
   

 

 
D4.7.3 (D25.3 D58) SGA1 M24 ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 1 / 44 

 

Grant Number: 720270 Grant Title: Human Brain Project SGA1 
 

Deliverable Title: D4.7.3 (D25.3 D58) CDP5 Components Report for SGA1 M13-M24 

Contractual Number 
and type: SGA1 D4.7.3 - Report 

Dissemination Level: PU (= PUBLIC) 

Version / Date: Submitted: 08 May 2018; ACCEPTED 09 Jul 2018 
 
 

Abstract: 

The paramount role of a brain is to enable an individual to learn. A particular 
challenge for a project devoted to study the human brain is to understand this 
ability to learn. In fact, the subject of self-organisation, learning and plasticity 
on different time scales is one of the most important and multi-faceted questions 
of brain science. 

In the HBP, the confluence of work on plasticity, learning and development 
happens in CDP5. All Subprojects (SPs) contribute to this goal. 

Keywords: 
Synaptic plasticity mechanisms, Functional learning rules, network learning, 
porting learning to neuromorphic systems and cortical columns, big-systems 
learning demos. 

 

  



   

 

 
D4.7.3 (D25.3 D58) SGA1 M24 ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 2 / 44 

 

 
 

Plasticity in neural networks: from biology to silicon 

  



   

 

 
D4.7.3 (D25.3 D58) SGA1 M24 ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 3 / 44 

 

 

Targeted 
users/readers Scientific Community 

Contributing Work-
Package(s): 

SGA1 WPs 3.2, 3.3, 3.4, 3.5, 3.6, 4.3, 4.6, 4.7, 9.1, 9.2, 9.3, 9.4, 9.5, 10.2, 10.3, 
10.4, 10.5, 10.6 and 10.7 

Initially Planned 
Delivery Date: SGA1 M24 / 31 Mar 2018  

 

Authors: Authors and institutions are listed under each Key Result. They all contributed to 
writing the document. 

Compiling Editors: Mihai A. PETROVICI, Walter SENN, Martina SCHMALHOLZ 

Contributors: Authors and institutions are listed under each Key Result. They all contributed to 
writing the document. 

SciTechCoord Review: Science and Tech Coordination (SP11) 

Editorial Review: EPFL (P1): Guy WILLIS, Annemieke MICHELS 

  



   

 

 
D4.7.3 (D25.3 D58) SGA1 M24 ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 4 / 44 

 

Table of Contents 
1. Introduction ............................................................................................... 5 
2. Results ..................................................................................................... 5 

2.1 Key Result 1: Brain-inspired learning algorithms ........................................................... 6 
2.2 Key Result 2: Plasticity and thalamocortical activity patterns .......................................... 19 
2.3 Key Result 3: Platform development and applications ................................................... 24 

3. Component Details .................................................................................... 42 
3.1 CDP5: Concept showcases in big systems (model) ......................................................... 42 
3.2 CDP5: Guiding platform design on functional plasticity (model) ....................................... 43 

4. Summary and Outlook ................................................................................ 44 
 

List of Figures 
Figure 1: Synaptic strength may be parameterised in various ways. ................................................ 7 

Figure 2: Developmental model of cortical pyramidal neurons for sequence learning. ......................... 9 

Figure 3: Top-down synapses can be adapted to simultaneously drive bottom-up learning, input construction 
and de-noising. ......................................................................................................... 11 

Figure 4: Architecture of a deep predictive coding network with retinotopic organisation. .................. 13 

Figure 5: Schematic for self-supervised learning of forward model. ............................................... 15 

Figure 6: Deep learning for artificial neural networks ................................................................ 17 

Figure 7: Snapshot of a slow wave propagating on a 96x96 grid of cortical modules ........................... 20 

Figure 8: Time variation of relative synaptic strengths of a cortical column undergoing oscillatory activity.
 ............................................................................................................................ 20 

Figure 9: Time course of the slow-wave activity on a cortical module with plastic synapses. ................ 21 

