gonen et al., 2014)). 

While the RST has been established in animal studies, 
evidence regarding the human brain is less comprehensive. 
We have recently found, using an interactive “Domino” 
game, that different motivational states elicited activations 
in brain regions that corresponded to the brain systems 
underlying RST. Moreover, using Dynamic Causal Modeling 
(DCM) for each motivational system, we confirmed that the 
coupling strengths between the key brain regions of each 
system were enabled selectively by the appropriate 
motivational state(Gonen et al., 2012).  

Importantly, this conceptualization is insufficient for 
capturing the full complexity of motivational processes and 
their manifestation in the healthy and pathological forms, 
since every motivational state – reward or punishment - 
carries two distinct accounts – incentive and hedonic, which 
must be addressed when considering regulation of 
motivational drives. 

 Motivational accounts  

 Reinforcements in the environment signal incentive 
accounts of goal-directed information, according to their 
expected effect, either reward or punishment; along with 

hedonic accounts holding the affective information 
according to the feeling they evoke, either appetitive or 
aversive (Berridge and Kringelbach, 2008). The combination 
of these two accounts guides the preferable motivational 
behavioral choice: approach or avoidance. In everyday life, 
incentive and hedonic accounts interact in either a 
congruent or incongruent way. For example, congruence 
occurs when one enjoys playing basketball, which is also 
good for one’s health (hedonic and incentive accounts are 
both positive), or dislikes butter which is bad for one’s 
health (hedonic and incentive accounts are both negative). 
Incongruence on the other hand occurs for example in the 
case of eating a delicious cake when on a diet (the hedonic 
account of eating the cake is positive but the incentive 
account is negative), or when your friends call you for an 
afternoon drink but you need to stay at work on an 
important project (the hedonic account of staying at work is 
negative but the incentive account is positive – it will serve 
your career). 

 
Figure 76: Demonstration of possible relationships 
between the incentive and hedonic motivational accounts. 

These contradicting situations raise an internal conflict in 
terms of what promotes one's goals as opposed to what is 
pleasant (Berridge, 2009), a conflict which has to be 
resolved in order to choose the most adaptive behavior (i.e. 
approach or avoidance). Maladaptive behavioral choices 
may have tolerable consequences when they happen 
infrequently, yet when it becomes common practice it 
could lead to abnormal conditions, such as excessive drug 
consumption in addictions (Diekhof et al., 2008; Reuter et 
al., 2005) or starvation in eating disorders (Berridge, 1996, 
2009).  

The generation and modulation of these two attributes are 
known to rely on different neurochemical processes: 
dopamine has been assumed to mediate the incentive 
component via the mesolimbic pathway (ventral tegmental 
area [VTA] -nucleus accumbence [NAC] – medial prefrontal 
cortex [PFC]) and facilitate behavior, while opioid 
neurotransmission within the ventral striatum, and 
especially in the NAC is suspected to indicate hedonic value 
(Berridge and Kringelbach, 2013b; Berridge and Robinson, 
2003). In the lab the incentive value, (also referred to in the 
literature as ‘wanting’ (Berridge, 2009) or 'motivational 
salience' (Roesch and Olson, 2004)), is commonly 
manipulated by reinforcement novelty or magnitude; while 
the hedonic value, (also referred to in the literature as 
'liking' (Berridge and Kringelbach, 2008)), is commonly 
manipulated by the valence of the reinforcement 
(appetitive or aversive). There have been several efforts to 
dissociate these processes at the neural level in both 
animals and humans. Roesch& Olson (Roesch and Olson, 
2004) manipulated both reinforcement valence (hedonic 
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value) and  magnitude (incentive value) while recording 
from the left lateral orbito-frontal cortex (OFC) and the 
premotor (PM) regions of the macaque brain. They 
concluded that neurons in the OFC selectively represent the 
hedonic value and those in the PM respond to the incentive 
value. Others  have  identified the NAC as sensitive to the 
hedonic value of reinforcement while the baso-lateral 
amygdala serves to enhance its incentive value (Chang et 
al., 2012). However, recent studies have suggested that 
both incentive and hedonic value are represented by 
distinct neural populations within the NAC (Bissonette et 
al., 2013; Peciña et al., 2006). Several studies have tackled 
this issue in humans, using functional neuroimaging. 
Anderson and colleagues (Anderson et al., 2003) used 
pleasant and unpleasant odors in different concentrations 
to manipulate both valance (hedonic) and intensity 
(incentive). They specifically looked at the amygdala and 
OFC, and found that the activity in the amygdala was 
related to stimulus intensity regardless of its valence and 
activity in the medial OFC was related to valence regardless 
of intensity. Others have shown sensitivity to intensity 
across valences in the amygdala as well as in other salience-
related regions (e.g. pons and insula), while preference to 
valence irrespective of intensity was found in the lateral 
OFC but also in other paralimbic areas (e.g.  Anterior 
Cingulate Cortex, ACC)(Small et al., 2003).  Of note is that 
other regions have been indicated in investigations focused 
on deciphering only one of these processes. For example, 
PCC was found related to hedonic value and not incentive 
(Litt et al., 2011), while  Supplementary Motor Area (SMA) 
premotor and primary motor cortices, as well as the 
thalamus, were previously related to incentive and not 
hedonic (e.g. (Huettel et al., 2005; Pessiglione et al., 2007). 
Nonetheless, like in the animal studies, mixed findings exist 
in humans as well. For example, some had linked the OFC 
to salience coding, irrespective of valance (e.g.(Diekhof et 
al., 2011)). Similarly, with regard to the NAC, some have 
argued for its involvement in incentive salience coding (e.g. 
(Jensen et al., 2007; Zink et al., 2006)) and not only hedonic 
(Gottfried, O'Doherty et al. 2002; Haber and Knutson 2009). 

 

Motivational behavior 

Within the incentive process of motivation lays the most 
important output of motivational decision making: the 
resulting behavior. Human studies of motivation have 
mostly used paradigms with static stimuli, presented in a 
trial-by-trial manner, providing the opportunity to 
separately investigate different stages of the motivational 
brain response, such as the anticipation, outcome, and 
evaluation of rewards and punishments (e.g. (Gonen et al., 
2012; Liu et al., 2011). Several studies have used 
manipulations of reinforcement saliency, magnitude or 
intensity as operationalization of the incentive account of 
motivation, looking at the anticipation or response to 
reinforcement (Huettel et al., 2005; Pessiglione et al., 
2007). In recent years neuroimaging studies of motivation 
have elucidated several stages in this complex stimulus-
response scenario. Findings regarding the initial valuation 
and processing of reinforcements point first and foremost 
to the relevance of the dopaminergic mesostriatal pathway, 
including the Ventral Striatum (VS) and Ventral Tegmental 

Area (VTA) (Haber and Knutson, 2009), in both animals 
(Cardinal et al., 2002)  and humans (Liu et al., 2011). 
Accordingly, a recent fMRI study demonstrated that the 
facilitating effects of incentive motivation involved the 
caudate and putamen (Miller et al., 2014). Nonetheless, 
despite our growing knowledge of motivational processing, 
including cost-benefit valuation during behavioral decision-
making (Basten et al., 2010; Park et al., 2011), surprisingly 
few studies examined the neural processes underlying the 
behavioral phase of incentive motivation: approach or 
avoidance (Bach et al., 2014). The paucity of neuroimaging 
studies investigating motivational behavior could result 
from the conventional operationalization used in 
functional-imaging, of static stimuli presented in a trial-by-
trial manner (c.f. (Liu et al., 2011); which does not allow for 
characterization of dynamic ongoing motivational behavior. 
Such behaviors should be investigated using ecological 
tools which will simulate the rapidly unfolding nature of 
such a dynamic process; as we have recently demonstrated 
(Gonen et al., 2016).  

 

Motivation and individual differences 

Motivational behavioral tendencies have been long 
associated with individual differences in personality. Three 
main personality models have been related to the tendency 
to approach or avoid environmental incentives and threats. 
First, the phenomenologically driven model NEO-five-factor 
inventory (NEO-FFI) (Costa and McCrae, 1992) is one of the 
most prominent models for personality structure, 
consisting of five broad traits of personality. Of these, two 
traits were repeatedly related to motivational tendencies: 
Extraversion (E) and Neuroticism (N), previously shown to 
be related to the tendency to approach and avoid, 
respectively (Canli, 2004; Canli et al., 2002; Cohen et al., 
2005). Another approach to personality structure, driven by 
a neurochemical mechanistic perspective, was suggested by 
Cloninger (Cloninger, 1987) positing the “Tridimensional 
model”, including the traits Novelty Seeking (NS),  and 
Reward Dependence (RD), which were related to approach 
tendencies, and Harm Avoidance (HA), related to avoidance 
tendency (Cloninger, 1987). Finally, the RST maintains that 
it is individual sensitivity to reinforcement which guides 
behavior. Within the framework of RST, an independent 
measure was developed for the traits sensitivity to reward 
(SR) and sensitivity to punishment (SP), which were 
suggested to underlie approach and avoidance tendencies, 
respectively (Torrubia, 2001). Although each of these 
personality models have been previously related to 
motivational tendencies, in both the behavioral and neural 
levels (for review see (Smillie, 2008); accumulating 
evidence are not conclusive and moreover, to only few 
study has investigated the neural correlates of these traits 
while actually performing a dynamic motivational task. We 
have recently used an original integrative profiling of 
individual differences derived from three theoretical 
models, and showed that high scores in approach related 
traits (extraversion, reward-dependence and 
agreeableness) were manifested in increased tendency to 
approach behavior during the game, mostly under high 
goal-conflict. Furthermore, decreased tendency to 
approach was manifested by high scores in avoidance 
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related traits (harm-avoidance, neuroticism and 
punishment-sensitivity) (Gonen et al., 2016). Interestingly, 
during high goal conflict, the approach group had greater 
activation in both VTA and VS compared to the avoidance 
group, while no difference was found between the groups 
in the activity of other brain-regions. With relation to 
individual tendencies, this finding provides a neural 
distinction between bottom-up processing in the VTA and 
VS and top-down processing in the medial prefrontal 
region. The significance of bottom-up processing to 
individual differences further implies that motivational 
tendencies and their neural correlates reflect the innate 
temperamental parts of personality structure, compatible 
with Cloninger’s tridimensional model (Cloninger, 1987). 
Yet it was only the integrative personality profile we 
constructed that demonstrated such multilevel relations of 
personality and neurobehavioral patterns, indicating that 
the tridimensional model itself could not account for 
individual differences during actual motivational behavior. 
Pointing to bottom-up temperamental parts of personality 
rather than the acquired top-down influences is an 
important distinction: abnormal top-down regulatory 
mechanisms (such as the PFC) have been suggested to 
underlie motivation related psychopathological conditions 
(Choi et al., 2011; Phillips, 2008); yet our data suggest that 
the incentive related, low level facilitators of the 
dopaminergic mesostriatal  pathway (such as the VS or 
VTA) may serve as stronger candidates for variations in 
motivational behavior tendencies. 
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Data set: Intracranial single cell and LFP dataset 

Introduction 

Motivation is a key aspect in human behaviour and decision making; shaped by the 
interaction between environmental reinforcing cues and the organism’s specific goals. 
Reinforcements signal both incentive (reward/punishment) and hedonic 
(appetitive/aversive) accounts, with their integration often raising a conflict considering 
the preferable action choice (approach/avoidance). Pathological resolution of such 
conflicts is often evident in psychiatric symptoms, such as diminished or excessive 
approach in depression and addiction (respectively), and avoidance in eating disorders. 
Depicting the neural signature of motivational dimensions could thus advance both domain 
based brain diagnosis and treatment (RDoC).  

In this project we aimed to illuminate the multilevel neural architecture that underlies 
motivational decision making by deconstructing it into stages: appearance of the 
incentive cue, decision on action under conflict (to approach or avoid), action 
(approaching or avoiding), anticipation to outcome and response to outcome (reward 
or punishment).  

 

 
Figure 77: Recording sites 

(a) Image of the Benkhe Fried electrodes used for depth recording. (b) Quantification of the number of neurons 
recorded (blue) and the number of iEEG channels for the 5 medial regions elaborated in this report. (c) Table 
summarizing the data collected from different brain regions (PAHIP= parahippocampus, L Temp=lateral 
temporal, ACC=anterior cingulate, M. Parietal=medial parietal, L. PFC=lateral prefrontal, SM=sensory/motor, 
B=bilateral, L=left, R=right, D=depth electrodes, E=ECoG) (d) Example depth electrode for each of the 4 
patients and ECoG localizations for 2 patients. 

Intracranial recordings in epilepsy patients provide both temporal and spatial high-
resolution multilevel neural measurements of single-neuron activity and intracranial EEG 
(iEEG, Figure 77). In order to additionally provide large-scale network view, we obtained 
whole brain fMRI activation in the same patients, as well as in 55 healthy volunteers. We 
used two interactive computer games: first, the Punishment, Reward & Incentive 
Motivation (PRIMo) game (Gonen et al., 2016) (described in Figure 78), and the Risky 
Choice Domino (RCD) game (Gonen et al., 2012). Patients played both games during their 
implantation period allowing the collection of neural activity during motivational 
processes. To our knowledge, this is the first demonstration of a comprehensive dissection 
of the motivational process into its different stages in such high-resolution. Providing such 
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insights may guide interventions corresponding to a pathological condition involving a 
specific stage.  

 

Description of recordings and data 

Invasive recordings were obtained from 10 neurosurgical patients with pharmacoresistant 
epilepsy who are implanted with intracranial depth electrodes (7 patients) or subdural 
electrodes (ECoG, 3 patients) for 7-10 days, to determine the seizure-onset zone for 
possible surgical resection (Figure 77). The Benkhe-Fried depth electrodes used include 
two types of contacts: Each electrode contains eight 1.5-mm-wide macro-contacts along 
the shaft allowing the recording of electrophysiological currents representing a summation 
of local currents (Buzsáki et al., 2012b). In addition, eight 40 μm micro-wires situated at 
the tip of each electrode will record extracellular EEG and single-unit activity (Fried et al., 
1999) (Figure 77). Thus single cell and LFPs and iEEG was collected from mesial structures 
highly relevant for mediating motivation related processed including the hippocampus, 
amygdala, cingulated cortex and medial prefrontal cortex (mPFC). The iEEG recordings 
were collected from these mesial regions but also covering lateral cortical sites primarily 
in the temporal and frontal lobes. ECoG recordings (3 patients) were collected using 2 mm 
diameter macro contacts with 8 mm spacing between adjacent electrodes allowing 
mapping of lateral brain regions. Figure 77 describes the electrodes used and the brain 
regions recorded for each patient.  

 
Figure 78: The Punishment, Reward & Incentive Motivation (PRIMo) game 

The goal of the game is to earn money by catching coins and avoiding balls. There are two ways to gain or lose 
money: controlled – the player actively approaches coins and avoids balls; and uncontrolled –random coins and 
balls colored differently hit the player. Adopted from Gonen et al., 2016.  
 

The database includes the following: (a) A summary table of electrode location in xyz 
Montreal Neurological Institute (MNI) coordinates and their atlas labels using the 
neuromorphics atlas (http://www.oasis-brains.org/, http://Neuromorphometrics.com/ 
segmenting the human brain to 207 brain regions). This includes microwires locations 
which can detect single cell recordings and macro electrode locations recording local field 
potentials (LFP). (b) A table describing neuronal firing showing a significant increase or 
decrease in firing rate in response or expectancy for a paradigm induced event (for 
example: an account of neurons in different brain location responding to control 
punishment or reward in the PRIMo paradigm, or responding to anticipation  in the RDC 
game). (c) Matlab matrices describing the power of LFP signal at the different frequency 
bands at the different spatial locations responding to paradigm induced events. 

 

A Dataset Information Card has been completed (see DIC Task T3.2.4 “Intracranial 
recordings in motivational paradigm”). 

Starting cue 
Money symbols 

appear on screen

Motivational behavior: 
1000-3000ms

Approach 

Avoidance 

Response to outcome
1000ms

Reward  

Punishment

OR
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Location of our data storage: The data will be hosted by the Center for Brain Functions at 
Tel Aviv Medical Center (TASCM) at url: http://fmri-tlv.org/tomer.html. 

Provenance of the data: All data were collected at TASMC in a collaborative effort 
between the Center for Brain Functions and the Functional Neurosurgery unit. The 
database will include a table describing and tracking data provenance. 

Self-analysis of the value and completeness of our data:  This database will be regarded 
as complete when including final localization of all channels and neural responses at the 
different scales and paradigm conditions from 12 patients. We are now collecting the final 
two patients. 

Indication of who has used this data so far and for what: The data have only been used 
by TASMC. A manuscript detailing micro and meso-scale neural responses to motivational 
states and values is in preparation. A manuscript detailing macro scale fMRI responses to 
motivational decision making (in the PRIMo game) in a healthy population has recently 
been accepted ((Gonen et al., 2016), HBP acknowledgement). 

 

Main Results 

The purpose of the PRIMo task was to illuminate the neural dynamics underlying 
motivational decision making by deconstructing it into stages; incentive cue, decision 
under conflict (to approach or avoid the cue), action behavior (approaching or avoiding) 
and response to outcome (reward or punishment) (see Figure 78 for trial structure). A 
cascade of neural activations was observed using intracranial recordings allowing a 
conscientious account of the neural dynamics involved on motivational decision making. 
The following describes the neural activity detected at different relevant brain regions at 
five stages of motivational decision making. We focused on 5 brain regions which are 
known to play significant roles in this process: the amygdala, hippocampus, 
parahipocampal area, ventral medial prefrontal cortex (vmPFC) and dorso-medial 
prefrontal cortex (dmPFC). Here we present finding from the PRIMo paradigm which allow 
the full tracking of motivational decision making stages in an ecological scenario. Findings 
from the RCD paradigm are presented as a complementation for the anticipation period. 
Figure 77 details the amount of neurons and iEEG channels used for this analysis.   

http://fmri-tlv.org/tomer.html
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Figure 79: Neural response to gain cue appearance 

(a) An example of neuron in the parahippocampus presenting an increase in FR following cue appearance of 
control reward trials. (b) Mean regional spectrograms. Time-frequency analysis of iEEG revealed an increase in 
gamma power 100 to 500ms post cue appearance [p<0.001 bootstraping, N=1000] (example shown from the 
vmPFC). This effect was stronger for incentive (control) trials. (c) Gamma (40-80Hz) phase coherence increase 
following gain control appearance between medial frontal and mesial temporal regions [t(32)=4.97,p<0.001]. 
This effect was not found for lower frequencies. 

 

The PRIMo: Response to appearance of incentive cue [0-500msec following 
appearance].  A positive ($) or negative (ball) cue appeared at the top of the screen. A 
strong amplification of gamma band following the appearance of the cue signaling its 
detection and processing (Figure 79). While all mesial brain regions evaluated presented 
this increase, it was most dominant in the Amygdala. This amplification was stronger for 
incentive trials as compared to non-incentive trials (i.e. non-control trials). This gamma 
band amplification was accompanied by increased phase coherence (synchronization) 
between mesial temporal and medial frontal regions and increased or decreased firing 
rates of neurons in all regions. Neurons in all 5 regions showed more sensitivity to the 
punishing cue (24% mean responsivity – as measured by the percent of neurons per region, 
from the total neurons recorded, with a significant alteration in FR) compared to the 
appearance of the rewarding cue (9% mean responsivity). This suggests that incentive cues 
are more salient and demand more fronto-limbic resources than the non-incentive cues; 
with incentive punishing cues demanding the most resources than incentive rewarding or 
non-incentive cues. 