Figure 10: Initial results showing functionality of the thalamocortical model. .................................. 23 

Figure 11: In-the-loop training. ........................................................................................... 25 

Figure 12: Stochastic computing with spikes ........................................................................... 27 

Figure 13: Simulation of multi-compartment functionality in the prototype chip system. .................... 31 

Figure 14: An embedded plasticity processor for the BrainScaleS-2 system ...................................... 33 

Figure 15: Two postsynaptic neurons trained under the proposed synaptic plasticity rules ................... 35 

Figure 16: Overview of (intermediate-level) data flow in the Spinnaker platform .............................. 36 

Figure 17: Supervised learning experiment with 3 frozen random input spike pattern, and 3 corresponding 
targets ................................................................................................................... 37 

Figure 18: Replication of Figure 1 from (Brader et al., Neural Computation 2007) ............................. 38 

Figure 19: Closed-loop experiment setup. .............................................................................. 40 

Figure 20: The running system: extract from the simulation after 20 hours of training. ....................... 40 

 

  



   

 

 
D4.7.3 (D25.3 D58) SGA1 M24 ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 5 / 44 

 

1. Introduction 
The paramount role of a brain is to enable an individual to learn. A particular challenge for a 
project devoted to study the human brain is to understand this ability to learn. In fact, the 
subject of self-organisation, learning and plasticity on different time scales is one of the most 
important and multi-faceted questions of brain science. 

In the HBP, the confluence of work on plasticity, learning and development happens in CDP5. All 
Sub Projects (SPs) contribute to this goal: 

• SP1, SP2 and SP5 provide and curate data on structural changes in mouse and human brain. 

• Learning is the key element of cognitive neuroscience (SP3). 

• The theory of learning principles represents a dedicated WP in SP4. 

• The purpose of SP6 lies in the simulation of neural circuit dynamics, of which plasticity is a 
quintessential part. 

• SP7 provides the HBP with infrastructure necessary for dynamic brain simulation. 

• Failure to learn represents an important malfunction of the brain (SP8). 

• A vital motivation for neuromorphic computing (SP9) lies in its promise to enable efficient 
learning in artificial systems. 

• In order to efficiently cope with a complex, changing environment, robots must learn (SP10). 

Besides brain science, another branch of science is interested in uncovering the principles of 
learning: artificial intelligence (AI). However, the field of AI has a different scope, as it is not 
confined by biological boundaries. Nevertheless, as a Nature editorial of 8 Feb 2018 on Hardware 
Upgrading stated, “Artificial intelligence is driving the next wave of semiconductor innovations”. 
The editorial concluded “We welcome papers that will enable computing architectures beyond 
von Neumann, such as components for neuromorphic chips and in memory processing. Scientists 
across many fields are waiting for the result….” By working on unravelling the learning ability of 
the mammalian brain, CDP5 implicitly addresses the advancement of AI and its desire to build 
fast, energy-efficient, massively parallel hardware. A key partner is therefore SP9, which is 
devoted to hardware implementations of learning circuitry, with the multi-core SpiNNaker system 
in Manchester and the physical-model BrainScaleS system in Heidelberg. The core of CDP5 
connects the computational theories on learning and plasticity, developed in SP4 (WP4.3) and in 
part in SP9 itself (WP9.4), to the neuromorphic hardware developed in SP9. 

2. Results 
The CDP5 research of the past 24 months is reflected in three Key Results (KRs), each with several 
contributions, that have been achieved in a common effort across SPs as summarised below. These 
Key Results encompass theoretical studies on plasticity and learning that are envisaged in a next 
step for the hardware design (KR1.1-KR1.5) and/or robotics applications (KR1.6). Modelling work 
within SP3 on sleep and memory consolidation is being implemented in the software platform for 
spiking neurons (KR2.1 and KR2.2). Preparatory learning and plasticity experiments with 
neuromorphic hardware were combined with external devices (KR3.1) or were performed solely 
by the hardware (KR3.4). The emulation of networks with stochastic neurons that learn to store 
and recreate spatio-temporal patterns (KR3.2) represents an important step towards running 
similar large-scale experiments on the hardware platforms. Multi-compartmental neurons akin to 
cortical pyramidal neurons have been designed in the neuromorphic hardware under the guidance 
of experimental results in SP3 (KR3.3), and elements of spike-timing dependent plasticity were 
implemented in the hardware (KR3.5) and robotics platforms (KR3.6). For each Key Result, we 
have highlighted a selection of publications, education outreach activities that have contributed 
to the impact of our activities to the research community both within and outside the HBP. 
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Key Result 1: Brain-inspired learning algorithms 

1.1 Natural gradient learning for spiking neurons (SP4 and SP9) 

1.2 Sequence learning by shaping hidden connectivity (SP4 and SP9) 

1.3 Error-backpropagation across cortical areas (SP4 and SP9) 

1.4 Deep generative networks with spiking neurons (SP3 and SP4) 

1.5 Motor learning with spiking neurons through adaptive control (SP4 and SP10) 

1.6 Learning algorithms for neuromorphic hardware and robotics (SP9, SP3, SP6 and SP10) 

Key Result 2: Plasticity and thalamocortical activity patterns 

2.1 Slow-wave activity in a model of memory consolidation (SP3, SP6 and SP7) 

2.2 Thalamocortical model simulating wakefulness, sleep, and state transitions (SP3, SP7 and SP9) 

Key Result 3: Platform development and applications 

3.1 In-the-loop training with neuromorphic hardware (SP9 and SP4) 

3.2 Stochastic computing with spikes (SP9 and SP4) 

3.3 Compartmental neurons in neuromorphic hardware (SP9, SP4 and SP3) 

3.4 An embedded plasticity processor for the BrainScaleS-2 system (SP9 and SP4) 

3.5 Plasticity rules in neuromorphic hardware (SP4 and SP9) 

3.6 Robots learning sensory-motor loops with spiking neurons (SP10, SP9 and SP4) 

2.1 Key Result 1: Brain-inspired learning algorithms 

2.1.1 Natural gradient learning for spiking neurons 

Elena Kreutzer, Mihai A. Petrovici, Walter Senn 

CDP5 collaboration between SP4 (U Bern) and SP9 (U Heidelberg) 

We suggest a model for supervised learning with spiking neurons based on the natural gradient 
algorithm that yields a consistent description of synaptic plasticity in the brain and is robust 
to fixed-pattern distortions in neuromorphic hardware.  

Synaptic plasticity is known to be a key mechanism for learning in the brain. However, there are 
many equivalent ways to describe the strength of a synaptic connection in the brain, such as in 
terms of an EPSP slope, an EPSP amplitude, or the number of receptors at the synaptic cleft. In 
neuromorphic hardware, on the other hand, two synaptic weights that are intended to be equal 
are often represented in slightly different ways due to variations in construction. 

In both cases, the specific choice of a synaptic weight parameterisation should not influence the 
learning enabled by the correspondingly transformed synaptic plasticity rule. However, classical 
error learning rules based on gradient descent disobey this requirement: a different 
parameterisation of the same model will result in a different gradient rule. U Bern suggests an 
alternative model for synaptic plasticity in supervised learning with spiking neurons that is based 
on the parameterisation-invariant natural gradient algorithm. 

The latter has been successfully used in machine learning, exhibiting faster convergence by taking 
a more direct path to the learning target. We apply the natural gradient algorithm for the 
biological setting of learning with spiking neurons, and show that it allows consistent learning in 
spatially extended neurons, while converging faster than a classical gradient-based learning rule. 
Crucially, the framework also predicts biological phenomena such as heterosynaptic plasticity and 
a scaling of the learning rate by the variance of the presynaptic activity. Furthermore, due to its 



   

 

 
D4.7.3 (D25.3 D58) SGA1 M24 ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 7 / 44 

 

robustness against reparameterisations, the rule is well suited for implementation in analogue 
neuromorphic hardware (see KR3.3-KR3.5). 