 

Decision making under conflict [300-800msec after cure appearance]. The positive cue 
has to be achieved but negative cues may stand in the way inducing goal conflict between 
approach and avoidance behavior. A strong increase in delta and theta bands (2 to 7Hz) 
after positive cue appearance in iEEG channels within the hippocampus (Figure 80). This 
increase in stronger in conditions with high goal conflict (2 or more bombs in the way) 
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compared to low goal conflict (0 or 1 ball).This is in compatibility to the a neurobehavioral 
model of motivation known as the Reinforcement Sensitivity Theory (RST), suggesting that 
increase in hippocampal theta in gating the recursive hippocampus-vmPFC signaling, in 
order to resolve high goal conflicts by comparing between the current state, previous 
knowledge and expected consequences, for the sake of adaptive behavioral selection. 

 
Figure 80: iEEG time frequency analysis for decision and action 

(a) Average of low frequency (2-6Hz) power increase in the Hippocampus in response to control appear gain at 
300-1000ms (N=11 iEEG channels). This effect was not found for other brain regions (b) Classifying trials to high 
and low goal conflict revealed that this effect is stronger for high conflict (left) compared to low conflict 
(right). An example hippocampal electrode from D3 is shown. 

 

Action behavior [600-1200ms after cue appearance]. Approach or avoid behavior takes 
place. A decrease in gamma power in mPFC and amygdala but not in the hippocampus 
appears during this time (Figure 81). Similar pattern can be seen in the 46 healthy 
subjects’ results showing BOLD reduction in the amygdala and vmPFC during approach 
behavior (vs. anticipation); while increase in BOLD signal is clearly evident in action 
related regions such as the brainstem, dorsal striatum, and premotor and motor cortices 
(Figure 81). Taken together it seems like the limbic-PFC regions are reducing activity in 
order to allow for action preparation and execution to take place. Similar finding though 
less robust were evident in patients.  

 
Figure 81: Multi scale response to decision and action 

(a) Average high frequency spectrogram of iEEG channels: 8 Amygdala, 11 hippocampus and 4 vmPFC channels. 
A decrease in gamma band appears around 600ms following cue appearance. [p<0.001 bootstraping, N=1000 for 
amygdala and vmPFC].  (b-c) fMRI activations during behavior.  b. The contrast of control vs. non-controlled: 
Reduction in activity in the vmPFC as well as the amygdala is demonstrated in patient D006 (p=0.05 
uncorrected). c. fMRI from 46 healthy subjects shows a similar pattern of BOLD reduction in the amygdala and 
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vmPFC  during approach behavior (vs. uncontrol); while increase in BOLD signal is clearly evident in action 
related regions such as the brainstem, dorsal striatum, and premotor and motor cortices. 

 

Response to reinforcing outcome [0-500ms following outcome]. Positive or negative cue 
hits the player, resulting with reward (additional 5 points to player’s score in the game) or 
punishment (5 points reduced from player’s score in the game). Increase in gamma band 
power in the amygdala and mPFC but not in the hippocampus appeared following 
outcomes. (Figure 82). This amplification was stronger for incentive trials (controlled) as 
compared to non-incentive trials (non-control). This gamma band amplification was 
differently distributed in response to reward and punishment. The amygdala and dmPFC 
showed a higher increase following punishment outcome (compared to reward) while the 
hippocampus and vmPFC showed a higher increase following reward outcome (compared to 
punishment). This response was accompanied altered FR of neurons in the different 
regions. Concordantly, in response to punishment outcome, the amygdala and dmPFC 
showed higher neural reactivity (55%) compared to the hippocampus and vmPFC (39%), and 
the opposite trend was observed in response to reward outcome (16% reactivity in the 
amygdale and dmPFC and 32% reactivity for the hippocam pus and vmPFC). Interestingly, 
consistent with previous studies (Morrison and Salzman, 2010), neurons in the Amygdala 
tend to decrease FR in response to punishment, while an increase in FR was more evident 
in other regions (Figure 82). Additionally, increased phase coherence (synchronization) 
between mesial temporal and medial frontal regions was observed during this time window 
(Figure 82). Data from 55 healthy subjects revealed compatible large-scale network 
segregation, with dorsal mPFC, SMA and motor cortices; along with brainstem and 
thalamus showing greater sensitivity to controlled punishment; while ventral mPFC, 
including the vmPFC and sgACC; as well as the hippocampus and para-hippocampal gyrus 
showing greater sensitivity to non-controlled-rewarding trials. Similarly to the appearance 
phase, this suggests that the saliency of incentive, punishing outcomes is greater than 
incentive reward and from non-incentive outcomes. These results were also evident in 
patient’s fMRI data, showing a pre-frontal segregation, where dmPFC showed greater 
activation during incentive-punishment trials, while the vmPFC showed greater activation 
during non-incentive rewarding trials (Figure 82). 
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Figure 82: Multi-level neural response to outcome 

(a) An example of two neurons in the vmPFC (left) and dmPFC (right) which increase their FR following the 
outcome (reward or punishment respectively). Top- raster plot for the reward and punishment conditions. 
Bottom – Peri-Stimulus Histrograms. (b) Time-frequency analysis (averaged over all amygdala and hippocampus 
iEEG channels). An increase in gamma band power is observed in the amygdala peaking at 300ms following 
outcome but not in the hippocampus. (c) Summary of neuron reactivity to outcome shows, in response to 
punishment outcome, AMY and dorso-mPFC showed higher neural activity compared to the hippocampus and 
ventral-mPFC and the opposite trend was observed in response to reward outcome. (d) Response to outcome – 
fMRI in patients. Conjunction analysis of: controlled vs. non-controlled & punishment vs. reward revealed 
similar segregation of pre-frontal regions to with dmPFC/ dACC and SMA more sensitive to controlled and 
punishment trials, whereas vmPFC was more sensitive to non-controlled and rewarding trials (demonstrated on 
patients D2 and D4; p=0.05, uncorrected). (e) fMRI contrast maps punishment vs. reward from 50 healthy 
subjects show a similar pattern in the brain regions discussed. (f) Neurons showing a significant alteration in FR 
in response to punishment were clustered according to their PSTHs. Notice that the cluster showing a decrease 
in FR is dominated by amygdala neurons. 

 

The RCD paradigm: Anticipation. We focused on anticipation period in the RDC game to 
complement the PRIMo limitation during this anticipation to outcome stage. In this 
gambling game a player makes a decision between low risk (matching chip) and high risk 
(non-matching chip). Neurons in the mPFC were found to alter their FR within anticipation 
(Figure 83). In iEEG channels we found a wide band power increase within this period in 
the amygdala and mPFC. The Amygdala showed a higher gamma increase for the risky 
condition, possibly reflecting the anticipation of punishment. This corresponds to our 
original fMRI finding (Kahn et al., 2002) showing increased amygdala activation during 
anticipation periods that follow risky choices (thus high probability of punishment).   
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Figure 83: Anticipation to outcome in the RCD game 

(a) An example of two neurons (D5) in the dmPFC (top) and vmPFC (bottom) show increased FR during the 
anticipation period following risk or no-risk choices. (b) Example spectrograms (from patient D7). In the 
Amygdala, a wide band increase in power is stronger following risky decision (anticipation to punishment) vs. 
non risky decision (anticipation to reward). The opposing trend is shown in an example vmPFC channel.   
 

Summary 

Taken together, our results reveal a cascade of neural activations underlying the dynamics 
of motivational decision making (see a hypothetical model that is inspired by our fMRI and 
intracranial recording findings and from previous work in Figure 84).  Immediately 
following the appearance of an incentive cue, increased activity was evident in limbic 
(amygdala, hippocampus) and prefrontal nodes, along with increased fronto-temporal 
synchronization. Such integrated effort is expected during detection and evaluation of a 
significant stimulus such as reinforcing cue which carries motivational saliency (Bressler 
and Menon, 2010). Subsequently, a behavioral decision to approach or avoid is required, 
previously indicated to be gated by increased activity in hippocampal theta band (Gray and 
McNaughton, 2003). This was demonstrated in our data, mostly under high goal conflict, 
known to increase the complexity of the motivational decision. Following decision, 
approach behavior was characterized by decreased activity in the limbic system and in 
PFC, though most robust in the amygdala. This reduction in activity probably marked shift 
in resources towards action facilitation systems such as the striatum and motor related 
regions (Pessiglione et al., 2007). Similar results were shown in patients’ fMRI data (Figure 
81), as well as in a separate fMRI study of healthy subjects (Gonen et al., 2016), revealing 
wide-spread saliency and motor preparation activation following incentive cue appearance 
(combining appear, decision and action  due to  poor temporal resolution of the fMRI). 
Finally, in response to incentive outcome, amygdala and dmPFC showed increased activity 
and were more sensitive to punishment, while the hippocampus and vmPFC showed greater 
sensitivity to reward. This too was compatible to our healthy-subjects fMRI data, showing 
more distributed response, yet the hippocampus-vmPFC vs. amygdala-dmPFC segregation 
in response to reward vs. punishment outcomes (respectively) was clearly evident (Figure 
82). This is the first multi-scale neurobehavioral portraying of motivational decision making 
in humans. Our findings may guide neural based interventions corresponding to 
pathological conditions involving specific motivational stages. 
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Figure 84: Scheme of motivational decision making model 
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Learning and Memory 
Coordinated by Yadin Dudai  

Our goal in WP3.3, Learning and Memory, was to identify and map the neuronal circuits and hence 
elucidate the cognitive architectures (as defined by Dehaene, Dudai and Konon, Neuron 2015) of 
selected human learning and memory systems. This was achieved in 3 tasks that were deemed by 
us of particular relevance to large scale human brain simulations and also to future neurocognitive 
robots the design and construction of which may benefit from such simulation: T3.3.1, Skills and 
Habits (UHAIFA); T3.3.2, Memory for Facts and Events (WIS, EKUT); and T.3.3.2, Working Memory 
(UMU, WIS). The milestones of our research followed those defined in the DoW, namely, developing 
and validating protocols for localizing the aforesaid cognitive architecture using fMRI; generating the 
datasets; and subsequently model  the cognitive architecture of the distinct cognitive function. As 
expected, iterations were made in each task in validating the protocols, reacquiring data on the 
bases of the initial experiments, and modifying and improving the models.  

T3.3.1 focused on overnight procedural memory consolidation, based on a motor repetition protocol, 
and generated a model assigning roles for overnight modifications in intrinsic motor cortex (M1) 
connectivity as well as extrinsic connectivity to the basal ganglia. T.3.3.2 focused on three sub-
tasks. First, the cognitive architecture that subserves the encoding and initiation of episodic (event) 
memory. This task discovered the role of role of distinct brain circuits in peri-encoding (i.e., a few 
seconds before and a few seconds after encoding). Furthermore, the engagement of these circuits 
predicts subsequent memory in a realistic episodic memory protocol. This approach was able to 
further tease apart a fast shift between encoding- and retrieval mode of the hippocampus - a finding 
of special importance to modelling hippocampal role in episodic encoding and retrieval. In the 
second sub-task, the role of sleep in episodic consolidation has been investigated and a detailed 
dynamic mass model implicating distinct sleep phases and neuronal states has been generated. In 
the third sub-task, the role of emotion in encoding events and facts was analyzed. Here, using a new 
behavioral paradigm, it was shown that anxiety leads to wider generalization for loss- as well as 
gain-conditioned stimuli, and the circuits underlying this behavioral modification were identified, 
including amygdala, dorsal anterior cingulate cortex (dACC) and the Putamen. T.3.3.3 focused on 
short-term maintenance of conscious and non-conscious information. Using delayed matching-to-
sample, evidence was found for sustained mnemonic effects indicating non-conscious working 
memory. Two points are of note: first, classically, working memory was considered as a cognitive 
task under executive, attentional control, and the new data reinforce the non-conscious, 'automatic' 
contribution' of particular interest to brain simulations that do not necessarily assume emergence of 
consciousness; second, the data are consistent with the model generated in T3.3.2 above, in which 
immediate post-acquisition binding in a non-conscious working memory buffer is critical for 
subsequent episodic memory.  

All in all, WP3.3 hence generated multiple cognitive architecture models at various levels of 
realization in the human brain (from cellular-circuits to systems). These models can serve as 
boundary conditions as well as guides for simulations of key mnemonic functions in the human 
brain. 
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3.1 The consolidation and Transformation of memory 

Review of the cognitive architecture for the consolidation and transformation 
of memory 

Yadin Dudai, Avi Karni, Jan Born “The Consolidation and Transformation of Memory”, 
Neuron, Volume 88, Issue 1, p20–32, 7 October 2015 

Abstract 

Memory consolidation refers to the transformation over time of experience-dependent 
internal representations and their neurobiological underpinnings. The process is assumed 
to be embodied in synaptic and cellular modifications at brain circuits in which the 
memory is initially encoded and to proceed by recurrent reactivations, both during 
wakefulness and during sleep, culminating in the distribution of information to additional 
locales and integration of new information into existing knowledge. We present snapshots 
of our current knowledge and gaps in knowledge concerning the progress of consolidation 
over time and the cognitive architecture that supports it and shapes our long-term 
memories. 

 

  

http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
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Data set 1: Short-term cortical modulation by task repetition as signatures of 
procedural memory consolidation 

Task T3.3.1 - Avi Karni (UHAIFA) 

Overview of empirical work 

The strategic question addressed: whether and how are motor skill consolidation 
processes reflected in the modulation of neuronal responses to task repetition.  

The aim of the studies undertaken in Task 3.3.1 (skills and habits) was to test cortical 
responses to repeated action as brain signatures of accumulating experience, plasticity and 
procedural memory consolidation, in motor skill learning in young adults. To this end, data 
from an fMRI experiment addressing cortical dynamics in movement repetition for two 
movement sequences composed of identical component finger movements (a trained 
sequence – over which subjects have slept, and a novel sequence). The results show that 
short term but robust modulations of the primary motor cortex activity, its intrinsic 
connectivity as well as the M1's extrinsic connectivity to the basal ganglia, reliably reflect 
the individual's level of experience with a sequence of movements. We propose that M1 
not only generates movements but also serves as a hub for a motor working memory 
system: wherein transient stabilization of activity upon sequence repetition reflects short-
term familiarity with a novel sequence of movements. A temporarily stabilized network in 
cortex and striatum may promote an integrated representation of the new movement 
sequence (i.e., the movement syntax). Importantly, when a well-consolidated movement 
sequence is repeated, the M1 - striatum functional connectivity decreases upon repeated 
performance, as one would expect in an "automatic" response. Averaging over single events 
or blocks may not capture the dynamics of motor representations that occur over multiple 
time-scales; transient but consistent changes in motor cortex activity and connectivity to 
repeated experience are key elements in the dynamic representation of actions in cortex. 
Two papers (Gabitov et al., 2014, 2015) present this work. An additional aspect that was 
addressed was an analysis of the neural architecture supporting the ability to transfer 
(generalize) practice-related performance gains (skill, procedural knowledge) from the 
trained limb to the other. The data suggest that a critical hub is the pre-motor cortex in 
the trained hemisphere; however, mnemonic knowledge transfer is driven by the trained 
M1's modulations. This work has recently been published (Gabitov et al., 2016) 

An additional behavioral and fMRI brain imaging study, addresses motor cortex plasticity 
driven by visual input (action observation). The data suggest that while repeated can be 
highly effective in the acquisition of skilled motor performance, as well as in initiating 
memory consolidation processes, skill memory from action and memory from observation 
may not overlap in the brain representations of learned movement sequences. A paper 
presenting the behavioral results has been accepted for publication (Maaravi-Hesseg, Gal & 
Karni, Learn & Mem., accepted for publication). The imaging data suggest that M1 was 
only activated in the actual performance of both movement sequences but not during their 
viewing and we argue that the lack of M1 activation in the observation condition may 
explain the lack of behavioral interaction between the two modes of training. 

 

General design and methods 

These are described in details in three published papers (Gabitov et al, 2014, 2015). In 
brief the approach was to train young healthy adults in the performance of an explicitly 
instructed movement sequence (T-FOS, A or B) and retest (and comparing to an untrained 
sequence, U-FOS) at 24 hours post-training for overnight, consolidation phase gains (Figure 
85). Whole brain BOLD fMRI data at 3T was acquired in the overnight session while 
participants were tapping the sequences (T-FOS, U-FOS) repeatedly at a paced rate and 
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the data were analyzed for modulations of the evoked BOLD signals as signatures of 
overnight procedural memory consolidation, as well as for changes in functional 
connectivity dynamics as a function of mnemonic processes.   

 
Figure 85: Graphical depiction of the two movement sequences (left) and the main 
behavioral outcomes (right, speed – upper panel, accuracy – lower panel).  
The results indicate the expression of overnight “offline” performance gains in the performance of the T-FOS 
(red double arrow) as well as a clear advantage in the performance of the T-FOS over the U-FOS. (Gabitov et 
al., 2014). 

 
Results 

• Behaviourally, practice lead to robust “offline” gains in speed and accuracy for the 
trained finger movement sequence; these gains were expressed after overnight 
consolidation interval (Figure 85).  

• The imaging data showed brief but robust modulations (repetition enhancement, RE) of 
M1 activity correlated with the behavioral signature of consolidation (the overnight, 
"offline" movement speed gains) (Figure 86) as well as that M1's intrinsic connectivity 
and M1's extrinsic connectivity to the basal ganglia (Figure 87), reliably reflect the 
individual's level of experience with a sequence of movements.  

sleep 

Trained 

Untrained 
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Figure 86: The imaging findings. Robust repetition enhancement (RE) effects occurred 
for repeating well-trained movement sequences. RE was correlated with the behavioral 
signature of consolidation - overnight, "offline" movement speed gains. (Gabitov et al., 
2014)  

 

 
Figure 87: The imaging findings. Connectivity between M1 and basal ganglia increased 
for repeated new sequences; but decreases for consolidated sequence (Gabitov et al., 
2015a). 

 

A subsequent study addressed the neural architecture supporting the ability to transfer the 
skill to an untrained limb (Gabitov et al, 2015). Participants were scanned during the 
performance of the movement sequence, intensively trained a day earlier and also in the 
performance of a similarly constructed but previously untrained sequence (Figure 85, T-
FOS and U-FOS, respectively) with both sequences performed with the untrained hand.  

Results:  

• The performance of the T-FOS was accompanied by larger activity in both M1s. The 
differential responses in the 'trained' M1, ipsi-lateral to the trained hand, were 
correlated with the experience related differences in the functional connectivity 

* *            *            
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between the 'trained' M1 and 1) its homologue and 20 the dorsal pre-motor (PMd) 
cortex within the contra-lateral hemisphere.  

• No significant correlations were evident between experience related differences in 
M1 – M1 - PMd connectivity measures.  

These results suggest that the transfer of sequence specific information between the 2 
primary motor cortices is predominantly mediated by excitatory mechanisms driven by the 
'trained' M1, via two independent neural pathways (Gabiotov et al., 2015). 

 

An additional behavioral and fMRI brain imaging study (N=20) addressed the acquisition of 
skill, in the FOS task, from actual practice (as administered in the above studies, see 
training protocol in Gabitov et al., 2014 vs. learning from observation, i.e., in a condition 
wherein participants were asked to follow by observing only the video-taped repetition of 
the FOS (Figure 85). To this end we ran two behavioral experiments and a brain imaging 
study of motor mnemonic representations driven by visual input (action observation) 
compared to actual, physical, performance. 

 
 
Figure 88: Differential activity induced by actual performance (Act) and observation 
(Obs) in the pre-motor cortices of the 2 hemispheres (respectively) in the 
corresponding dorsal pre-motor cortices (PMd), for the T-FOS after an overnight 
consolidation phase and the newly introduced U-FOS.  
Importantly, the PMd bilaterally did not distinguish between the actually performed sequences and observed 
sequences (i.e., no differential activity for action vs. observation). Unlike the expectation from some studies 
of the human 'mirror neuron' system, the ventral PM did not show differential responses for the two sequences 
(not shown).   
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Results:  

• The behavioral data suggest that: (1) both training by executing and by observing 
movements can improve task performance as well as trigger skill consolidation 
processes as reflected in the expression of robust delayed "offline" gains in the 
performance of the trained movement sequence. However, (2) consolidation could 
be blocked by ensuing action but not by observation, indicating that skills acquired 
in doing or observing do not necessarily overlap in terms of their brain 
representation. A paper is in review (Maaravi-Hesseg, Gal & Karni, in review). 

• M1 was only activated in the actual performance of both movement sequences but 
not during their viewing. 

• Activity in the PMd, bilaterally, did not distinguish between the actually performed 
sequences and observed sequences (i.e., no differential activity for action vs. 
observation) (Figure 88). However, no such differential activity was found in the 
PMv (implicated in studies of the putative human 'mirror neuron' system. 

• The SMA showed sequence specific activity differences only when the movements 
were observed but not when the same movement sequences were performed.  

We therefore propose that although repeated observation can lead to both performance 
gains and a mnemonic representation, skill memory from action and memory from 
observation may not overlap in terms of brain representations.  

A perspective and proposal of an integrative reframing of the notion of memory 
consolidation as a generative process has been advanced by members of SP3.1 (see Dudai, 
Karni & Born, 2015). 

 

Conclusion  

We propose that the modulation of activity in a given brain area (M1) by task repetition 
reflects learning and overnight procedural memory consolidation. Specifically, brief but 
robust modulations of M1 activity as well as M1's intrinsic connectivity and M1's extrinsic 
connectivity to the basal ganglia, reliably reflect the individual's level of experience with a 
sequence of movements. M1 serves as a hub for a motor working memory system: wherein 
transient stabilization of activity upon sequence repetition reflects short-term familiarity 
with novel movement sequences (i.e., the movement syntax). However, this hub is under-
engaged in practice through observation and thus, although training by observation can 
trigger skill consolidation processes, the knowledge attained from actual practice as 
compared to that attained from the observation of the same actions may be qualitatively 
different.  

These results are therefore of high relevance to the modeling of learning (experience) 
related changes and mnemonic processes in brain areas, presumably at columnar level, as 
they suggest a specific, and dynamic set of signatures for repeated experience vs. novelty. 
The results are also of importance in the improvement of intervention programs for the 
acquisition of skills. 

 

The following papers were included in the HBP support period: 
1. Gabitov, E., Manor, D., & Karni, A. (2014). Done that: Short- term Repetition 

Related  Modulation of Motor Cortex Activity as a Stable Signature for Overnight 
Motor  Memory Consolidation. Journal of Cognitive Neuroscience, 26(12), 2716–
2734. http://doi.org/10.1162/jocn     

http://doi.org/10.1162/jocn
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2. Gabitov, E., Manor, D., & Karni, A. (2015). Patterns of Modulation in the Activity 
and   Connectivity of Motor Cortex during the Repeated Generation of Movement 
Sequence. Journal of Cognitive Neuroscience, 27(4), 736–751. 
http://doi.org/10.1162/jocn 

3. Dudai, Y., Karni, A., & Born, J. (2015). The Consolidation and Transformation of 
Memory.    Neuron, 88(1), 20–32. http://doi.org/10.1016/j.neuron.2015.09.004 

4. Gabitov, E., Manor, D., & Karni, A. (2016). Learning from the Other Limb’s 
Experience: Sharing the “Trained” M1’s Representation of the Motor Sequence 
Knowledge. Journal of Physiology, 1, 1–39. http://doi.org/10.1113/JP270184.Thi 

5. Maaravi-Hesseg,R., Gal,C., & Karni, A. ( 2016) Not quite there: skill consolidation in 
training by doing or observing. Learn.Mem (In the press).  

 

Talks  

Data and models involving our WP were delivered by Avi Karni at the Symposium on Motor 
Skills, the International Meeting on Cognitive & Neuro-cognitive aspects of Learning 
Abilities & Disabilities, (Haifa, May, 2015); The Rehabilitation Science and Technology 
Update 2016 (Rishon Letsion, February, 2016); The 8th Haifa Forum for Brain and Behavior 
(Haifa, February, 2016) and the Neuroscience Seminars, University of Maastricht (Maastrict, 
February, 2016).  

 

A Dataset Information Card has been completed (see DIC Task T3.3.1 “Learning and 
memory: motor skill consolidation and intermanual transfer”). 

Data Provenance: The behavioral and fMRI data were acquired and analyzed by Ella 
Gabitov, David Manor, Rinatia Maaravi Hesseg & Carmit Gal at the University of Haifa, the 
fMRI unit, C. Sheba Medical Center, Tel-Hashomer and fMRI unit, Rambam Medical Center. 

Data Location: The data were deposited on a server at: 
https://openfmri.org/dataset/ds000170/ 

  

http://doi.org/10.1162/jocn
http://doi.org/10.1016/j.neuron.2015.09.004
https://openfmri.org/dataset/ds000170/
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Data set 2: Cognitive architecture of the initiation of systems consolidation 

Task T3.3.2 - Yadin Dudai (WIS) 

Our goal in this task was to contribute to the understanding of the cognitive architecture 
of the initiation of memory consolidation in the human brain. An abundance of research in 
the field of human memory has focused on the encoding and subsequent consolidation of 
episodic memory. Yet very little is known about the transition between the two, 
encompassing the first seconds following the inception of the memory trace. In a recent 
set of studies, we developed a new paradigm to specifically target memory processes 
elicited at the offset of episodes (Ben-Yakov and Dudai, 2011). By presenting participants 
with short movie clips of varying lengths (4-16s), intercalated with brief rest periods, we 
identified brain regions displaying memory-predictive activity at event offset. These 
consisted of regions in the striatum, hippocampus and cerebellum (all bilaterally), all 
demonstrating a response that was time-locked to the clip offset and predictive of 
subsequent memory for the clip’s gist (Figure 89).   

 
Figure 89: Regions demonstrating memory-predictive activity at event offset 

(a) Regions showing a significant difference in BOLD activity at the offset of subsequently remembered vs. 
subsequently forgotten clips in conjunction with a positive response at the offset of forgotten clips relative to 
baseline (p<0.005 for each contrast, uncorrected, minimal cluster size 5 contiguous functional voxels, GLM with 
a random effects group analysis, n=25). Data are shown on axial and sagittal slices of the group-average brain. 
On the right, a slice including the left hippocampus is shown with the same contrast at a more relaxed 
threshold (p<0.05). (b) Mean group BOLD signal (after z-scoring each time-course) during and following 
remembered, forgotten and visually scrambled clips. Error bars show standard error of the mean. The black 
lines indicate the onset (left line) and offset (right line) of clip presentation, while the dashed line indicates 
the mean onset of the following clip. Results are shown for the bilateral hippocampus bodies and bilateral 
dorsal striatum (dorsal caudate nucleus). Adapted from Ben-Yakov and Dudai 2011. 

Based on the initial observation, we hypothesized that the hippocampal response is 
triggered by the closure of the episode, as indicated by a salient change in the stream of 
information. To test this, we presented participants with pairs of movie clips in immediate 
succession (Ben-Yakov et al., 2013), and found that the hippocampus responded at the 
offset of each clip (Figure 90). This design also enabled us to study the brain substrates of 
retroactive interference, a behavioural phenomenon in which presentation of two stimuli 
in succession impairs memory for the first of the two. We found that attenuation of the 
posterior hippocampal response at the offset of the first clip corresponded with the 
behavioural effect (Figure 91), suggesting that disruption of post-event processing in the 
posterior hippocampus may account for this phenomenon. 
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Figure 90: Double-peaked hippocampal response to consecutive clips 

Left panel: the average response (average of the z-scored data over trials and participants) to presentation of 
a single clip (Clip_Fix), plotted with the fitted model of response at clip offset (dashed line). Middle panel: the 
average response to two consecutive clips (Clip_Clip) plotted with the fitted model predictors of a response at 
the first clip offset (brown dashed line) and at the second clip offset (dashed orange line). Right panel: same as 
the middle column, with the summation of the separate model predictors (gray dashed line), demonstrating 
the fit of the data to a double-peaked model. In all plots, the solid vertical lines represent the onsets and 
offsets of the clip(s) while the dashed vertical line represents the average end of the fixation screen. Adapted 
from Ben-Yakov, Eshel and Dudai 2013. 

 
Figure 91: Effect of retroactively-interfering stimuli on hippocampal response at clip 
offset.  
Left panel: average response to single presentation clips (Clip_Fix), clips followed by a visually scrambled clip 
(Clip_Scr) and a pair of consecutive clips (Clip_Clip)  in the right posterior hippocampus. The vertical lines 
represent the onsets and offsets of the two clips. Middle panel: The amplitude of the response in each 
condition (beta value estimates), demonstrating a significant effect (p<0.05, ηp2=0.18) of presentation 
condition on the offset-response to the first clip. This was due mainly to a significant reduction in the response 
to Clip1 of a clip pair relative to a single clip. Right panel: The memory performance in each of the conditions. 
Adapted from Ben-Yakov, Eshel and Dudai 2013. 

 

The final study addressed the effects of event familiarity on hippocampal processing. We 
presented the same clips repeatedly, in addition to a set of clips that were presented only 
once (Ben-Yakov et al., 2014). We found that increased familiarity attenuated the 
hippocampal response at clip offset, in line with a novelty/encoding signal (Figure 92). In 
parallel, an onset response emerged in the posterior hippocampus only for familiar clips, in 
line with a familiarity/retrieval signal (Figure 92). Thus, we observe a temporal 
dissociation between encoding and retrieval signals linked to a single event, enabling the 
study of both processes simultaneously. This dissociation, which was not feasible in 
previous studies that employed brief stimuli, may prove of particular importance in the 
study of reconsolidation and false memory. 
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Figure 92: Repetition attenuates offline hippocampal activity and induces an online 
response.  
Mean group BOLD signal (z-scored) during and following single-presentation clips (Single-Pred) and 
presentations 1,4,6 (Pres1,4,6) of the repeated clips. The black lines indicate the onset (left line) and offset 
(right line) of clip presentation, while the dashed line indicates the mean onset of the following clip. Error bars 
represent the standard error of the mean. From Ben-Yakov, Rubinson, and Dudai 2014. 

 

Neocortical pre-encoding involvement in memory formation 

It is yet unknown whether natural brain activity preceding the onset of an event plays a 
role in memory formation. Data from two experiments previously conducted in our lab 
(Experiment 1 and Experiment 3 in (Ben-Yakov and Dudai, 2011)) were re-analyzed to test 
this question, and additional experiments performed to clarify the initial data in 
collaboration with Prof. Rony Paz (from our WP). In these experiments participants 
encoded audio-visual clips during an fMRI scan. Each clip was preceded by a fixation screen 
of jittered length. Following the encoding phase, the memory for the clips was assessed 
using a cued-recall test. In both experiments, the left dorsal anterior insula (peak MNI 
coordinates: -30, 8, 10; see Figure 93A) demonstrated higher prestimulus activity for 
subsequently remembered vs. subsequently forgotten clips. Our findings suggest that pre-
encoding activity in the left anterior insula plays a role in memory formation. The left 
insula exhibited a specific pattern of memory-predictive brain activity: deactivation during 
the movie and activation during the fixation interval (see Figure 93B & Figure 93C). Memory 
outcome appears to be predicted by the peak activity of the insula after it is has recovered 
from deactivation. Thus, our results imply that stronger recovery from deactivation 
promotes the encoding of a novel upcoming event.  
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Figure 93 

(A) Regions demonstrating higher BOLD pre-encoding activity for remembered clips compared to forgotten clips 
(p < 0.001, cluster size > 38), and mean group BOLD signal (after z scoring each time course) during and 
following remembered and forgotten clips in Experiment 1 (B) and in Experiment 2 (C). Error bars indicate 
standard error of the mean (SEM). The vertical lines indicate the onset and offset of clip presentation. lDAI= 
left dorsal anterior insula. (Cohen, Ben-Yakov, Edelson, Paz and Dudai 2016, under revision). 

 

All in all, our work enabled us to generate a block diagram of the basic cognitive 
architecture of the initiation of systems consolidation in the human brain. The diagram, 
coupled to further events in the early stages of systems consolidation as unveiled in the 
parallel work of Jan Born's group (Tuebingen) in our WP, is presented in Figure 94.  

 

 

X = -30 

  

A. ldAI activity 



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 198 / 
281 

 

 
Figure 94: A heuristic block model of the cognitive architecture of selected phases in 
episodic memory consolidation.  
(A). The initiation of consolidation. Activation of an encoding set in the dorsal anterior insula precedes the 
event to be encoded, which is registered on the fly in the hippocampal system, involving rapid alternations of 
encoding mode (of the new information) and retrieval mode (of familiar attributes of the experience, encoded 
in both hippocmapus and neocortex). An automatic episodic buffer, which also suberves working memory 
related to the ongoing task, is assumed to bind the incoming information into a coherent representation in the 
hippocampus, the closure of which by a postulated event boundary (computed by modality specific neocortex) 
sets into action the consolidation cascade. (B). This part of the model is presented to provide a broader picture 
and is informed by the work performed in Jan Boren's group in Tuebingen in the context of the overall task. 
Consolidation during sleep. The episodic experiences (X,Y.Z) loading into the hypothetical hippocampal-based 
buffer is accompanied by EEG theta activity and tagging of memories for reactivation during succeeding sleep. 
Reactivation that repeatedly occur during slow wave sleep stimulate the passage of the reactivated memory 
information towards neocortical storage sites where this memory information becomes integrated into pre-
existing knowledge networks. Ensuing REM sleep stabilizes the newly formed NC representations via synaptic 
consolidation and might simultaneously degrade and disintegrate (large parts of) the hippocampal 
representation. Hipp, hippocampus; IdAI, left dorsal anterior insula; MTL, mediotemporal lobe; NC, neocortex. 
PFC, prefrontal cortex, SWS, slow wave sleep. For further details on the initial phases in this block model, see 
text. (Adopted from Dudai, Karni and Born, Neuron 2015.) 

 

The following papers were included in the HBP support period: 

1. Ben-Yakov A, Eshel N, Dudai Y (2013) Hippocampal immediate post-stimulus activity in 
the encoding of consecutive naturalistic episodes. J. Exp. Psychol:G, 142, 1255-1263.  

2. Ben-Yakov A, Rubinson M, Dudai Y (2014) Shifting gears in hippocampus: Temporal 
dissociation between familiarity and novelty signatures in a single event. J Neurosci 
34(39), 12973–12981. 
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3. Ludmer R, Edelson M, Dudai Y (2014). The Naïve and the Distrustful: State-dependency 
of hippocampal computations in manipulative memory distortion. Hippocampus 25(2), 
240-252 

4. Edelson M, Shemesh M, Weizman A, Yariv S, Sharot T, Dudai Y (2015). Opposing Effects 
of Oxytocin on Overt Compliance and Lasting Changes to Memory. 
Neuropsychopharmacology. 40(4), 966-73. 

5. Cohen N, Pell L, Edelson M, Ben-Yakov A, Pine A, Dudai Y (2015). Peri-encoding 
predictors of memory encoding and consolidation. Neurosci Biobehav Rev 50, 128-142. 

6. Dudai Y, Karni A, Born J (2015). The consolidation and transformation of memory. 
Neuron 88, 20-32.  

7. Cohen N, Ben-Yakov A, Edelson GM, Paz R, Dudai Y (2016). Prestimulus Activity in the 
Human Dorsal Anterior Insula Predicts Subsequent Memory (under revision). 

 

Talks including data and models involving our WP were delivered by Yadin Dudai in EMBO 
annual meeting (Heidelberg, October 2014), MIT (The Picower Annual Lecture, May 2015), 
NYU Advances in Memory Systems Meeting (May 2015), Swiss Memory Workshop, Spiez, 
Switzerland, Aug 2015), The Friedrich Meischer Lecture (FMI, Basel, Nov 2015), and Brain 
Mind Institute Memory Workshop (Lausanne, December 2015). 

 

Collaboration: We have collaborated with Prof. Rony Paz from our WP, with Prof. Talma 
Hendler from SP3 T3.2.4, with Prof. Misha Tsodyks from SP3 T4.3.2 and from SP6, and with 
Kathinka Evers from SP12. 

 

Data Provenance: The fMRI and behavioural data were collected and analysed by Aya BEN-
YAKOV, Neetay ESHEL, Micah RUBINSON and Meytar ZEMER. The data were also analysed by 
Noga COHEN, at the WIS. 

 

Data deposition: This was conducted and accomplished according to the instructions from 
HBP. Since there was no HBP data platform prepared by HBP on time, we served as a 
template for data cards and data repositories, in interaction with the HBP Management.  

The data were deposited on a server at: 

http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_sta
ge_1/ 
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_sta
ge_2/ 

http://sp3.s3.data.kit.edu/3_3_2/fMRI/Prestimulus_predictors_of_memory_encoding/ 
 
Three Dataset Information Cards have been completed (see DICs Task T3.3.2 “Prestimulus 
predictors of memory encoding”, “Consolidation of realistic episodic memories - stage 1” 
and “Consolidation of realistic episodic memories - stage 2”). 
 

 

 

  

http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_stage_1/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_stage_1/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_stage_2/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_stage_2/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Prestimulus_predictors_of_memory_encoding/
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Brain circuits underlying maladaptive memories in anxiety 

Task 3.3.2  Rony Paz (WIS) 

Over-generalization of dangerous stimuli is a possible etiological account for anxiety 
disorders, yet the underlying behavioural and neural origins remain vague. Specifically, it 
is unclear if this is a choice-behaviour in an unsafe environment (“better-safe-than-sorry”), 
or also a fundamental change in how the stimulus is perceived. If it is the latter, it means 
that plasticity mechanisms that occur during learning change the internal representation 
and affect the memory, so that later recall will be biased. Based on our previous findings 
showing that aversive learning can indeed affect memory, we hypothesized that such a 
basic mechanism can contribute to anxiety responses. Specifically, we hypothesized that 
patients would have compromised perception that contributes to over-generalization. We 
further hypothesized that this would be paralleled by changes in stimulus representations 
in sensory-regions that are modulated by affective regions.  