 
Figure 1: Synaptic strength may be parameterised in various ways. 

(a, b) We show an example (a) where the synaptic weights are either parameterised as EPSP amplitudes at the 
soma, or as EPSP amplitude directly at the synapse. Synapses that exhibit the same EPSP amplitude at the soma 
(b, left) exhibit different amplitudes at the synapses (b, right) due to voltage attenuation in the dendritic tree. 
While classical gradient based learning will adapt somatic EPSP amplitudes equally strong in the first case, a 
derivation of the same rule in terms of synaptic EPSP amplitudes will change somatic amplitudes stronger for 
proximal than for distal synapses. The natural gradient learning rule resolves this inconsistency by adapting distal 
synapses stronger than proximal ones, leading to an equal change in somatic EPSP amplitudes. (c-e) Natural gradient 
learning is also more efficient than classical error-based learning. A non-optimal choice of parameterisation can 
turn a fairly symmetric error landscape (c, left), into a non-isotropic landscape with a shallow valley (c, right), a 
situation in which the standard gradient rule converges slowly. Whereas Euclidean gradient learning in the latter 
case follows the contour lines of the error function (d, left), taking a detour to the target state, natural gradient 
learning takes a more direct path (d, right). The learning curves (e) show that this results, on average, in faster 
convergence of the natural gradient rule. 

 Achieved Impact 

1) Natural gradient for spiking neurons 

Elena Kreutzer, Walter Senn 

Poster at the Bernstein Conference, Berlin (Germany), 2016 

2) Natural gradient for spiking neurons 

Elena Kreutzer, Walter Senn 

Talks and posters at the GCB Symposia, Bern (Switzerland), 2016, 2017, 2018 
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3) Natural gradient for spiking neurons 

Elena Kreutzer, Walter Senn 

Poster at the BMI Symposium "Neural Implementation of Learning Models", Lausanne (Switzerland), 
2017 

4) Natural gradient for spiking neurons 

Elena Kreutzer, Walter Senn 

Poster at the Bernese Clinical Neuroscience Day, Bern (Switzerland), 2016 

5) Dendrites and plasticity: From first principles to structure and dynamics 

Mihai A. Petrovici 

Talk at the Dendritic integration and computation with active dendrites workshop, Paris (France), 
2018 

 Component Dependencies 

Summarised links to components this Key Result depends on: 

Component 
ID  Component Name HBP Internal Comment 

457 

SP9: BrainScaleS 2 
neuromorphic 
computing system 
(hardware) 

Prototype 
accessible HBP 
internal 

Hardware emulation of model in SGA2 

468 
SP9: Principles for 
brain-like computation 
(model) 

No CDP5-related results 

969 
SP4: Plasticity - Two-
compartment neuron 
(model) 

No KR builds on and contributes to this model 

1066 
SP4: Plasticity - 
Synaptic plasticity and 
learning (model) 

No KR builds on and contributes to this model 

2419 

SP4: Plasticity - 
Algorithms for multi-
compartment models 
(model) 

Yes KR builds on and contributes to this model 

2.1.2 Sequence learning by shaping hidden connectivity 

Kristin Völk, Mihai A. Petrovici, Walter Senn 

CDP5 collaboration between SP4 (U Bern) and SP9 (U Heidelberg) 

A cortical developmental model is suggested for learning spatio-temporal patterns based on 
2-compartment neuron models and dendritic predictive plasticity. The model shapes an 
appropriate connectivity pattern in a pool of hidden neurons that allows the memorisation of 
non-Markovian pattern sequences in visible neurons. The model is portable to the 
neuromorphic hardware currently developed in the HBP. 

Behaviour can often be described as a temporal sequence of actions. These sequences are 
grounded in neural activity. In order for neural networks to learn complex sequential patterns, 
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memories of past activities are required. These past activities need to be stored by hidden neurons 
in the network from which the ‘visible’ neurons can read out the memory. 