We designed a specific behavioural paradigm and show that anxiety-patients have wider 
generalization for loss-conditioned tone when compared to controls, and do so even in a 
safe context that requires a different behavioural policy. Moreover, patients over-
generalized for gain-conditioned tone as well. Imaging (fMRI) revealed that in anxiety only, 
activations during conditioning in the dACC and the Putamen were correlated with later 
over-generalization of loss and gain, respectively; whereas valence distinction in the 
amygdala and hippocampus during conditioning mediated the difference between loss- and 
gain-generalization. During generalization itself, neural discrimination based on multivoxel 
patterns in auditory-cortex and amygdala revealed specific stimulus-related plasticity. Our 
results suggest that over-generalization in anxiety has perceptual origins and involves 
affective modulation of stimulus representations in primary cortices and amygdala.  

 
Figure 95: Generalization in anxiety.  

(A) Conditioning-phase required subjects to learn to associate one tone (CS-gain) with one button to obtain 
monetary reward, and another tone (CS-loss) with the other button to avoid monetary loss. In the 
Generalization-phase that followed (the focus of this study), Subjects heard different tones and had to choose 
if it is one of the tones that were conditioned in the previous phase (independent if it was the gain- or loss-
related tone), or another, new tone. (B) Proportion of trials identified as the loss-conditioned-tone, as a 
function of distance (in % Hz) from the loss-conditioned-tone. (C) Same as (B) for the gain-conditioned tone 
(the graph is reflected only for presentational reasons, the x-axis in both (B) and (C) represents ±3%, ±10%, 
±20%). (D) Generalization quantified as the slope (averaged over subjects) reveals that there was wider 
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generalization (smaller slopes) for loss-related tone in both patients and controls, but that patients had even 
wider generalization. (n=28 GAD, 16 controls). 

 

 
Figure 96: Differential activations during conditioning 

(A) During loss-conditioning trials, activations were higher in controls in the vmPFC (yellow) and BA10, and 
higher in anxiety-patients in dACC, Caudate, insula, and auditory cortices (green). (B) During gain-conditioning 
trials, no regions showed increased activation in controls, but activations were higher in anxiety-patients in 
dACC, Caudate&Putamen, insula, and auditory cortices (green). Activations are thresholded at p<0.05, FWE 
SVC, k>10. (n=16 GAD, 16 controls). 

 

 
Figure 97: Activations in Amygdala during conditioning are correlated with later 

Individual generalization difference between loss and gain.  
(A) Activation map when using generalization slopes as covariate with a loss>gain contrast in a GAD vs. control 
model: the amygdala showed significant activation during conditioning that  was significantly more correlated 
with the later individual generalization behavior of GAD patients only. Activations are thresholded at p<0.05, 
FWE SVC, k>10. (B) Correlations between individual activations of anxiety subjects and their behavioral slopes 
are shown. Notice this correlation plot report the effect size and directionality and do not constitute additional 
non-independent tests. (C) Same as (B), but using activations from anatomical ROIs of the amygdala. 
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Model: Neural mass models of the sleeping brain 

Task T3.3.2 - Jan Born (EKUT) 

The overarching aim of this project was to model the transformation of hippocampus-
dependent memory during sleep-dependent system consolidation. These consolidation 
processes require an intricate interplay between the hippocampus and other key structures, 
namely the neocortex and the thalamus. Therefore, as a first step we aimed at modeling 
brain dynamics during sleep using neural mass models, to better understand the interplay 
between those structures and elucidate the effect of external non-invasive stimulation 
techniques on the ongoing brain activity. 

 

Neural mass model of cortical slow oscillations and K-complexes 

In stage 1, we developed a neural mass model of the sleeping cortex (Weigenand et al., 
2014). This approach allowed for a cost efficient modelling of sleep EEG and provided a 
detailed understanding of the mechanisms involved in the generation of slow oscillations 
and K-complexes.  

 

Figure 98: Comparison of model output with human EEG data during NREM sleep. 
One epoch of 30s of human EEG data (top) compared with model output. The upper panel depicts sleep stage 
N2, the lower N3 or slow wave sleep (From Weigenand and Schellenberger Costa et al. 2014).  

Based upon our analysis, we could show that on a mesoscopic scale, the cortex is 
approaching an Hopf bifurcation rather than alternating between two stable states, which 
contradicts the existing literature of a bistable cortex during slow wave sleep. 
Furthermore, we were able to show, that the generating mechanisms of K-complexes and 
slow oscillations differ. While slow oscillations are generated by a plain limit cycle, K-
complexes emerge from the interplay between a slow firing rate adaptation and the 
cortical dynamics, leading to a canard phenomenon. 
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Figure 99: Bifurcation analysis of the cortical neural mass model. 

In addition to the previously know bistability, that was generated by two saddle-node bifurcations (black), 
there is an additional Hopf bifurcation (red) generated by the slow firing rate adaptation included in the 
cortical model. In the region between the grey lines, there is a canard phenomenon, that generates K-
complexes. Above the upper grey line the canard vanishes in a cusp bifurcation and a pure limit cycle remains, 
leading to large amplitude slow oscillations (From Weigenand and Schellenberger Costa et al. 2014).  

 

Neural mass model of thalamo-cortical interactions and the effect of sensory 
stimulation. 

Hippocampus-dependent memory consolidation during sleep is highly dependent on the 
interplay between cortical slow oscillations, thalamic spindles and hippocampal sharp 
wave ripples. Consequently in stage 2 we extended our cortical neural mass model to 
include a thalamic component (Schellenberger Costa et al., In review). We were able to 
show, that the inclusion of a T-type calcium and an anomalous rectifier current is 
sufficient to generate highly realistic spindle oscillations. 

 

 
Figure 100: Model output during simulation sleep stage N2. 

The upper panel shows the activity of the cortical neural mass, that relates directly to the measured EEG. The 
lower panel depicts spindle activity on the thalamic relay nuclei. While the thalamic nuclei is able to 
periodically generate spindle oscillations, there is also a strong coupling between K-complexes/Slow 
oscillations and thalamic spindles (From (Schellenberger Costa et al., In review)). 

To better validate our model and elucidate the effect of external sensory stimulation on 
the thalamo-cortical dynamics, we reproduced experimental data from a previous 
stimulation study in humans (Ngo et al., 2013). The model not only reproduces the 
experimental data to a high degree, but also exhibits the typical grouping of slow 
oscillatory activity and thalamic spindles.  
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Figure 101: Model output during simulation sleep stage N2. 
The upper panel shows the activity of the cortical neural mass, that relates directly to the measured EEG. The 
lower panel depicts spindle activity on the thalamic relay nuclei. While the thalamic nuclei is able to 
periodically generate spindle oscillations, there is also a strong coupling between K-complexes/Slow 
oscillations and thalamic spindles (From (Schellenberger Costa et al., In review)). 

 

Effect of sleep regulation on neural mass models. 

Changes in brain dynamics are driven by neuromodulators that are highly specific to the 
respective brain structure. In our previous work we could show, how certain mechanisms 
shape the underlying brain dynamics during sleep and link them to neuromodulatory 
activity. However, to fully understand brain dynamics during sleep one need to understand 
not only the way those neuromodulators act, but also their intrinsic dynamics. Therefore, 
we extended our previous approach of the sleeping cortex with a sleep regulatory network, 
that shapes cortical activity through the release of different neuromodulators 
(Schellenberger Costa et al., In print).  

 

 
Figure 102: Effect of sleep regulation on a cortical neural mass. 

The right panel illustrates the time course of the bifurcation parameters of the cortical neural mass over the 
course of a full day, exhibiting periods of wakefulness, NREM and REM sleep. The different neuromodulators of 
the sleep regulatory network (acetylcholine, noradrenalin and extrasynaptic GABA) act on the bifurcation 
parameters, generating the characteristic REM-NREM cycling observed during human sleep. The left panel 
depicts the projection of the trajectory into the bifurcation diagram of the cortical model, illustrating, how 
the different sleep stages depend on the bifurcation structure of the model (From Schellenberger Costa et al. 
2016b). 

Our approach has the additional advantage, that we are now able to classify the activity of 
the sleep regulatory network based on EEG activity generated by the cortical neural mass 
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rather than the intrinsic firing rates of the sleep regulatory network itself, as currently 
done in the literature. This allows for an easy non-invasive validation of sleep regulatory 
networks, that was previously not possible. Furthermore, we are able to predict the effect 
of neuropharmacological interventions on the underlying brain dynamics and therewith the 
generated EEG. 

 

The following papers were included in the HBP support period: 

1. Weigenand A, Schellenberger Costa M, Ngo H-VV, Claussen JC, Martinetz T (2014) 
Characterization of K-Complexes and Slow Wave Activity in a Neural Mass Model, PLoS 
Computational Biology e1003923, doi: 10.1371/journal.pcbi.1003923, 
 
2. Schellenberger Costa M, Weigenand A, Ngo H-VV, Marshall L, Born J, Martinetz T, 
Claussen JC (2015) A thalamocortical neural mass model of the EEG during NREM sleep and 
its response to auditory stimulation. (In review, PloS Computational Biology) 

3. Schellenberger Costa M, Born J, Claussen JC, Martinetz T (2015) Modeling the effect of 
sleep regulation on a neural mass model. (In Print, Journal of Computational 
Neuroscience). 

 

Location of models  
The model implementations are publicly available at 
 
[1] Schellenberger Costa, M.: Neural mass model of the cortex during sleep (2014). 
https://github.com/miscco/NM_Cortex 
 
[2] Schellenberger Costa, M.: Neural mass model of the isolated thalamus during sleep. 
(2015). https://github.com/miscco/NM_Thalamus 
 
[3] Schellenberger Costa, M.: Neural mass model of the thalamocortical system during 
sleep. (2015). https://github.com/miscco/NM_TC 
 
[4] Schellenberger Costa, M.: Simulation of the effect of sleep regulation on a cortical 
neural mass (2015). https://github.com/miscco/ NM_Cortex_SR 
 
The thalamocortical part is complete. Hippocampal components are still missing. 
 
We have a starting collaboration with Maxim Bazhenovs lab and will add our models to the 
virtual brain project. 
 

 
  

https://github.com/miscco/NM_Cortex
https://github.com/miscco/NM_Thalamus
https://github.com/miscco/NM_TC
https://github.com/miscco/
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3.2 Working Memory 

Task T3.3.3 - Lars Nyberg (UMU), Johan Eriksson (UMU) 

Review of the cognitive architecture for working memory 

Johan Eriksson, Edward K. Vogel, Anders Lansner, Fredrik Bergström, Lars Nyberg 
“Neurocognitive Architecture of Working Memory”, Neuron, Volume 88, Issue 1, p33–46, 7 
October 2015 

Abstract 

A crucial role for working memory in temporary information processing and guidance of 
complex behaviour has been recognized for many decades. There is emerging consensus 
that working-memory maintenance results from the interactions among long-term memory 
representations and basic processes, including attention, that are instantiated as reentrant 
loops between frontal and posterior cortical areas, as well as sub-cortical structures. The 
nature of such interactions can account for capacity limitations, lifespan changes, and 
restricted transfer after working-memory training. Recent data and models indicate that 
working memory may also be based on synaptic plasticity and that working memory can 
operate on nonconsciously perceived information. 
  

http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
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Data set: Short-term maintenance of conscious and non-conscious information. 

 

Introduction 

Working memory maintains information in an easily accessible state over brief periods of 
time. This feature is required for future goal-directed behaviour and allows us to act 
beyond the confines of the here and now. As such, working memory is taxed by numerous 
laboratory and everyday cognitive challenges. Core features of working memory are short-
term maintenance of information in the absence of sensory input, distraction resistance, 
and a connection between the maintained information and prospective actions. Recent 
research has demonstrated that, contrary to common belief, these features are possible 
also for information that has been presented non-consciously (Bergström and Eriksson, 
2014; Pan et al., 2014; Soto and Silvanto, 2014). Here we further investigate the 
characteristics of such “non-conscious working memory” by suppressing the conscious 
experience of a sample stimulus using continuous flash suppression in a delayed match-to-
sample task, while measuring brain activity with fMRI. 
 

Materials and Methods 

Participants 

Thirty participants were recruited from the Umeå University campus area. All participants 
had normal or corrected to normal vision, right eye- and hand dominance, gave written 
informed consent, and were paid for participation. Four participants were excluded due to 
excessive head motion during scanning, misunderstanding instructions, or outlier 
performance, and the final dataset therefore contains data from 26 participants. All 
participants gave written informed consent and the study was approved by the local ethics 
committee.  
 
Stimuli and procedure 

Each trial began with an inter-trial-interval (ITI) of 3-9 s before the stimulus presentation. 
The stimuli consisted of one out of six different grey silhouettes of tools and were 
presented on a computer monitor An MR-compatible mirror stereoscope was used to isolate 
the visual input from the left side of the monitor to the participants left eye, and vice 
versa for the right side. The stimulus to be retained was presented for 3 s, either to both 
eyes simultaneously (consciously experienced), or only to the non-dominant (left) eye 
while coloured squares of random composition (mondrians) where flashed with a frequency 
of 10 Hz to the dominant eye to suppress the stimulus from conscious experience (Tsuchiya 
and Koch, 2005). During the baseline trials mondrians were presented to the dominant eye 
while an empty gray background was presented to the non-dominant eye. Critically, the 
visual experience of baseline and non-conscious trials was the same (experiencing only 
mondrians). 
 
After a variable (5-15 s) delay period a probe prompted a response that indicated whether 
the probe matched object identity and spatial position, only object identity, only spatial 
position, or neither (maximum response time 5 s). The participants were instructed to 
remember both the object identity and its spatial position. Thus, for the probe to be a 
“match,” it had to be the same object and be in the same spatial position (full match) as 
the sample. If the probe contained the same object at a different spatial position (object 
match), different object at the same spatial position (spatial match), or different object 
at a different spatial position (non-match), it should be answered with a “no match” 
response. If they had not experienced the target stimulus (i.e., only experienced 
mondrians) they were instructed to guess on the first alternative that came to mind/gut 
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feeling (match or no match). Next the participants were prompted to make a detection 
response to determine if a target stimulus had been presented at all (yes or no; max 5 s). 
If they had not perceptually experienced a stimulus they were to guess per the same 
instructions as for the delayed match-to-sample task. Lastly, they estimated their 
conscious experience of the stimulus on a three-point perceptual awareness scale (PAS; 
(Sandberg et al., 2010). The participants were instructed and trained to use the PAS scale 
as follows: 1 = no perceptual experience, 2 = vague perceptual experience, and 3 = clear 
or almost clear perceptual experience, of the sample stimulus. All responses had an upper 
time limit of 5 s, after which the experiment automatically continued with next response 
or trial. Prior to the fMRI experiment all participants were trained on the experimental 
procedure outside of the fMRI scanner. 
 
The experiment consisted of 192 delayed match-to-sample trials dispersed on three 
presentation conditions (44 conscious, 108 non-conscious, and 40 baseline [target absent] 
trials; Figure 103). Since we aimed to focus our analyses on comparisons between hits > 
baseline and hits > misses there was a larger proportion of full match than non-match 
trials. Out of the conscious trials there were 20 full match, 8 object match, 8 spatial 
match, and 8 non-match trials (see below for descriptions). Out of the non-conscious trials 
there were 78 full match, 10 object match, 10 spatial match, and 10 non-match trials. 

 

 
Figure 103: Trial procedure 

Depending on the presentation condition, two identical sample stimuli (tools), stimulus and mondrians, or 
empty background and mondrians, were presented to the left and right eye respectively. The object identity 
and spatial position of the stimulus was then to be retained for a variable (5-15 s) delay period, until a probe 
prompted the participants to respond whether or not the probe matched the previously presented position. 
Next, they responded whether or not a stimulus had been present. Finally, the participants gave an estimate of 
their perceptual experience of the stimulus. DMS = delayed match-to-sample task; PAS = perceptual awareness 
scale; (i) = Probe identity and position matches sample; (ii) = Probe identity matches sample; (iii) = Probe 
position matches sample; (iv) = Probe does not match sample. 

 
fMRI acquisition 

The fMRI data were collected at Umeå center for Functional Brain Imaging, Umeå, Sweden, 
with a GE 3 Tesla Discovery MR750 scanner (32-channel receive-only head coil). Each 
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participant underwent one session with two functional runs (1230 volumes each) of 
scanning using a T2∗- weighted gradient echo pulse sequence, echo planar imaging, field of 
view = 25 cm, matrix size = 96 × 96, slice thickness = 3.4 mm, 37 slices with no inter-slice 
skip and an ASSET acceleration factor of 2. The volumes covered the whole cerebrum and 
most of the cerebellum, the acquisition orientation was aligned with the anterior and 
posterior commissure, and was scanned in interleaved order with TE = 30 ms, TR = 2 s, flip 
angle = 78◦. Between the two functional runs a high-resolution T1-weighted structural 
image was collected FSPGR with TE = 3.2 ms, TR = 8.2 ms, TI = 450 ms, and flip angle = 
12◦. 
 
 

Data processing and statistical analysis 

Behavioural analysis. Only trials in the baseline and non-conscious presentation 
conditions with PAS = 1, and trials in the conscious condition with PAS = 3 were used in the 
statistical analyses, and will for simplicity be referred to as baseline, non-conscious, and 
conscious trials. Signal detection theory (d′) was used to calculate performance on the 
delayed match-to-sample discrimination (DMS) and detection tasks (Macmillan and 
Creelman, 1991). For DMS d′ the signal was defined as the object identity and its spatial 
position. Hits were therefore defined as a (position and identity) match between sample 
and probe together with a “match” response, and FAs as a non-match (which includes 
cases where only position, only identity, or neither was a match) between sample and 
probe together with a “match” response. For the detection task, hits were defined as the 
presence of a target stimulus together with a “yes” response, and FA were defined as the 
absence of a target stimulus (i.e., baseline trials) together with a “yes” response. 

Univariate analysis of fMRI data. The software used for processing and analysis of fMRI 
data was SPM8 (Welcome Trust Centre for Neuroimaging, London, UK), run in Matlab 7.11 
(Mathworks, Inc., Sherborn, MA, USA). Before preprocessing, a manual quality inspection 
using in-house software was done. Preprocessing was done in the following order: slice-
timing correction to the first slice using Fourier phase-shift interpolation method, head-
motion correction with unwarping of B0 distortions, DARTEL normalization (Ashburner, 
2007) using a 12-parameter affine transformation model to MNI anatomical space, and an 8 
mm FWHM Gaussian smoothing. DARTEL normalization and smoothing was applied on the 
contrast images after intra-subject model estimation. For intra-subject modeling a General 
Linear Model (GLM) with restricted maximum likelihood estimation was used.  

The model consisted of the following regressors of interest: Presentation conditions (non-
conscious and conscious) by trial epochs (stimulus presentation, delay, and DMS response) 
by PAS rating (1, 2, or 3) by signal detection category (hits, misses, false alarms, and 
correct rejections), and presentation condition baseline by trial epochs by PAS rating, and 
inter-trial intervals (ITI). The model also contained the following nuisance regressors: 
Missed responses (because of time limit), head motion (six parameters), and physiological 
noise (six parameters) estimated with temporal variation in white matter and cerebral 
spinal fluid ((Behzadi et al., 2007). All regressors except for head motion and physiological 
noise were convolved with the “canonical” hemodynamic response function as 
implemented in SPM8. The high-pass filter had a cut-off at 128 s, and the autocorrelation 
model was global AR (1). Model estimations from each individual were taken into second-
level random-effects analyses (one-sample t-tests) to account for inter-individual 
variability. The statistical inferences were made on the whole brain with p ≤ 0.001 
uncorrected for multiple comparisons, k ≥20. 

 
Multi-voxel pattern analysis (MVPA) of fMRI data. Prior to analyzing the data with the 
Princeton MVPA Toolbox it was preprocessed by correcting for slice-timing and head 
motion (as described under the univariate analysis). For feature selection on each 
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individual, only voxels that passed through a binary mask (univariate F-contrast: conscious 
hits vs. baseline presentations, P <= .0001, uncorrected, k=0) were analyzed. The 
remaining voxel values were then passed through a high-pass filter (128 s cut-off), and 
replaced by z-score normalized version. The events of interest were then averaged over 
time-points. The analyses used a leave-k-out cross validation procedure where k is the 
number of categories to be classified, and always contains one event from each category. 
As per (Polyn et al., 2005) a backpropagation-based neural network classifier was used to 
train and test the patterns in the data, a OnOff-value was calculated as a measure of 
classification performance, and significance tested using a non-parametric permutation 
test. 
 
Preliminary Results 

The study has not yet been published. 

 

Behavioural performance 

DMS d’ was significantly greater than zero for consciously (M = 3.85, SE = 0.04, p < .001, 
one-tailed), but not non-consciously (M = 0.02, SE = 0.04, p = .38, one-tailed) perceived 
memoranda. Detection d’ was significantly greater than zero for consciously (M = 4.05, SE 
= 0.04, p < .001, one-tailed), but not non-consciously (M = 0.02, SE = 0.04, p = .34, one-
tailed) perceived memoranda.  
 
Univariate fMRI results 

Compared with baseline (sample absent) trials, there was significant BOLD signal change 
during the stimuli presentation for consciously perceived samples in visual, parietal, and 
frontal regions. For non-consciously perceived samples vs. baseline, there was significant 
BOLD signal change in parts of the visual cortex. During the delay, BOLD signal in inferior 
occipital cortex was significantly increased during conscious trials. There was no significant 
difference between non-conscious and baseline trials during the delay. At the delayed 
match-to-sample response, there was a significant BOLD signal increase for conscious 
compared with baseline trials in occipital, inferior temporal, pre- and postcentral gyri, and 
in the cerebellum. For non-conscious vs. baseline trials, there was increased BOLD signal 
change in the right anterior insula and inferior frontal gyrus.  
 
MVPA results 

A characteristic neurocognitive feature of working memory is a sustained response during 
the delay phase of the task, as was seen during the conscious but not non-conscious trials 
(above). To further investigate the presence/absence of such sustained response we 
performed an MVPA analysis (categorizing non-conscious from baseline trials) on the delay 
period, and also on the presentation and response phases. To validate the soundness of 
such analyses, we also used the MVPA to categorize conscious from baseline trials.  
 
The MVPA could differentiate between conscious and baseline trials during all trial phases 
(all p<.0001). For non-conscious vs. baseline trials, the MVPA could differentiate trial type 
during the presentation (p=.0053) and during the response (p=.017), but not during the 
delay (p=.66). Critically, the MVPA could also differentiate between non-conscious non-
matching and baseline trials during the response (p=.0003).  
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Discussion 

In a delayed match-to-sample task we found significant BOLD signal change for non-
conscious trials during the sample presentation and response phase, but not during the 
delay. A significant signal change during the delay was also absent when using a more 
sensitive analysis technique (MVPA). Although discrimination performance was non-
significant, the BOLD signal differences between non-conscious and baseline trials at the 
response phase demonstrate that some form of memory trace survived the 5-15 s delay. 
These findings are consistent with recent research demonstrating that sustained activity 
during the delay is not necessary for conscious working memory (LaRocque et al., 2013; 
Lewis-Peacock et al., 2012), and alternative coding mechanisms have been proposed 
(Mongillo et al., 2008). 
 
The significant signal change at the response during non-conscious trials could in principle 
reflect simple repetition priming (i.e., the same stimulus in the same location was 
repeated from sample presentation to response probe during “match” trials). However, 
such priming is inconsistent with the univariate analysis results demonstrating increased 
signal change in right prefrontal rather than sensory regions. Critically, the MVPA 
demonstrated significant categorization performance also for non-conscious delayed non-
match-to-sample trials, where a different (non-matching) probe item was shown. Other 
memory mechanisms than priming are therefore needed to explain the current findings 
(but see (Marsolek, 2008).  
To conclude, we here find neural evidence for sustained memory effects in a delayed 
match-to-sample task, indicating non-conscious working memory.  
 
A Dataset Information Card has been completed (see DIC Task T3.3.3 “Non-conscious 
short-term memory”). 
 
Data Provenance 
The data has been, and will be, collected by Fredrik BERGSTRÖM at Umeå Center for 
Functional Brain Imaging (UFBI), Umeå University, Sweden. 
 
Data Location 
Data collection is complete and the data were deposited on a server at 
http://sp3.s3.data.kit.edu/3_3_3/fMRI_raw_data/ 

 

Completeness of data set 
The data set is complete and can be used for modeling/simulations.  
 
Data quality and value  
The data has been deposited as raw fMRI data (nifti files). As this is one of the first fMRI 
data sets on non-conscious short-term memory the data are potentially highly valuable to 
novel models of working memory.  
 
Data usage 
The data has not yet been used by anyone outside UFBI.  
 
Publications 
The following papers were included in the HBP support period: 
 

1. Bergström F, Eriksson J. 2015. The conjunction of non-consciously perceived object 
identity and spatial position can be retained during a visual short-term memory task. 
Front Psychol 6: 1470:1–9. 

http://sp3.s3.data.kit.edu/3_3_3/fMRI_raw_data/
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2. Eriksson J, Vogel EK, Lansner A, Bergström F, Nyberg L. 2015. Neurocognitive 
Architecture of Working Memory. Neuron 88: 33–46. 
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Space, Time and Numbers 
WP3.4 coordinated by Neil Burgess 

  

WP 3.4 Focussed on the cognitive architecture of spatial cognition. The vast existing literature 
on the neural mechanisms of spatial cognition was synthesised to find the minimal model 
capable of explaining the major features of mammalian spatial memory and navigation. We 
were able to define the major neural representations of location, orientation, environmental 
structure and movement trajectories in the hippocampal formation and striatal and parietal 
areas. In addition, we were able to identify the broad nature of the learning rules that must be 
at play in each area, from analysis of the behaviour of animals under various experimental and 
neuronal manipulations (e.g. lesions or regional inactivation). Namely Hebbian incidental 
learning in hippocampal areas and reinforcement learning in striatal areas. Finally, the way the 
two learning systems should interact, with involvement of parietal and prefrontal areas, was 
outlined. This synthesis was published in the special issue of Neuron relating to SP3 (Chersi and 
Burgess, Neuron, 2015). 

To validate the proposed cognitive architecture we took two classic experiments on spatial 
learning and navigation in rodents (Packard and McGaugh, 1996; Pearce et al., 1998) and their 
analogues in humans (Doeller and Burgess, 2008; Doeller, King, Burgess, 2008) and simulated 
their behavioral outcomes using the proposed architecture of neural representations, systems 
and learning rules. This work was successfully completed, showing a good match between 
behavioural data on spatial navigation in open-fields, with local landmarks, in ‘T’ mazes, and 
under inactivation of hippocampal or striatal systems.  

This work was in combination with SP4: between WP3.4 and WP4.3 a single post-doctoral 
researcher, Dr Fabian Chersi, was employed, to work with Neil Burgess, to determine the 
cognitive architecture of spatial cognition (SP3) and to produce the neural simulation (SP4). 
The validated architecture and neural simulation will now be applied to a broader set of data 
on mammalian learning and memory, beyond the purely spatial domain (see Reports on WPs 
3.4 and 4.3). 
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4.1 Identifying and Analysing the Multi-modal Circuits for Spatial 
Navigation and Spatial Memory 

Task T3.4.1 - Neil Burgess (UCL), Fabian Chersi (UCL) 

Review of the cognitive architecture of spatial navigation 

Fabian Chersi, Neil Burgess “The Cognitive Architecture of Spatial Navigation: 
Hippocampal and Striatal Contributions”, Neuron, Volume 88, Issue 1, p64–77, 7 October 
2015 

Abstract 

Spatial navigation can serve as a model system in cognitive neuroscience, in which specific 
neural representations, learning rules, and control strategies can be inferred from the vast 
experimental literature that exists across many species, including humans. Here, we 
review this literature, focusing on the contributions of hippocampal and striatal systems, 
and attempt to outline a minimal cognitive architecture that is consistent with the 
experimental literature and that synthesizes previous related computational modeling. The 
resulting architecture includes striatal reinforcement learning based on egocentric 
representations of sensory states and actions, incidental Hebbian association of sensory 
information with allocentric state representations in the hippocampus, and arbitration of 
the outputs of both systems based on confidence/uncertainty in medial prefrontal cortex. 
We discuss the relationship between this architecture and learning in model-free and 
model-based systems, episodic memory, imagery, and planning, including some open 
questions and directions for further experiments. 
  

http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
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Model of spatial navigation and spatial memory 

 

Introduction 

Spatial navigation, although one of the most common actions for humans and animals, is a 
complex task that involves the processing of a variety of sensory and proprioceptive stimuli 
(e.g. visual, vestibular and motor information), the storage and recall of memories about 
location and events, and the elaboration of plans. 

There are two main mechanisms utilized in spatial navigation. The first one, referred to as 
a “response strategy” and mainly implemented in the striatum, relies on following well-
learned state-response associations. The second one, referred to as a “place strategy” and 
implemented mainly in the hippocampus, utilizes flexible internal representations of the 
spatial layout. 

 

Model details 

Visual system 

The simulated rat has been endowed with a simple visual system that allows it to acquire 
two types of information about the environment: the colour of the observed objects and 
their distance (from the observer). In the current implementation the visual field extends 
from -160 to +160 degrees, and is subdivided into small regions (see Figure 104), each one 
assigned to one neuron. One of the characteristics of this encoding scheme is that neurons 
are mostly silent, with only a few of them firing at a high rate when an object enters its 
receptive field. 

 
Figure 104: Schematic representation of the neural representation of the rat’s view 
field.  
Each region is associated to a specific neuron (numbered). When an object, e.g. the landmark, is spotted, 
neurons corresponding to the interested regions become active. 

 

The hippocampal circuit 

The hippocampus has here been implemented as single layer of firing rate-based neurons 
with no lateral connections. For sake of simplicity we assume that its neurons encode the 
position of the agent in an absolute reference frame. The typical response function of 
place cells is a Gaussian-like activity profile centered on the location it represents. In the 
current model, we have implemented a mechanism that generates a new place cell 
whenever the distance to the closest field center is higher than a specific value.  
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When the rat encounters a salient object (i.e. the hidden platform or food reward in the 
experiments considered here) the connections between the place cells and a ‘goal cell’ 
(Burgess and O’Keefe, 1996)are strengthened according to the following Hebbian-like 
learning rule: 

 

 ∆wij = η · ni
(HPC)·nj

(G) 

 

where wij is the connection weight between neuron i and neuron j, η is the learning rate, 
ni

(HPC) and nj
(G)  are the firing rates of the i-th neuron in the hippocampus and of the j-th 

goal neuron, respectively. 

The end result is the formation of an object-specific “value function” that has it highest 
value centered on the location in the environment where the object (i.e. the platform) is. 
This surface can be used to guide behavior. In particular, given the value function and the 
current coordinates of the rat, it can test adjacent positions in order to determine the 
direction in which value increases and use this information to trace a path that leads to 
the object. 

 

 

 
Figure 105: "Value function" that encodes the position of a specific object through the 
superposition of multiple receptive fields. 

 

The striatal circuit 

The stream of transformations that convert the sensory input into an action is shown in 
Figure 106. 
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Figure 106: Striatal circuit employed in this architecture that assigns (a value of) an 
action to each sensory input. 

 

Neurons in the transformed sensory layer project to neurons in the dorsal striatum in an 
all-to-all manner. The latter neurons represent the values of the possible actions 
associated with any given sensory state playing here the role of “critics” for the state-
action associations. 

The sensory and striatal neurons can be thought of as representing state-action 
combinations for reinforcement learning, thus their connection weights can be learned by 
means of the Q-learning rule (Watkins, 1989), as follows: 

  

 Qa =  na
(STR)  = F( ∑

=

N

i 1
ni

(Sens) ⋅ wi,a ) 

 

where Qa is the expected discounted return obtained by performing action a (in our case 
one of the 12 angles of rotation) in the current state, na

(STR) is the firing rate of the 
striatum neuron corresponding to action a, F is the response function of the neurons, N is 
the total number of sensory neurons,ni

(Sens) is the firing rate of the active sensory neuron, 
and wi,a is the weight between the sensory neuron and the striatum neuron. 

At every time step the rat can use the available information about the current and the 
past Q values and the occurrence of a reward to update its internal model by means of the 
standard Q-learning equations: 

 

∆Qs-1,a-1 = η ⋅ [ R + γ · maxa’ ( Qs,a’) – Qs-1,a ] 

 

 ∆ wi,a-1 = ∆Qs-1,a-1⋅ ni
(Sens) ⋅ 

1

1

)(

−

=








∑

N

j

Sens
jn  

 

where Qs-1,a-1 is the Q value of action a-1 in state s-1, η is the learning rate, R is the 
reward, γ is the discount factor, and maxa’ ( Qs,a’) is the maximum Q value that can be 
reached from the current states computed on all possible actions a’. 
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Note that the striatum does not receive information about the head direction, so the 
sensory vector is aligned to the heading direction and not to a global reference direction. 

 

Results 

The above described architecture has been used to control a simulated rat in a variant of 
the Morris Water Maze described by (Pearce et al., 1998). In this set up, in contrast to the 
original experiment, a landmark indicates the close-by location of a submerged platform. 
At the start of each trial, the rat is placed in a random location far away from the 
platform. Every 4th trial the platform together with the landmark are randomly moved to 
one of 8 locations. As the rat learns more about how to reach the submerged platform, its 
behavior shifts from random to goal directed and then to habitual, utilizing the 
hippocampus and then the striatum respectively to make reasoned decisions. 

 

In the current implementation, every 250 ms a decision procedure is called which selects a 
new movement direction. Five percent of the times this decision is completely random. 
This ensures that the rat does not get trapped in cyclical movements. In the remaining 95% 
of the times, utilizing the mechanisms described above the hippocampus and the striatum 
each produce an output vector that contains the “values” (encoded as neuronal firing 
rates) of 12 directions in which the rat can move. The final decision about the movement 
is taken by a winner-take-all mechanism, possibly implemented by the prefrontal cortex, 
which selects the most “valuable” one (i.e. the one that most rapidly leads to the goal 
location). 

 

The left panel in Figure 107 shows the average performance of 4 groups of 30 simulated 
rats over the course of 11 sessions, each composed of a set of 4 similar trials. Following 
the original experiment we have deactivated the hippocampus of 2 of the 4 four groups of 
animals. The corresponding results are indicated by the curves with the full dots. The 
upper curve represents the performance on the first trial of each set, while the lower 
curve represents the performance on the fourth trial. As can be seen the performance of 
intact animals on the first trial is worse. This is because the hippocampus drives the rat to 
the location where the platform was situated previously, as opposed to the location 
indicated by the landmark. In a few trials the rat is able to learn the new platform 
location. Interestingly, also rats with damaged hippocampus are able to solve the task 
using only procedural memory, and reach the hidden platform in a time that is shorter 
than the control rats on their first trial!  
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Figure 107 

Left panel: average performance of the rats expressed as the time required to reach the escape platform. 
Right panel: performance of real rats as recorded by Pearce et al. (1998). Empty points represent the behavior 
of intact control rats, while full points represent animals with lesioned hippocampus. 

   

In a second experiment we simulated the task of (Packard and McGaugh, 1996), in which 
rats are placed in a cross maze and trained to reach the end of a baited arm. In the test 
phase, rats were place in the arm opposite to the training home position and monitored as 
they find their way to the food location. 

The left panel of Figure 108 represents the percentage of choice type, whether based on a 
place strategy or on a response strategy, of all control rats on day 1, on day 8 and on day 
16. As can be seen, as the rats spend more time in the maze solving the tasks they switch 
from a goal-directed strategy to a stimulus-driven one, indicating the formation of habits. 
As a comparison, in the right panel of Figure 108 we report statistics on the behavior of 
rats lesioned either in the caudate nucleus on in the hippocampus as found in the paper 
mentioned above. 

 

   
Figure 108  

Left panel: distribution of strategy choices (response or place strategy) during session 1, session 6 and session 
11. The last two approximately correspond to Test Day 8 and Test Day 16 in the graph in the right panel 
reporting the results of the experiment conducted by Packard and McGough (1996). 
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Conclusion  

By examining the existing literature, we identified a simplified cognitive architecture of 
spatial navigation (Chersi and Burgess, 2015). We have implemented this architecture at 
the level of firing rate neurons and Hebbian and Reinforcement learning rules for synaptic 
plasticity and instantiated it in a simulated agent. Here we have validated the model by 
demonstrating that it is capable of reproducing some of the classic experimental tests of 
spatial navigation. Our next steps will be to see how this same cognitive architecture 
generalizes to classic non-spatial tests of learning and planning (e.g. (Daw et al., 2011)).  

 

A Dataset Information Card has been completed (see DIC Task T3.4.1 “Rat navigation 
simulation”). 

Provenance of the data: 

The data we utilized in our work was taken from 2 studies published by (Packard and 
McGaugh, 1996) and (Pearce et al., 1998).  

Data Location: 

The data we produced is located at http://se/data/kit/edu/SP3/3.4.1/Simulation Results 

Self-analysis of the value and completeness of data: 

The utilized data is of great value and complete. The data produced by us is perfectly in 
line with the existing data. 

Indication of who has used this data so far and for what 

As far as we know, nobody has utilized our data. On the other hand partners from the TU 
Munich are using the model we have implemented. 

List of publications: 

Chersi F., Burgess N., 2015. The cognitive architecture of spatial navigation: Hippocampal 
and Striatal contributions. Neuron 88: 64-77. 

Collaborations and interactions with other partners: 

University of Leeds (Marc de Kamps) 

University of Manchester 

University of Munich 

EITN Paris 
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Capabilities Characteristics of the 
Human Brain 

WP 3.6, coordinated by Stanislas Dehaene  

The aim of WP 3.6 was to investigate some capabilities that seem either unique, 
or massively more developed, in the human brain compared to the brains of other 
non-human primates. 

Indeed, any future HBP simulation that claims to capture the functioning of the 
human brain will have to provide an answer to the issue of the origins of the 
remarkable capabilities of the human species for high-level cognition. 
Furthermore, an understanding of human-specific traits is probably crucial to 
progress in understanding diseases such as aphasia, dyslexia, autism or 
schizophrenia, which all comprise a perturbation of high-level representations 
that will be very hard to model in non-human species.     

During the Ramp-Up Phase, we decided to focus on three aspects that may hold 
the key to human specificity. 

1. Symbolic thought. Thomas Hannagan and Stanislas Dehaene reviewed how 
letter and number symbols are represented in the human brain, and provided a 
model of their acquisition and a distinct model for how vectors of neural activity 
can implement number symbols. 

2. Linguistic and non-linguistic sequences. Christophe Pallier, with Muriel Fabre, 
Florent Meyniel, Liping Wang and Stanislas Dehaene, investigated how sequences 
of words or just sounds are represented in humans, and what minimal properties 
of sequences suffice to induce human-unique activations of language areas. 