We consider recurrently connected pools of visible and hidden neurons that are wired together 
with a small number of non-plastic somato-somatic connections and a large number of plastic 
somato-dendritic connections. We postulate that the few somato-somatic connections evolve 
stochastically during development to provide a characteristic scaffold of sequential and loopy 
connectivity patterns. Depending on the sequences imposed on the visible neurons during the 
learning process, different somato-somatic sequences and loops are activated in the hidden 
neurons. Based on dendritic predictive plasticity (Urbanczik & Senn, Neuron 2014), the many 
somato-dendritic connections evolve to stabilise the appropriated combination of the sequences 
and loops that support the sequential of activity imposed on the visible neurons. The stored 
sequential memories can be exploited by new visible sequences to be learned by slightly rewiring 
the somato-dendritic connections. The model provides hypotheses of how the cortical or 
hippocampal connectivity patterns evolve during development and the subsequent learning 
periods. Because all computations are local both in the development and in the learning phase, 
this model is also amenable to implementation in physical model hardware (see KR3.3-KR3.5). 

The work is an extension of our previous model on prospective coding, Brea, Gaal, Urbanczik & 
Senn, Prospective Coding by Spiking Neurons, PLoS Comp Biol 2016 
(http://dx.plos.org/10.1371/journal.pcbi.1005003) with code available at 
https://github.com/unibe-cns/prospectiveCoding 

 

Figure 2: Developmental model of cortical pyramidal neurons for sequence learning. 
(a) Schematic illustration of the framework. Some neurons (in the `visible’ layer at the bottom) will receive 
external connections (blue), which represent the desired activation pattern. They will generate memory traces of 
past activities via somato-somatic connections to other neurons (orange and violet). (b, c) Schematic illustration 
of a delay line and a loop - two structures which enable the storage of memories over longer periods of time. (d) 
Whole network simulation of a network learning the sequence “b, c, b, f” in the visible population. Development 
of delay lines in the “hidden” neuron pool can be observed. (e) Zoomed-in version of (d), illustrating the learning 
phase during the development of delay lines. 

http://dx.plos.org/10.1371/journal.pcbi.1005003
https://github.com/unibe-cns/prospectiveCoding
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 Achieved Impact 

6) Time series learning through hidden population shaping by somatic nudging 

Kristin Völk, Walter Senn 

Poster at the Bernstein Conference, Göttingen (Germany), 2017 

5) Dendrites and plasticity: From first principles to structure and dynamics 

Mihai A. Petrovici 

Talk at the Dendritic integration and computation with active dendrites workshop, Paris (France), 
2018 

 Component Dependencies 

Summarised links to components this key result depends on: 

Component 
ID  Component Name HBP Internal Comment 

457 
SP9: BrainScaleS 2 
neuromorphic computing 
system (hardware) 

Prototype 
accessible HBP 
internal 

Hardware emulation of model in SGA2 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

969 
SP4: Plasticity - Two-
compartment neuron 
(model) 

No KR builds on and contributes to this model 

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this model 

2419 

SP4: Plasticity - 
Algorithms for 
multicompartment 
models (model) 

Yes KR builds on and contributes to this model 

2.1.3 Error backpropagation across cortical areas 

João Sacramento, Rui Ponte Costa, Dominik Dold, Mihai A. Petrovici, Yoshua Bengio, Walter 
Senn 

CDP5 collaboration between SP4 (U Bern), SP9 (U Heidelberg) and external partner (U 
Montreal, YB) 

Inspired by a recurring connectivity motif found across brain areas, CDP5 researchers from U 
Bern and U Heidelberg in collaboration with U Montreal have developed a network mechanism 
to encode and propagate prediction errors. The proposed model approximates the 
backpropagation-of-errors algorithm widely used in artificial neural networks. Unlike its 
artificial counterpart, however, it operates continuously and uses only local synaptic plasticity 
rules, potentially uncovering a way of learning in deep biological and in silico neuronal 
networks. 

Cortical networks of biological neurons, as well as state-of-the-art artificial neural models of 
pattern recognition and generation (termed deep neural networks), comprise multiple stages of 
interconnected processing elements. Learning in such networks involves determining changes to 
synaptic connections in order to achieve better performance in a given task, such as visual object 
recognition. This is the so-called credit assignment problem. A simple, but highly effective 
strategy employed in artificial neural network training is to define an appropriate cost function 
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and then let synaptic changes follow gradient descent dynamics on this cost. Such gradients can 
be efficiently computed using the backpropagation-of-errors algorithm. 

In neuroscience, few solutions to the credit assignment problem have been put forth so far, and 
computational models typically focus on solving simple tasks where learning is more 
straightforward. Drawing inspiration from cortical architecture, researchers from U Bern and U 
Heidelberg in collaboration with U Montreal have now developed a model for the computation and 
backpropagation of prediction errors which relies on a novel circuit motif. Such circuitry allows 
the network to perform credit assignment. Two key design elements are introduced: First, the 
network uses simplified compartmental neurons modelled after pyramidal cells, which 
continuously integrate bottom-up sensory input with top-down `semantic’ input. The bottom-up 
input mainly projects to the basal tree of the model pyramidal neurons, and the top-down input, 
originating downstream processing areas, projects to the apical tree. Second, the top-down 
feedback signals are converted within the apical tree into neuron-specific prediction errors using 
lateral inhibition. The lateral inhibition (e.g. mediated by somatostatin interneurons) learns to 
explain away the top-down input, and the remaining apical voltage represents the prediction error 
that drives synaptic plasticity of the sensory input targeting the basal tree.  

 
Figure 3: Top-down synapses can be adapted to simultaneously drive bottom-up learning, 

input construction and de-noising. 
(A) Classification performance of a 784-1000-10 network exposed to MNIST images, with plastic top-down synapses 
that learn to predict lower-area activities. Top-down and forward weights co-adapt without pauses or phases. (B) 
Driving the network top-to-bottom (i.e. initialising the output area to a particular digit and turning off lateral and 
bottom-up inputs of both hidden and input areas) recreates class-specific image examples in the input area. The 
top-down connections can be tuned to encode a simple inverse visual model. (C) Such an inverse model yields 
image de-noising, which can be achieved by reconstructing corrupted inputs from hidden area activities. (D) The 
network also successfully learns to classify images. (E) Inverse reconstruction losses of original images (i) and 
hidden (ii) neuron activities. Top-down synapses connecting hidden pyramidal neurons back to the input area learn 
to reconstruct pixel arrangements given hidden neuron activities; synapses originating at the output area learn to 
predict hidden area activities given the current class label estimate. 

The computational role proposed for the dendritic compartmentalisation of pyramidal cells, as 
well as the proposed distinct cell types, lead to a number of experimental predictions regarding 
learning and plasticity. Furthermore, being capable of operating in real-time and relying only on 
local plasticity rules (see KR3.3-KR3.5), the model suggests potential ways of learning in an online 
fashion deep neural networks that can be implemented in the HBP neuromorphic platforms (see 
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KR3.1 and KR3.2). The code for this model is available at https://github.com/unibe-
cns/multiareaBackprop. 