3. Social brain and theory of mind. Riitta Hari and Lauri Parkkonen investigated 
the brain networks involved in various levels of social communication, from eye 
gaze and body movement to theory-of-mind, and they studied a novel social 
paradigm involving two-person interaction  during  MEG scanning. 
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5.1 Symbols and their manipulation 

Task T3.6.1 - Thomas Hannagan (CEA) and Stanislas Dehaene 

Introduction 

The brain is capable of attaching internal symbols to abstract mental representations (e.g. 
number 3), and of operating on those symbols to perform meaningful computations (e.g. 
2+1=3). This task investigated what is known about this symbolic ability, and how it can be 
formalized. In the review part, we examined what is known about the emergence of 
specialized areas for the symbols of letters and numbers in the brain. This work has led us 
to formulate two hypotheses, one of which was computationally investigated, as described 
in the second part. Finally, we developed a review and model of how numerosity 
information is represented in the brain by an internal “vector code” that supports a 
successor function, capable of moving from a neural representation of number n to a 
representation of n+1 (this work is primarily based on the work of Andreas Nieder, who was 
initially responsible for T3.6.1 but resigned).  

Review of the cognitive architecture for the emergence of symbol-related 
areas 

 
Relevant paper: Hannagan T, Amedi A, Cohen L, Dehaene-Lambertz G, Dehaene S 
(2015). “Origins of the specialization for letters and numbers in ventral occipitotemporal 
cortex.” Trends in Cognitive Sciences, 19(7), 374-382. 
 
Deep in the occipitotemporal cortex lie two functional regions, the visual word form area 
(VWFA, (Cohen et al., 2000)) and the number form area (NFA, (Shum et al., 2013)), which 
are thought to play a special role in letter and number recognition, respectively. The VWFA 
(Figure 109, central panel, orange area) is a small area downstream of the ventral visual 
system, in the left lateral occipitotemporal sulcus (OTS), which is consistently activated by 
visual letters and words (Cohen et al., 2000). Due to fMRI signal dropout around its location, 
the NFA (Figure 109, central panel, green areas) was discovered only 3 years ago by 
electrophysiology: it is involved in representing number symbols and is situated a bit more 
lateral and anterior than the VWFA (Shum et al., 2013). The VWFA and the NFA are 
puzzling for a number of reasons. First letters and numbers are very similar stimuli from 
the standpoint of image statistics. If, as is often argued, specialized form areas in vOTC 
are only the result of a self-organizing phenomon that is guided by the similarity in visual 
features, why then should areas for letters and numbers ever be dissociated? Why not a 
single symbol form area for both types of symbols? More puzzling still: how to account for 
the fact that such areas both exist at the same location in congenitally blind subjects, and 
that they are activated for symbol images that have been turned into sounds (the so-called 
"soundscapes", (Abboud et al., 2015)), although they are not activated for spoken words? 
Our work focused on making sense of the origins of these symbol form areas (Hannagan et 
al., 2015). 
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Figure 109: Two converging hypotheses for the origins of symbol form areas: biased 

connectivity (white arrows) and a preference for shapes (blue areas).  
(Left) Left lateral view. (Middle) Axial cut (z = -12). (Right) Right lateral view. Arrows and areas are schematic 
and only indicative. 

 
We proposed two hypotheses to make sense of the puzzle of symbol form areas (Figure 
109). The "biased connectivity" hypothesis holds that form areas emerge at cortical sites 
that exhibit a higher density of white-matter fiber tracts to and from the cortical circuits 
that are crucial for the target task (Figure 109, white arrows). This would explain why 
form areas are conserved at the same coordinates in normal sighted readers and in blind 
subjects. According to this view, where a symbol form area should mature in the cortex is 
not so much determined by the visual properties of the stimulus as by some pre-existing 
(possibly innate) structural connections at this site with the regions that are targeted by 
the symbol. 
 
The “shape hypothesis” holds that the intrinsic circuitry of the inferotemporal cortex 
makes neurons in the VWFA and the NFA particularly apt at recognizing the shapes of 
objects (Figure 109, blue regions). The shape hypothesis can explain why images, 
soundscapes, and Braille preferentially activate the VWFA and the NFA, whereas spoken 
words selectively activate the Auditory Word Form Area (DeWitt and Rauschecker, 2012) 
but not the VWFA (Cohen et al., 2004). According to this view, the differences in 
selectivity between these areas are not due to an innate lack of inputs from other sensory 
channels, but to the specific tuning of neurons in the VWFA and NFA to geometrical shape 
features. 
 
We suggested that both hypotheses were needed to explain the data. While several sectors 
of the cortex, such as the vOTC, may be tuned to invariant shapes, other cortical sectors 
may exhibit a stronger connectivity to language- or number-related regions, and symbol 
form areas would always emerge at the intersection of these two sectors. 
 
This work was presented in the SP3 highlight talk of the 2015 HBP summit. Some of the 
predictions listed in our review are currently being tested. Two recent experiments at 
Unicog have endeavoured to test the biased connectivity hypothesis, with functional 
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connectivity in neonates, and with structural connectivity in children before and after first 
grade (Moulton et al., submitted). These experiments are now at the stage of data 
analysis: the analyses so far have neither supported nor invalidated the hypothesis.  
 
We also set forth a number of requirements for a computational model of the emergence 
of symbol form areas. A unified model should: (1) operate at a human level of performance 
on letter and number recognition, (2) account for the reproducible location of symbol form 
areas in absolute Talairach coordinates and relative to other areas, (3) account for the 
metamodality of symbol form areas, and (4) display the developmental trajectory observed 
in humans. Such a model may require combining multi-sensory deep convolutional 
networks with self-organizing models, in a way that is informed by the target systems of 
language and numerosity that feedback to vOTC. 

Exploring the shape hypothesis: mirror invariance in convolutional networks. 

Reference paper: Hannagan T, Eickenberg M, Yazdambaksh A, Léveillé J, Pegado F, 
Grainger, J. (in revision). Mirror invariance in the visual system: a deep learning 
exploration. PLoS Comput Biol. 
 
The shape hypothesis holds that neurons across the vOTC are invariant to useful, 
commonly encountered geometric transforms, such as mirror reversals. We thus studied 
mirror invariance in the OverFeat network, which is a state-of-the-art convolutional 
network trained on a large-scale dataset of real-life images (Sermanet et al., 2014). We 
found that the upper layers of OverFeat exhibit mirror invariance for faces, tools, and 
houses, and that despite having never been trained to categorize stimuli into letters, this 
mirror invariance for generic objects also automatically transfers to letters (Hannagan et 
al.,in revision). The finding that OverFeat shows mirror generalization for letters is in line 
with the shape hypothesis. It is also consistent with the behavior of children who are 
learning to read (Lachmann, 2002) and supports a perceptual (as opposed to motor) view 
of mirror errors in reading (Brennan, 2012). 
 
A layer-by-layer analysis revealed that mirror invariance does not culminate in the output 
layer, but rather, in an intermediate processing stage of the network (layer 7). In an effort 
to bridge the interpretation gap between neural network activations and cortical 
activations, we collaborated with the group of Bertrand Thirion (SP2), who had built a 
predictive mapping between activities in the OverFeat network and in the cortex 
(Eickenberg et al., submitted). 
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Figure 110: Regions of mirror invariance as predicted by layer 7 of OverFeat and 
projected onto a flat cortical map, collapsed across six categories of interest: faces, 
tools, houses, letters, pseudofonts and pseudowords (Hannagan et al., in revision). 
Mirror invariance is sparse, bilateral, includes early visual areas, and cuts across the ventral and dorsal 
streams, along the inferior/superior axis. In higher visual cortex, a relatively large number of contiguous mirror 
invariant voxels stand out in areas LO and V3A (especially right lateralized). Notice the genuine prediction that 
mirror invariant voxels should accumulate along at the V1/V2 and V3/V4 borders, which have mirror 
retinotopy. 
 
The predicted cortical correlates of mirror invariance, shown in Figure 110, were 
consistent with experimental fMRI data in human adults, as well as electrophysiology in the 
macaque. But unexpectedly, the mapping also predicted that mirror invariance should 
surge at the frontier between V1 and V2, and between V3 and V4 (but not at the frontier 
between V2 and V3). With hindsight, it is obvious that retinotopic maps are left-right 
mirror inverted between these areas: voxels lying astride these borders are thus likely to 
respond similarly to the presentation of an image and its mirror.  
 
To summarize, we have established that mirror invariance initially transfers from generic 
objects to visual symbols in convolutional networks of the ventral visual system, and have 
helped better characterize the mechanisms behind this phenomenon. This work is also a 
demonstration that network-to-cortex mappings at the level of voxel activations are 
informative and worth investigating further. This work was conducted in collaboration with 
Michael Eickenberg, then a graduate student in the group of Bertrand Thirion (SP2) at 
Neurospin. The OverFeat model is available in the machine learning library “Scikit-Learn 
Theano”, which is hosted and curated by the Parietal research team at Neurospin. The 
network-to-cortical mapping is not yet published, but will be deposited at the same 
location after publication.  
 A dataset containing the cortical simulations from OverFeat for different geometric 

transforms of faces, tools, houses, letters, strings of letters and strings of 
pseudoletters, has been deposited at the following address: 
http://s3.data.kit.edu/3.6.1 
 

http://s3.data.kit.edu/3.6.1
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A model for the emergence of the number sense 

Reference paper: Hannagan T, Dehaene S (in preparation) A random-matrix theory of the 
number sense. 

This last section considers how we access the meaning of symbols, focusing on the 
numerosity system. What is the origin of our ability to represent numbers? The evidence is 
now overwhelming for an approximate number system shared between several species, 
which relies on number neurons (Nieder, 2013): cells whose activity varies in a systematic 
way for a given number of objects or events, independently of low-level properties (e.g. 
size, spacing, intensity). Existing computational models (Dehaene and Changeux, 1993; 
Stoianov and Zorzi, 2012; Verguts and Fias, 2004) have mostly focused on explaining the 
average tuning curves of number neurons as well as the neural wiring and/or learning rules 
that could give rise to them. But these models are challenged by one strong experimental 
result: the approximate number sense does not appear to be learned, being already 
detectable in neonates of 36 hours of age (Izard et al., 2009). There is currently no model 
of how a cerebral representation of number could possibly exist in absence of training or 
detailed handwiring. 
 
We have devised a new model to explain the origins of the approximate number system 
(Hannagan et al., in preparation). Our starting point was to consider number states rather 
than number neurons: numbers are encoded by a vector of firing rates over a population of 
neurons, and successive numbers are obtained by applying to this vector successive powers 
of a random matrix. This random matrix model can be seen as a cortical implementation of 
the von Mises eigenvector algorithm (Mises and Pollaczek-Geiringer, 1929), and radically 
breaks with previous computational accounts of number neurons. However, it can explain 
the observed logarithmic compression in the average neural tuning curves in a principled 
way (consistent with the Weber-Fechner law; (Shepard et al., 1975), and our current 
analyses suggest that it can also reproduce the detailed tuning curves of number neurons. 
Critically, those results are obtained without training, thus confronting heads-on the 
innateness of the approximate number system.  

Here we present a direct comparison of the model to the electrophysiological data. Nieder 
and Merten conducted a detailed electrophysiological study of the properties of PFC 
number neurons for a large range of numerosities, testing monkeys with numbers up to 30 
(Nieder and Merten, 2007). Figure 111 compares the activation of the model’s units to the 
empirically observed average firing rates. It can be seen that the model behaves quite 
similarly to the data collected during the sample period in Nieder and Merten’s delayed 
match-to-sample experiment. 

The first row in Figure 111 shows the normalized firing rates for all numbers (x-axes) of all 
the recorded neurons (y-axes) that were found to be significantly selective to number, in 
the sample period (150 cells) and delay period (138 cells). These firing rates are compared 
to the activity of all non-zero units in the model (1000 units). All neural firing rates and 
unit activities were rescaled row by row, i.e. we divided all the responses of each neuron 
by its largest response, yielding normalized responses between 0 and 1.The “white crest” 
of maximal activation allows one to appreciate at a glance how units are distributed for 
number preference. The fact that yellow regions widen around the white crest as 
numerosity increases, also reflects the increasing bandwidth of tuning curves. Finally, a 
line-by-line inspection of these graphs suggests a much richer variety of tuning curves for 
number neurons than is usually assumed. In particular, some units appear to saturate 
rapidly for numerosity, while others show disconnected “islands” of high activity, 
suggesting selectivity for multiple numbers. A conservative statistical analysis revealed 
that about 10% of units in the experimental data were selective for multiple neurons, 
against 8.3% for the model.  
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The second row in Figure 111 proposes a visualization of the number lines that are implied 
by number states, as observed in the data and in the model. Number states are projected 
onto the plane using multidimensional scaling, and interpolated by a parameterized 
polynomial. This procedure yields trajectories in state space, or multidimensional “number 
lines”. We observe that number lines in the data and in the model share three properties: 
they are sinuous, exhibiting oscillations of varying periods that are especially manifest for 
high numbers; they are compressed, with diminishing portions of the curve devoted to 
increasing numbers; and they are bounded, with each trajectory seemingly converging to 
an attractor state. The two last properties are very much unexpected, but they can be 
understood within our model in terms of damped oscillations in the von Mises iteration, 
due to particular eigenvalues of the exponentiated matrix (Quarteroni et al., 2007). 

 
Figure 111 

Scaling up to 30 numbers: understanding sequences of number states in the data (columns 1 and 2: analyses 
based on the normalized firing rates recorded by Nieder and Merten during the sample and delay periods, 
respectively) and in the model (column 3: analyses based on normalized activations). Line 1: Normalized firing 
rates for all tested numbers of all PFC cells or model units, ordered by decreasing preferred number. The color 
scheme maps the rescaled values to a gradient of black (zero), red, yellow and white (one) colors. Line 2: 
Multidimensional scaling of number states. When interpolated by parameterized polynomials, sequences of 
number states describe trajectories that are curvilinear, compressed and converging. Line 3: Discrimination (1 
- cosine similarity) between number states as a function of their number ratio. The curves for sample data and 
for the model exhibit a similar shape, consistent with the Weber-Fechner law which holds that discrimination 
between number states should increase monotonically with the ratio of the numbers being compared. 

Finally, we assessed the Weber-Fechner law in the data and in the model. One way to 
state this law is that the discrimination between two states should increase monotonically 
with the ratio of the numbers they represent. Figure 111 (bottom line) shows how 
discrimination changes as a function of number ratio, for the 120 possible pairs of numbers 
used by (Nieder and Merten, 2007). Although discriminations between number states in the 
delay period are noisier and harder to interpret, discriminations in the sample period are 
strikingly similar to those computed based on the model’s activations, exhibiting a smooth, 
monotonic increase as a function of number ratio characteristic of the Weber-Fechner law. 
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These results show that it is possible to revisit the theory of the number sense in a 
completely different way. The alternative model can explain the Weber-Fechner law from 
first principles (i.e. from the linear algebra of iterative matrix powers), and predicts a 
specific distribution of neural tuning curves which is borne out by electrophysiology. 

General summary 

We now summarize the output of our work.  

A Dataset Information Card has been completed (see DIC Task T3.6.1 “Cortical simulations 
for symbolic and non-symbolic stimuli”). 

 

Completeness of data sets and models 

No experimental data were collected for this subtask. Our contribution to the study of 
symbols in the brain was three-fold. First, we have produced a thorough synthesis of the 
literature on symbol areas in the brain, making specific predictions that are now being 
tested experimentally, and laying down the requirements for future computational models. 
Second, we have explored the “shape hypothesis” for the apparition of symbol areas, 
through a deep convolutional network model of the primate visual system, and using 
explicit mappings between activations in the network and in the cortex. This work does 
not present a complete computational account of the emergence of symbol form areas in 
ventral occipitotemporal cortex, but it provides evidence for the shape hypothesis and 
clarifies the cortical mechanisms involved. Third, we have devised a computational model 
based on random matrix theory, which sheds new light on the foundations of the number 
sense at the neural level.  

 

Location of data sets and models 

The OverFeat model is available from the machine learning library “Scikit-Learn Theano”, 
which is hosted and curated by the Parietal research team at Neurospin (Bertrand Thirion, 
SP2). The network-to-cortical mapping on which our analysis builds is not yet published, 
but will be deposited at the same location after publication. A dataset containing the 
cortical simulations from OverFeat for different geometric transforms of faces, tools, 
houses, letters, strings of letters and strings of pseudoletters, has been deposited at the 
following address: http://s3.data.kit.edu/3.6.1 

 

Dataset quality, value and usage by others 

The predicted cortical activations deposited at the above address constitute a novel effort 
to make completely explicit the link between computational models (here, a deep 
convolutional network) and the observables of the brain (voxel activations as revealed by 
fMRI). This dataset has not been used by other researchers – the corresponding paper is not 
yet published, being in second revision. 
  

http://s3.data.kit.edu/3.6.1
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5.2 Linguistic and Non-Linguistic Nested Structures 

Task T3.6.2 - Stanislas Dehaene (CEA), Christophe Pallier (CEA), Florent Meyniel (CEA) 

 

Review of the cognitive architectures for the representation of sequences 

Stanislas Dehaene, Florent Meyniel, Catherine Wacongne, Liping Wang, Christophe 
Pallier “The Neural Representation of Sequences: From Transition Probabilities to 
Algebraic Patterns and Linguistic Trees”, Neuron, Volume 88, Issue 1, p2–19, 7 October 
2015 

Abstract 

A sequence of images, sounds, or words can be stored at several levels of detail, from 
specific items and their timing to abstract structure. We propose a taxonomy of five 
distinct cerebral mechanisms for sequence coding: transitions and timing knowledge, 
chunking, ordinal knowledge, algebraic patterns, and nested tree structures. In each case, 
we review the available experimental paradigms and list the behavioral and neural 
signatures of the systems involved. Tree structures require a specific recursive neural 
code, as yet unidentified by electrophysiology, possibly unique to humans, and which may 
explain the singularity of human language and cognition. 

 

  

http://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
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Data set 1: Encoding of syntactic structures 

Sentences are not mere linear strings of words. As detailed in the preceding review, they 
possess an internal hierarchical structure that expresses the relationships between words 
(e.g., compare ((black taxi) driver) and (black (taxi driver))). The basic operation that 
creates the subtrees from these syntactic structures is called “MERGE” in linguistic theory. 
In a previous (Pallier et al., 2011), we identified a set of brain regions involved in this 
operation.  

Another basic syntactic operation is “MOVE”, whose cerebral bases we explore in the 
present experiment. According to linguistic theory, MOVE can create, inside a syntactic 
tree, empty positions marking the location of displaced word See (Figure 112). For 
example, the french sentence "Je le vois" (meaning 'I see it'; literally 'I it see') results from 
the movement of the object "le" to a preverbal position, leaving an empty position after 
the verb. Despite consisting of three words, this sentence needs to have four syntactic 
positions at a more abstract level. Similarly, in a sentence like "Qui vois-tu?" ("Who do you 
see?"), it can be argued that the words "Qui" and "vois" have moved to the front of 
sentence, leaving two empty positions.  

Are there brain areas whose activation is driven by the number of abstract syntactic 
positions ? Do the different types of syntactic movements yield similar or different 
activations  patterns ? To address these questions, we generated sentences belonging to a 
large variety (35) of syntactic constructions, obtained by combining four types of syntactic 
movements (Wh-movement, V-movement, Clitic movement, and NP-movement) in 
different ways (see Table 2). A total of 525 french sentences, 2 to 4 words long were 
created, which contained 0 to 3 additional empty syntactic positions. 