 Achieved Impact 

7) Dendritic error backpropagation in deep cortical microcircuits 

João Sacramento, Rui Ponte Costa, Yoshua Bengio, Walter Senn 

arXiv:1801.00062, 2017 

8) Bayesian multisensory integration by dendrites 

João Sacramento, Walter Senn 

Talk at the COSYNE Conference, Salt Lake City (USA), 2016 

9) Dendritic functions in learning 

João Sacramento, Walter Senn 

Selected young researcher talk at the DENDRITES Conference, Heraklion (Greece), 2016 

10) Learning based on error representations in apical dendrites of L5 pyramidal neurons 

João Sacramento, Walter Senn 

Talk at the Champalimaud Neuroscience Symposium, Lisbon (Portugal), 2016 

11) Error backpropagation in cortical circuits 

João Sacramento, Yoshua Bengio, Walter Senn 

Selected young researcher talk at the 5th Annual Human Brain Project Summit, Glasgow (UK), 
2017 

5) Dendrites and plasticity: From first principles to structure and dynamics 

Mihai A. Petrovici 

Talk at the Dendritic integration and computation with active dendrites workshop, Paris (France), 
2018 

 Component Dependencies 

Summarised links to components this Key Result depends on: 

Component 
ID  Component Name HBP Internal Comment 

457 
SP9: BrainScaleS 2 
neuromorphic computing 
system (hardware) 

Prototype 
accessible HBP 
internal 

Hardware emulation of model in SGA2 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

969 
SP4: Plasticity - Two-
compartment neuron 
(model) 

No KR builds on and contributes to this model 

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this model 

2622 
SP4: Plasticity - 
Predictive plasticity for 
deep learning (model) 

No KR builds on and contributes to this model 

 

https://github.com/unibe-cns/multiareaBackprop
https://github.com/unibe-cns/multiareaBackprop
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2.1.4 Deep generative networks with spiking neurons 

Shirin Dora, Sander Bohte, Cyriel Pennartz, Walter Senn 

CDP5 collaboration between SP3 (U Amsterdam) and SP4 (U Bern). 

Biological deep neural network models with spiking neurons are investigated that learn both 
to classify objects in a visual scene and to re-generate the visual input. The model will be 
extended towards multisensory integration and is inspired by data from SP3 (U Amsterdam). 
It provides a guideline for implementations in the HBP platforms. 

Besides local plasticity rules, biological deep learning models also need to take into account the 
architectural constraints observed in the brain, such as the retinotopic organisation of the primary 
visual cortex, and replicate the response properties of biological neurons. In 12), we trained a 
hierarchical neural network model that employed neurons with overlapping receptive fields. The 
model utilises predictive coding to infer latent representations for a given input stimulus at each 
level in the hierarchy. These latent representations inferred by the model represent the hidden 
hypothetical causes in the external environment that generated a given stimulus. The latent 
representations at higher levels in the model denote more abstract information in comparison to 
lower levels in the model. We have shown that the latent representations at all levels in the model 
could be used to reconstruct the original stimulus. 

 
Figure 4: Architecture of a deep predictive coding network with retinotopic organisation. 

As observed in the brain, the deeper layers in the model have larger receptive fields in comparison to the lower 
layers in the model. The model was trained on only 1000 images of horses and ships from the CIFAR-10 data set 
but we were able to infer latent representations for images of other objects in the data set that were not presented 
during training. This highlights the generalisation capabilities of the trained model across different classes of 
physical objects. Furthermore, we were also able to infer latent representations for translated versions of the 
images. This shows that the features learned by the model are translation-invariant. 

Currently, the model is trained on unisensory stimuli (images from the CIFAR-10 data set). In SGA2, 
the goal will be to train and infer hierarchical representations in multisensory systems, simulating 
encoding and cross-modal recall and link sensory processing to episodic memory. A collaboration 
with the Senn lab at the University of Bern further targets the modelling of experimental data. An 
implementation in the physical-model BrainScaleS hardware has been expedited by small-scale 
implementations of hierarchical spiking networks (see KR3.1 and KR3.2). 