 

 
Figure 112: To generate a question, the “MOVE” operation displaces the word “what” 

from the postverbal position to the beginning of the sentence 
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Table 2: The 35 Experimental Conditions Obtained by Combining Several Types of 
Syntactic Movements. 

 

These sentences were presented visually in a randomized order, to volunteers who simply 
had to read them while being scanned at 3Telsa. Each sentence was flashed for 200ms with 
an inter-stimuli interval of 4 seconds. Infrequently, a request to press a response button 
was displayed in order to make sure that the participants read the stimuli. 

Twenty-two native French speakers, all of them right-handed, participated in the 
experiment which was approved by the regional ethic committee (Comité de Protection 
des Personnes Ile-de-France VII, Protocole de Recherche Biomedicale #2008-A00241-54/1).  
Two participants were excluded because of movements of too large amplitude (larger than 
1.5mm in translation or 1.5 degree of rotation). 

The scanning session started with the acquisition of an anatomical T1-weighted scan (1mm 
isotropic) for 8min, and continued with five functional MRI sessions of 7 minutes each. An 
echo planar multiband acquisition sequence allowed us to record the whole brain (80 slices 
of 1.5mm) every 1.5s with voxels of 1.5mm. 

A linear model with the 35 conditions modelled as independent regressors was created in 
order to estimate the responses to each of them.  

In a first, unsupervised, data analysis, we examined the response profiles across the 35 
conditions of a set of 14 regions of interest for language processing. A clustering algorithm 
ran on the matrix of correlations between ROI response profiles, highlighted regions with 
similar response profiles (see Figure 113). In collaboration with a linguist, Luigi Rizzi, we 
are currently analysing the response profiles in details to characterise the linguistic factors 
that explain the behaviour of the regions. Encompassing a wide range of syntactic 
constructions, these data provide a test bed to test competing linguistic theories.  
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Figure 113: Profiles of responses across the 35 conditions and result of a clustering 
algorigthm applied to the matrix of correlations of profiles between regions (regions 
with similar responses are grouped together). 

 

In another, planned analysis, we searched for regions “encoding” the number of abstract 
positions (overt words + empty positions). A linear contrast with the number of syntactic 
positions only revealed a single brain area, located in the dorso-precentral gyrus. On closer 
inspection, more fine-grained contrasts highlighted specific effects of the four different 
types of movements (Figure 114) showing that Verb and Wh-movements activated similar 
frontal regions (IFG and Precentral cortex), while Clitic movement modulated activation 
mostly in the temporo-parietal region and NP movement involved the medial prefrontal 
cortex. These results suggest that the MOVE operation is not a unitary one.  
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Figure 114: Areas where movements elicited significant activations (overlap of the SPM 
T maps associated to the 4 different types of movement, thresholded at p<.001 
voxelwise uncorrected for multiple comparisons ; at a family-wise corrected level of 
p<.05, only the V and Wh-movement in the frontal areas remain significant) 

 

A Dataset Information Card has been completed (see DIC Task T3.6.2 “Encoding of 
syntactic structures”).  

Data Provenance 

The data were collected at Neurospin by Christophe PALLIER and Murielle FABRE.   

Location of our data storage 

The data reside on the acquisition server of the Neurospin center at the CEA. They will be 
pushed on the HBP server at http://sp3.s3.data.kit.edu/3.6.2 

Self-analysis of the value and completeness of our data:  

This database is complete, comprising the preprocessed (movement corrected and 
spatially normalized) scans of 20  participants, as well as the individual  first level linear 
models.   

Dissemination:   

This study has been presented at the workshop on "new concept in neural pattern 
encoding" in Gif-sur-Yvette, 28-29 January 2016 (http://news2016.sciencesconf.org/). 
The scientific paper is currently in preparation (as of February 2016). 
 
 
  

http://sp3.s3.data.kit.edu/3.6.2
http://news2016.sciencesconf.org/
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Data set 2: Bayesian Modeling of Expectation Effects in Sequences  

Rational of the work 

Recent advances in experimental and theoretical neuroscience suggest that the brain is 
a powerful device that constantly computes the statistics of its environment (Behrens et 
al., 2007; Dayan and Hinton, 1996; Dehaene et al., 2015; Friston, 2003, 2010; Knill and 
Pouget, 2004). Experimental evidence relies on signatures of this process that can be 
found in the brain. Indeed, all learning algorithms learn by estimating whether new 
observations depart from their current expectations and use this comparison to update 
their estimates (Rescorla and Wagner, 1972; Sutton and Barto, 1998). The discrepancy 
between expectation and observation can be formalized with the notion of surprise 
(O’Reilly et al., 2013; Shannon, 1948; Strange et al., 2005). Several brain signals resemble 
these theoretical surprise levels in fMRI recordings (Huettel et al., 2002; Pessiglione et al., 
2006) or electrophysiological recordings (Kolossa et al., 2013; Lieder et al., 2013; Mars et 
al., 2008; Squires et al., 1976), so that we may speak of “neural expectation-violation 
signals”. Beside correlative evidence between recorded signals and theoretical measures, 
pharmacological manipulations provided evidence for a causal role of these neural 
expectation-violation signals in learning (Aston-Jones and Cohen, 2005; Nieuwenhuis et al., 
2005; Pessiglione et al., 2006). 

Optimal solutions to reason in uncertain contexts like learning problems are provided 
by Bayesian models – their optimality derive from their very mathematical foundations 
(Daunizeau et al., 2010; Jaynes, 2003). We therefore used Bayesian models to compute 
what can be learned, and hence what can be expected, from a sequential input. 
Sequences are well suited to study learning from a methodological viewpoint. Thousands of 
stimuli can easily be presented in typical experimental conditions and in a learning 
algorithm, each time a new stimulus is received, it is compared with the current 
expectations. This comparison may elicit neural expectation-violation signals. Numerous 
neural expectation-violation signals can therefore be recorded and used to “reverse-
engineer” the learning algorithm implemented in the brain: by comparing learning 
algorithms that generate distinct theoretical surprise levels, one can identify the learning 
algorithm that best correspond to the actual neural expectation-violation signals recorded.  

We built on this experimental and conceptual framework to address the following 
questions: 

• What kind of statistics does the brain learn? We tested frequencies vs. transitional 
probabilities. The difference between frequency and transition probability is that a 
context is taken into account: the probability of a given stimulus may depend on 
the preceding one (Strauss et al., 2015; Wacongne et al., 2012). Because of this 
fundamental distinction, transition probabilities are the first building blocks of the 
neural representation of sequences (Dehaene et al., 2015).   

• What is the temporal horizon of expectation effects? Do expectations build on a 
short-lived or protracted history of observations? Is this temporal horizon fixed or 
adapted to the statistics of the input? 

• Do several expectation signals co-exist in the brain? At least two neural 
expectation-violation signals have been identified in electro-physiological 
recordings. They differ in their latency: an early violation response around 150- 
250ms, the so-called Mismatch-negativity (MMN) and a late violation response after 
300 ms for the P300 or even later (400-600 ms) for the slow-wave (Squires et al., 
1976; Strauss et al., 2015; Wacongne et al., 2012). Do they correspond to different 
expectations? 
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Experimental and theoretical work 

This work was presented in conference posters and the results are in preparation for a 
publication, we summarize here the main findings. Previous modeling accounts of 
expectation-violation signals in sequences were based on linear combination of a list of 
factors. In the seminal work by Squires et al (Squires et al., 1976), this list included the 
local frequencies of stimuli and their transition (given the recent history), the global 
frequencies (manipulated experimentally). More recent models include even include 
additional factors (Kolossa et al., 2013). These factors are essentially descriptive. Bayesian 
inference on the contrary provides a principled account (Mars et al., 2008) of learning, and 
hence of expectation-violation signals. We therefore proposed a Bayesian model to tie 
together the list of factors previously proposed in a very parsimonious manner. This model 
learns transition probabilities between stimuli, given a recent history of observations. The 
span of this recent history is the only free parameter of the model. Figure 115 shows that 
this simple model provides a remarkable fit of the seminal data by Squires et al, when the 
span history is around 10 stimuli. This model also accounts for other data, such as 
performance in reaction time tasks, like in the study by Huettel et al (Huettel et al., 2002) 
in which subjects had to press a left or right button depending of a random sequence of 
cues. 

 

 
 

Figure 115: Modelling the P300 as a surprise signal (data from Squires et al., 1976). 
Three long sequences of binary stimuli ('A' and 'B') were presented to subjects. These sequences were 
generated randomly, such that the average proportion of As was a 70%, a 50% or a 30% in distinct sessions. 
Within each session, the amplitude of the P300 waveform elicited by the B stimuli (green) were averaged after 
sorting responses based on the preceding pattern of 4 stimuli (the 16 possible patterns are listed line-wise on 
the left). Average theoretical surprise levels (yellow) were computed similarly for the Bayesian model. Surprise 
is formally the negative log-likelihood: -log(p), where p is the likelihood of observing B given the past 
observations. Numeric values were arbitrarily scaled to align the P300 and the model on average. The model 
reproduces several features of the P300: it is impacted by the global frequency of As (the session type), the 
local frequency of As within a given pattern and the local pattern of alternation or repetitions. 

Because our model learns transition probabilities, it makes predictions that were left 
untested in the seminal design by Squires et al (1976) and their continuators (Kolossa et 
al., 2013; Lieder et al., 2013; Mars et al., 2008): responses to the repetition or alternation 
of stimuli (AA vs. AB) should depend on the overall frequency of AA and AB transitions, 
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which were not manipulated in previous designs. We therefore modified the original design 
of Squires et al and generated four sequences based on the following transition 
probabilities: “frequency bias” with p(A|B) = p(A|A) = 0.3; “no bias” with p(A|B) = p(A|A) 
= 0.5; “repetition bias” with p(A|B) = p(B|A) = 0.3 and “alternation bias” with  p(A|B) = 
p(B|A) = 0.7. The sequences “no bias” and “frequency bias” correspond to the conditions 
tested by Squires et al. The two additional types are matched with the “no bias” sequence 
in terms of stimulus frequencies (a 50% chance of A and B), but their transition 
probabilities differ. 

We recorded 20 subjects with this design in the MEG, and found indeed that the evoked 
auditory response was modulated by both the frequency of stimuli (“no bias” vs. 
“frequency bias”), and the transition probabilities between stimuli (see Figure 116). In 
particular, repetition of a given stimulus elicited more signal than alternation of stimuli 
when repetitions were rare (“alternation bias”), and it was the opposite when repetitions 
were frequent (“repetition bias”). 

 
Figure 116: Electrophysiological signatures of expectation-violation in a random 
sequence of observations.  
The figure shows the evoked auditory response sorted by stimuli (left) and transition types (right), in different 
experimental blocks in which the frequency of stimuli and the transition probabilities between stimuli were 
manipulated independently. The “evoked auditory response” was computed by filtering, at each time point, 
the single trial scalp data with the mean topography of the stimulus-locked grand-average over subjects, so 
that the result is a one-dimension time series. Lines and error shading correspond to mean ± s.e.m. 

The results shown in Figure 116 demonstrate an effect of the preceding stimulus on 
expectation-violation signals. However, our model fit of the data by Squires et al reported 
above suggests that the brain response to a given stimulus does not only depend on its 
base rate of occurrence, or which stimulus precedes, but on a longer history of 
observations. We therefore considered again our Bayesian model that learns transition 
probabilities and fitted its span for each time point of the evoked-auditory response (see 
Figure 117A). Our results replicate the well-known distinction between early and late 
electrophysiological responses in novelty detection. They add to this classic description 
that the early response reflects a limited integration (around 10 stimuli), and the later 
response reflects a more protracted integration (around 20-30 stimuli).  



 

Co-funded by  
the European Union 

 

 

 

 

SP3 D3.7.4 FINAL  PU = Public 8-Apr-2016 Page 238 / 
281 

 

After fitting the one-dimensional time series of the evoked-auditory response, we 
adopted a similar logic to fit the data at each sensor. We also designed additional Bayesian 
models in order to discriminate between different learning algorithms. One distinction is 
about the statistics that is learned: instead of learning transition between stimuli, we 
introduced a variant that learns the frequency of stimuli. Another distinction is about the 
flexibility of the inference: instead of weighing all stimuli equally within a recent window 
of observations (“fixed inference”), we introduced a variant that chunks the sequence of 
observations to maximize locally the likelihood of observations given a specific value of 
the statistic that is learned (“chunking inference”); this algorithm is detailed in (Meyniel 
et al., 2015b). 

 
Figure 117: Computational fingerprinting of the novelty detection algorithms. 

(A) Fraction of variance explained (R2) in the auditory evoked response, as a function of the history span (the 
amount of recent stimuli from which statistics are learned) and the latency of the response. The heat map 
corresponds to the fit of the “repetition bias” and “alternation bias” blocks (similar results were found in the 
other block types) and the Bayesian model that learns transition probabilities with a “fixed” inference. (B) 
Comparison between an algorithm that learns transition probabilities (blue) vs. simple frequencies (red), 
plotted as the difference in fraction of variance explained over the scalp sensors (y-axis) and across time (x-
axis). The heat map corresponds to the “repetition bias” and “alternation bias” blocks and the Bayesian model 
that learns transition probabilities with a “chunking” inference. 

Models that learn transition probabilities, rather than frequencies, performed better in 
general. This was true in particular for sequences in which transition probabilities were 
biased (“repetition bias” and “alternation bias”), indicating a sensitivity of brain responses 
to transition probabilities (see Figure 117B). However, the same model also fitted the data 
recorded in the other sequences slightly better (“frequency bias”, “no bias”), indicating 
that the brain detects local imbalances in transition probabilities, even when this statistic 
is not biased on the long run. Models that resort to a flexible inference (“chunking”) also 
tended to perform better than those that operate on a fixed history of observation – 
however further analyses are required at this point.  

 

Research outputs 

Here are the main conclusions of our study: 

• The brain computes statistics to characterize the sequence of observations that it 
receives. These statistics are more complex than simple frequencies: they extend 
to transition probabilities. 

• Multiple algorithms operate simultaneously in the brain and transpire into distinct 
expectation-violation signals. These algorithms differ in the temporal horizon that 
they consider (recent vs. more protracted history) and the flexibility of this 
inference (fixed history vs. chunking). 

These results were disseminated as follow: 
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• Preliminary results were presented as a poster (M. Maheu, F. Meyniel and S. 
Dehaene) at the two-day SP3-SP4 workshop “Probabilistic inference and the brain” 
(organized by S. Dehaene, F. Meyniel (SP3) and A. Destexhe, W. Maass (SP4 – EITN) 
at Collège de France, France, September 2015) and at the two-day workshop “New 
concepts in neural pattern encoding” (Gif-sur-Yvette, France; January 2016) 

• Publication of these results was still in preparation (M. Maheu, F. Meyniel and S. 
Dehaene) in February 2016. 

 

A Dataset Information Card has been completed (see DIC Task T3.6.2 “Cortical encoding 
of probabilistic sequences (MEG and behavior)”). 

Data Provenance 

The MEG data were collected by Florent MEYNIEL at Neurospin. 

Location of our data storage 

The data were made available on a server at: 

http://s3.data.kit.edu/SP3/3_6_2/Study_ExpectationBayesianModeling_MEG  

 

 

  

http://s3.data.kit.edu/SP3/3_6_2/Study_ExpectationBayesianModeling_MEG
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Data set 3: Encoding of temporal structure by human and non-human primates 
Relevant publication: Wang, L., Uhrig, L., Jarraya, B., & Dehaene, S. (2015). Representation of 
Numerical and Sequential Patterns in Macaque and Human Brains. Current Biology, 25(15), 1966–
1974.  

Our next step was to investigate whether we could identify some level of sequence 
processing that would be unique to the human brain, and that non-human primates would 
be unable to attain.  

Our logic built upon the local-global test (Bekinschtein et al., 2009), a simple test that we 
designed to probe sequence representation in human and primate brains. The local-global 
test consists in exposing subjects to a consistent auditory regularity, and testing the 
brain’s reaction to novel sequences that either respect or violate this regularity. For 
instance, we first habituate subjects to the repeated hearing of a short sequence of sounds 
such as aaaab (where a and b are tones or vowels). After habituating to this sequence, we 
test whether subjects react to the rare presentation of another sequence that violates the 
template (e.g. aaaaa, where the last item is different). Such a violation of the global 
sequence typically induces a widespread novelty response in temporal, parietal and 
prefrontal cortices, including pSTS, IPS and IFG. In a recent series of fMRI, ERP and 
intracranial studies, we have demonstrated this global effect in monkeys,(Uhrig et al., 
2014) as well as human adults (Bekinschtein et al., 2009; El Karoui et al., 2014; Strauss et 
al., 2015; Wacongne et al., 2011) and 3-month-old babies,(Basirat et al., 2014).  

This paradigm, however, leads to many additional questions: How is such a sequence 
encoded?  Do monkeys and humans encode it identically? Several possibilities are open: the 
brain might simply memorize the sequence as a specific melody aaaab. Alternatively, it 
might be sensitive to abstract properties such as number (“four sounds plus another one”) 
or tone-repetition pattern (e.g. “the last sound is different”). The key distinction here is 
whether an organism uses abstract concepts of number or identity to represent the 
algebraic pattern underlying a sequence.  

 
Figure 118: Protocol testing the representation of auditory patterns 

We first present several sequences with structure AAAB (top left), then test for fMRI responses to sequences 
that violate the number of elements, the sound-repetition sequence pattern, or both (right). fMRI results 
indicate that monkeys and humans do not react to novel exemplars of the same rule (indicating generalizing 
based on abstract features), but that they react to both types of deviants (indicating a sensitivity to both 
number and sequence parameters). 
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To test this idea, we performed an fMRI experiment where monkeys and human adults 
were tested on a more abstract version of the local-global test, specifically probing the 
degree of abstractness of their mental representation. They heard a great variety of 
sequences with a fixed pattern (AAAB or AAAA). Critically, in this novel design, A and B 
could be any of several sounds, and duration and temporal spacing were varied, inciting 
subjects to memorize the abstract pattern (see Figure 118). Using fMRI, we then tested for 
brain responses to violations affecting the total number of items (e.g. going from 4 sounds 
to 2 sounds or to 6 sounds), the sound-repetition pattern (going from AAAA to AAAB or 
vice-versa), or both (e.g. going from AAAA to AAAAAB). Controls ensure that discrimination 
could not be based on pitch, duration or tempo. Importantly, both species were naïve to 
the auditory sequences, had not been actively trained to discriminate them, and simply 
performed an unrelated eye-fixation task while the auditory stimuli were presented.  
 
20 human subjects and 3 monkeys were scanned (please note that since we were 
specifically prevented from using HBP money for this purpose, the data was acquired using 
local funds, and has therefore not been made publicly available in the HBP database). 
 
The results indicated the presence of both common and species-specific responses to 
sequence novelty (See figure 99). First, both monkeys and humans show abstract responses 
to number (in IPS and ACC/SMA) and to repetition pattern (in basal ganglia, ventral IFG 
and TP), even when the individual sound change. Thus, even non-human primates are 
capable of representing the abstract numerical and logical patterns of sequences, as 
hinted by previous work (Nieder, 2012; Shima et al., 2007). However, the human brain 
differed from the monkey brain in showing a joint response to both parameters. 
Tantalizingly, this response occurs only in bilateral IFG (particularly BA 44) and pSTS, and 
we could prove using single-subject analyses that those sites were also activated by 
language and music processing. Furthermore, the lack of overlapping responses to 
numerical and sequence novelty in macaque monkeys was not just a negative result: using 
representational similarity analysis, we showed that, in the inferior frontal cortex, humans 
activated positively correlated and therefore similar areas for both types of novelties, 
while monkeys activated negatively correlated and therefore dissimilar areas, yielding a 
significant difference between these two species (Figure 119 right). 
 

 
Figure 119: Human-specific integrative representation of auditory patterns 

Using the paradigm in Figure 118, fMRI shows that both monkey and human brains react to changes in number 
(red) and sequence patterns (green). However, only the human brain shows an intersection of both responses 
(yellow). This intersection occurs in the inferior frontal gyrus (IFG) and posterior STS, at sites overlapping with 
those engaged in language syntax. Representational similarity analysis (right) confirms that violations of 
number and sequence co-activate the same voxels in human IFG, suggesting an integrative representation of 
the pattern underlying the sequences (e.g. “3 tones, then a different one”). Monkeys show non-overlapping 
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activations to number and to sequence changes, suggesting a sensitivity to isolated features, but no capacity to 
integrate them into a single unified pattern. 

 
Conclusion. The results, which were published in the journal Current Biology, indicate 
that humans recruit a species-specific circuit, overlapping with language areas, and 
capable of forming a representation of the whole pattern underlying a sequence. Monkeys 
encode individual features of the sequence, including abstract ones (e.g. total of 4 sounds; 
the last sound is different; etc), but if our result is correct, they do not seem to encode 
the global algebraic pattern (“3 identical sounds followed by a different one”). 
 
We have applied to the ERC to continue this research. In the future, we will vary the 
complexity of the learned sequences, by designing a hierarchy of sequences dissociating 
the 5 levels of sequence representation dissected in our review (see above). Subjects will 
be exposed to short blocks during which most sequences follow some regularity. Rare novel 
stimuli will allow us to measure generalization and novelty responses. We will monitor the 
amount, localization and dynamics of brain activation elicited by habituation stimuli, as 
well as the brain response to deviants. Our pilots and prior work (Bor et al., 2003) indicate 
that fMRI activation varying with rule complexity can be observed in human and monkey. 
 
Data Provenance. The data were acquired at Neurospin by Liping WANG and Marie 
AMALRIC. 
 
Dissemination. This work has been published and presented at several international 
meetings and lab presentations (Tokyo, March 2015; MIT, July 2015; Shanghai, September 
2015; etc). 
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5.3 The Social Brain – Representing the Self in Relation to Others 

Task T3.6.3 - Riitta Hari (AALTO), Lauri Parkkonen (AALTO), Linda Henriksson (AALTO) 

 

Review of the cognitive architecture for social representation and social 
interactions 

We have reviewed the cognitive architecture supporting social interaction, and social 
functions in general, in our recent publication (Hari et al., 2015). 

Riitta Hari, Linda Henriksson, Sanna Malinen, Lauri Parkkonen « Centrality of Social 
Interaction in Human Brain Function”, Neuron, Volume 88, Issue 1, p181–193, 7 October 
2015 

Abstract 

People are embedded in social interaction that shapes their brains throughout lifetime. 
Instead of emerging from lower-level cognitive functions, social interaction could be the 
default mode via which humans communicate with their environment. Should this 
hypothesis be true, it would have profound implications on how we think about brain 
functions and how we dissect and simulate them. We suggest that the research on the 
brain basis of social cognition and interaction should move from passive spectator science 
to studies including engaged participants and simultaneous recordings from the brains of 
the interacting persons. 

Review on the importance of timing in brain function 

In our other review paper, we have emphasized the importance of timing for brain 
functions, including those supporting social interaction. Our point is that the structural 
architecture of the brain (the connectome) needs to be complemented with the dynamics 
of the connections to understand human brain and behavior (Hari and Parkkonen, 2015). 
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Data set  

Introduction 

This task aimed at providing constraints for the emergence and shaping of the conscious 
mind, specifically trying to argue for the importance of other people in this process. The 
key scientific problem is whether smooth social interaction is the default mode of human 
brain function that enables social cognition (as we assume) or whether it is the result of 
bottom-up computations based on complex cognitive skills. 

We designed and conducted neuroimaging experiments on humans to address these 
constraints. The experimental work included 1) an fMRI localizer for social brain functions 
using simplified social stimuli, 2) a dual-MEG set-up and measurements to study the brain 
function of two subjects engaged in real social interaction. 

During the HBP Ramp-Up Phase, we have collaborated with CEA (Stanislas Dehaene) for a 
subset of the stimuli for the social localizer and with EKUT (Martin Giese) for planning 
action-perception experiments for our dual-MEG set-up. 

 

Design and Results 

Publications of dual-MEG results 

The construction and application our unique dual-MEG system for simultaneous 
measurements of two interacting subjects have been described in four original-research 
publications as of writing this. In the first one (Zhdanov et al., 2015), we describe the 
dual-MEG set-up and present a proof-of-concept result showing interbrain coherence 
during synchronous joint hand movements of the two participants. 

With the dual-MEG set-up, we have conducted and analysed recordings to study brain 
mechanisms supporting both nonverbal and verbal interaction (Himberg et al., 2015; 
Mandel et al., 2016; Zhou et al., 2016). 

 

Experimental design and data set: Social localizer 

We have built a comprehensive localizer fMRI experiment for identifying brain regions 
involved in social cognition. The localizer includes following categories of visual stimuli, 
with appropriate control conditions (not listed here): biological movement, goal-directed 
action, tasks related to self vs. other, people in social interaction, theory-of-mind ability 
(moving geometrical shapes, reading the mind in the eyes), joint attention, faces, and 
bodies. 

We have acquired data from 18 subjects using this localizer; the data acquisition has been 
funded jointly by HBP and Aalto Brain Centre. By the end of the Ramp-Up Phase of HBP, we 
deliver (1) the experimental design with the stimuli (copyright restrictions may apply to 
some of the stimuli) and (2) the key results on brain regions involved in different social 
tasks. The pre-processed raw fMRI data can also be delivered on request. The current 
approval from the Ethics committee of Aalto University permits sharing the data with HBP 
partners but not of other parties. The data are stored at the Aalto University.  

Figure 120 shows preliminary results from the social-localizer experiment. Data from 16 
subjects were included in the analysis as two subjects had to be excluded due to excessive 
head motion. All stimuli were shown within one 3T fMRI session and the presentation order 
of the stimuli was different for each subject. The results are visualized on the inflated 
cortical surface of the Freesurfer average brain (right hemisphere). 

The main analysis of the social-localizer data has been completed and a more detailed 
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analysis is in progress. The project will be described in the Master’s thesis of Timo Nurmi, 
and a scientific publication will be written about the results during year 2016. 

 
Figure 120: Results from the social-localizer fMRI experiment.  

A) The group-level fMRI results for the contrast between biological motion (point-light displays of human movement) and 
non-biological motion (point-light displays of moving shapes), and for the contrast between pictures of body parts and 
pictures of objects. B) Contrast between video clips of human faces and natural scenes. C) (left) Contrast between point-
light displays of human characters and social (e.g., communicative gestures) and non-social (e.g., walking) situations, and 
(right) between animations where geometrical shapes were in social interaction (Heider–Simmel animations) and animations 
of the same geometrical shapes in physical motion. D) Contrast between situations when the subjects were evaluating either 
the mental or the physical characteristics of a person of whom they saw only the upper face (reading the mind in the eyes 
test). E) In different task-blocks, the subject judged how well some adjectives described themselves, another person (the 
president of Finland), or an object (a car). Contrasts are shown between the judgements of (top) other person and the 
object, and (bottom) the self and the object. All activations are thresholded at p < 0.01 (uncorrected); the color lines 
indicate borders of neuroanatomical regions from an atlas. 

 

Experimental set-up: MEG/EEG imaging of two-person interaction 

We have constructed a unique hyperscanning setup, which allows recording MEG/EEG 
simultaneously from two interacting subjects; see Figure 121. This setup allows connecting 
two MEG systems at different geographical locations by providing a low-latency audio–
visual link and accurate synchronization of the recorded MEG, audio and video data. We 
have published the setup and proof-of-concept recordings (Zhdanov et al., 2015). 

As a Deliverable, we offer the dual-MEG setup to interested HBP partners for joint 
experimentation. Due to a restrictive ethics permit, the existing dual-MEG recordings 
unfortunately cannot be shared with groups outside of Aalto University, but future 
recordings under a new ethics permit could be shared among the HBP partners. 
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Figure 121 

A) Our dual-MEG set-up. The two MEG systems in separate laboratories are connected by an audio–visual link on the 
Internet, and the data are accurately time-stamped at both laboratories to allow for off-line synchronization of the 
recordings for joint analysis. B) The subject sees and hears the other subject with an end-to-end delay of about 120 ms. 
C) Interbrain coherence of MEG signals during mutually synchronized movements of the right hand.  

Conclusions 

We have designed and tested an fMRI localizer to highlight brain areas specifically relevant 
for social interaction and mutual understanding. A complete dataset comprising 18 
subjects has been acquired. The experimental design and the corresponding dataset will 
be made available to the HBP consortium; fully open distribution of the fMRI data is not 
permitted by the Finnish law. 
We have also constructed a dual-MEG set-up that allows measuring two interaction 
subjects at the same time. This set-up is available for interested HBP partners for 
collaborative experimentation. 
Our research supported by HBP has been disseminated as two review papers and four 
original-research papers, all in peer-reviewed international journals.  The data and 
measurement set-ups have not yet been used by other partners. 

 

A Dataset Information Card has been completed (see DIC Task T3.6.3 “fMRI localizer of 
social brain”). 

 

Data Provenance 
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Data were collected using a 3-T whole-body MRI scanner (Magnetom Skyra, Siemens) at the 
Advanced Magnetic Imaging Centre (http://ani.aalto.fi/en/ami_centre/) at Aalto-
korkeakoulusäätiö, in Finland. The pilot fMRI data were collected by Timo NURMI and 
Linda HENRIKSSON between October 2014 and March 2015 at the Department of 
Neuroscience and Biomedical Engineering, Aalto-korkeakoulusäätiö. 

 

 

 

 

 
  

http://ani.aalto.fi/en/ami_centre/
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Annex B: Dataset Information Cards 
 

Task Partner Data / model name DIC name DIC 
registered Link 

3.1.1 ESI Large-scale recordings from distributed and 
local visual networks during rest 

Spontaneous activity in anesthetized cat 
area 17 yes  

3.1.1 CEA 
MEEG recordings of the time course and 
manipulation of view-specific and view-
independent models of objects 

M/EEG Visual Stimulation in Humans 
(RSVP, rotating objects and mental 
rotation) - raw data 

yes http://sp3.s3.data.kit.edu/3_1_1/MEG_PredictiveVis
ualInternalModel/Raw/  

3.1.1  WIS 

The patterns of co-activation during natural 
sensory processing uncovered through 
resting state and naturalistic stimulation 
paradigms 

Architecture of functional visual 
cognitive networks of the human brain yes  

3.1.2 EKUT 

Neurodynamical model for multistability 
and the perceptual organization effects 
including multiple views in action 
recognition Giese et al 2014 

Perception Action - Codes yes http://sp3.s3.data.kit.edu/3.1.2/  

3.1.2 EKUT 
Model for new pathway that accounts for 
the influence of shading cues on action 
perception Publi. In prep. 

Not available yet (extra data)   

3.1.2 EKUT 
Spiking neuron model for a key circuit 
linking visual and motor representation of 
actions  

Not available yet (extra data)   

3.1.3 EPFL 
Multisensory mechanisms in temporo-
parietal cortex support self-location and 
first-person perspective 

Neural correlates of self-location and 
first-person perspective yes  

3.1.3 UB The Study of Body Ownership and Agency 
Using Immersive Virtual Reality Methods 

Understanding how body perception 
becomes a reference point for the sense 
of self - body ownership and agency 

yes  

3.1.4 UM 
Pyramidal Interneuron Network Gamma 
(PING) models of excitatory (E) and 
inhibitory (I) cells, monkey, model and 

Models of gamma oscillations in visual 
cortex yes  

http://sp3.s3.data.kit.edu/3_1_1/MEG_PredictiveVisualInternalModel/Raw/
http://sp3.s3.data.kit.edu/3_1_1/MEG_PredictiveVisualInternalModel/Raw/
http://sp3.s3.data.kit.edu/3.1.2/
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simulation results and A proof-of-principle 
layer-extended column model  

3.1.5 UH, AMU Map of human inter-areal connectivity and 
phase lags based on resting-state SEEG Human connectome of phase lags yes http://sp3.s3.data.kit.edu/3.1.5/  

3.1.5 UH, AMU Effects of multimodal distribution of delays 
in brain network dynamics, reduced model pending   

3.2.1 CEA Confidence during probabilistic reasoning, 
behavioural and fMRI recordings  

Human networks involved in confidence 
(fMRI and behavior) yes 

Study1: 
http://s3.data.kit.edu/SP3/3_2_1/Study1_Perceptual
Confidence    
Study2: data are available as on-line supplementary 
material of the Plos Computional Biology publication; 
they were also deposited on a server at 
http://s3.data.kit.edu/SP3/3_2_1/Study2_Probabiliti
stLearning_behavior    
Study3: data were deposited on a server at 
http://s3.data.kit.edu/SP3/3_2_1/Study3_Probabilist
icLearning_fMRI  
 

3.2.1 FCHAMP Confidence estimation on motor skill 
performance in mice 

Confidence estimation on motor skill 
performance in mice yes  

3.2.2 UPMC Pharmacological manipulation of 
motivational processes pending   

3.2.3 UvA 
Pupil-linked brainstem responses and the 
computation of yes vs. no decisions (fMRI), 
brain stem modulation 

Brainstem modulation of decision 
processes (human behaviour and fMRI) yes http://s3.data.kit.edu/SP3/3_2_3/Study1_yesno_fMRI  

3.2.3 UKE 
Pupil-linked modulation of the cortical 
dynamics underlying yes vs. no decisions 
(MEG) 

Brainstem modulation of decision 
processes (human behaviour and MEG) yes http://s3.data.kit.edu/SP3/3_2_3/Study2_yesno_MEG  

http://sp3.s3.data.kit.edu/3.1.5/
http://s3.data.kit.edu/SP3/3_2_1/Study1_PerceptualConfidence
http://s3.data.kit.edu/SP3/3_2_1/Study1_PerceptualConfidence
http://s3.data.kit.edu/SP3/3_2_1/Study2_ProbabilitistLearning_behavior
http://s3.data.kit.edu/SP3/3_2_1/Study2_ProbabilitistLearning_behavior
http://s3.data.kit.edu/SP3/3_2_1/Study3_ProbabilisticLearning_fMRI
http://s3.data.kit.edu/SP3/3_2_1/Study3_ProbabilisticLearning_fMRI
http://s3.data.kit.edu/SP3/3_2_3/Study1_yesno_fMRI
http://s3.data.kit.edu/SP3/3_2_3/Study2_yesno_MEG
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3.2.4  TASMC Intracranial single cell and LFP dataset, 
decision making, human 

intracranial recordings in motivational 
paradigm  yes http://fmri-tlv.org/tomer.html  

3.3.1 UHAIFA 
Short-term cortical modulation by task 
repetition as signatures of procedural 
memory consolidation 

pending  https://openfmri.org/dataset/ds000170/  

3.3.2 WIS Cognitive architecture of the initation of 
systems consolidation 

Consolidation of realistic episodic 
memories - stage 1 and  2 yes 

http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation
_of_realistic_episodic_memories_stage_1/  
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation
_of_realistic_episodic_memories_stage_2/  

3.3.2 WIS Brain activity that predicts episodic memory 
for brief narrative movie clips 

Prestimulus predictors of memory 
encoding,  yes 

http://sp3.s3.data.kit.edu/3_3_2/fMRI/Prestimulus_p
redictors_of_memory_encoding/  
 

3.3.2 EKUT Neural mass models of the sleeping brain pending   

3.3.3 UMU Short-term maintenance of conscious and 
non-conscious information Non-conscious short-term memory yes http://sp3.s3.data.kit.edu/3_3_3/fMRI_raw_data/  

3.4.1 UCL Model of spatial navigation and spatial 
memory Rat navigation simulation yes http://se/data/kit/edu/SP3/3.4.1/Simulation Results  

3.5.1 CNRS 
Emergence and self-organization of internal 
knowledge, tackling issues related to local 
vs. global feature processing, 

Recordings from primary visual cortex of 
anaesthetised cat during visual 
stimulation 

yes https://hbp.unic.cnrs-gif.fr/db  

3.5.2 CNRS 

Data set precisely consists in two-photon 
calcium imaging of mouse V1 and A1 
activity during time-varying auditory visual 
stimulation 

Multimodal activity in visual cortex V1 
of the mouse yes http://sp3.s3.data.kit.edu/3.5.2/Auditory_visual_dat

aset/  

3.6.1 CEA 

Cognitive architecture for the emergence of 
symbol-related areas: A dataset containing 
the cortical simulations from OverFeat for 
different geometric transforms of faces, 
tools, houses, letters, strings of letters and 
strings of pseudoletters 

Cortical simulations for symbolic and 
non-symbolic stimuli yes http://s3.data.kit.edu/3.6.1  

http://fmri-tlv.org/tomer.html
https://openfmri.org/dataset/ds000170/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_stage_1/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_stage_1/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_stage_2/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Consolidation_of_realistic_episodic_memories_stage_2/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Prestimulus_predictors_of_memory_encoding/
http://sp3.s3.data.kit.edu/3_3_2/fMRI/Prestimulus_predictors_of_memory_encoding/
http://sp3.s3.data.kit.edu/3_3_3/fMRI_raw_data/
http://se/data/kit/edu/SP3/3.4.1/Simulation
https://hbp.unic.cnrs-gif.fr/db
http://sp3.s3.data.kit.edu/3.5.2/Auditory_visual_dataset/
http://sp3.s3.data.kit.edu/3.5.2/Auditory_visual_dataset/
http://s3.data.kit.edu/3.6.1
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3.6.2 CEA 
Encoding of syntactic structures: model of 
the emergence of human areas responsive 
to letter an number symbols 

Encoding of syntactic structures yes http://sp3.s3.data.kit.edu/3.6.2  

3.6.2 CEA Bayesian Modeling of Expectation Effects in 
Sequences  

Cortical encoding of probabilistic 
sequences (MEG and behavior) yes http://s3.data.kit.edu/SP3/3_6_2/Study_Expectation

BayesianModeling_MEG  

3.6.2 CEA Encoding of temporal structure by human 
and non-human primates pending   

3.6.3 AALTO The social brain, two person interactions fMRI localizer of social brain yes http://ani.aalto.fi/en/ami_centre/  

 

 

http://sp3.s3.data.kit.edu/3.6.2
http://s3.data.kit.edu/SP3/3_6_2/Study_ExpectationBayesianModeling_MEG
http://s3.data.kit.edu/SP3/3_6_2/Study_ExpectationBayesianModeling_MEG
http://ani.aalto.fi/en/ami_centre/
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