 Achieved Impact 

12) Deep Predictive Coding Networks for Learning Latent Representations 

Shirin Dora, Cyriel M.A. Pennartz, Sander M. Bohte 

OpenReview.net, 2017 

13) Predictive coding in deep neural networks 

Shirin Dora, Sander M. Bohte and Cyriel M.A. Pennartz 

Poster at the In-depth meeting on network learning, Fürberg (Austria), 2017 

https://openreview.net/forum?id=Hy8hkYeRb
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 Component Dependencies 

Summarised links to components this Key Result depends on: 

Component 
ID  Component Name HBP 

Internal Comment 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

752 

SP3: Analysis of network-
level mechanisms 
constraining the in vivo 
implementation of learning 
rules and implementing 
integration, encoding and 
recall of multisensory 
memories (data) 

 KR constrained by this data 

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this model 

2622 
SP4: Plasticity - Predictive 
plasticity for deep learning 
(model) 

No KR builds on and contributes to this model 

2.1.5 Motor learning with spiking neurons through adaptive 
control 

Aditya Gilra, Wulfram Gerstner, Walter Senn, J. Camilo Vasquez Tieck 

CDP5 collaboration between SP4 (EPFL-LCN Lausanne, U Bern) and SP10 (FZI Karlsruhe) 

For predicting and controlling non-linear dynamics using spiking neural networks, EPFL-LCN 
developed a local synaptic plasticity rule and network architecture, borrowing from adaptive 
control theory. The work hypothesises a neural basis for motor learning and control in the 
brain. Direct applicability to neuromorphic computing and neuro-robotics is envisaged. This 
forms the basis for a CDP5 collaboration within SP4 (EPFL-LCN, U Bern). The mode will be 
implemented in a closed-loop robotic experiment with partners from SP10 and serves as a 
guideline for the development of plasticity rules on the SpiNNaker hardware platform (SP9).  

EPFL-LCN has proposed a learning scheme for neuronal networks to predict and control movement 
Gilra and Gerstner, 2017a, b), using spiking neurons adapting synaptic weights with local plasticity 
rules. The implementation of these “FOLLOW” learning networks on SpiNNaker and Neurorobotics 
Platform will contribute to several use cases of the SGA2 phase of CDP5. A brief overview of the 
learning scheme is provided below. 

The brain needs to construct forward or inverse models of the non-linear dynamics of muscles, 
limbs and the external world for motor control and planning. How spiking neural networks can 
learn such models is an open problem, despite significant progress via reservoir computing, FORCE 
learning, and other methods Abbott et al., 2016, DeWolf et al., 2016, Denéve et al., 2017). 

We proposed a self-supervised learning scheme (Figure 5): Feedback-based Online Local Learning 
Of Weights (FOLLOW) Gilra and Gerstner, 2017a), which especially draws from function and 
dynamics approximation theory Funahashi, 1989, Eliasmith and Anderson, 2004) and adaptive 
control theory Ioannou and Sun, 2012). Using our FOLLOW scheme, we enabled a recurrently 
connected network of heterogeneous spiking neurons to learn its feedforward and recurrent 
weights, so as to predict or control a low-dimensional non-linear dynamical system dx/dt = f(x, 
u), where u(t) is the control input and x(t) are the state variables. We derived the learning rules 
showing global uniform (Lyapunov) stability with the error tending to zero asymptotically, under 
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reasonable assumptions and approximations. The learning rules are synaptically local, involving 
the pre-synaptic firing rate and an error feedback current injected into the post-synaptic neuron. 

Using a two-link arm as an example, we showed that our network learned a forward predictive 
model for motor planning i.e. it predicted the joint angles and velocities x(t) given joint torques 
u(t), or learned an inverse model for motor control i.e. it inferred the torque u(t) that would 
generate a desired state trajectory x(t). We further used the inverse model to control the arm to 
draw on a wall. 

With FOLLOW learning, we proposed a more biologically plausible, specifically synaptically local, 
scheme of how the brain may learn forward and inverse models to perform motor planning and 
control. Extensions like incorporating Dale's law for further biological plausibility, hierarchical 
coding and control, semi-supervised learning, and applications to neuromorphic computing and 
neurorobotics are planned for future work (see KR3.6). 

 
Figure 5: Schematic for self-supervised learning of forward model. 

During learning, early in development, random motor commands (motor babbling) cause movements of the arm. 
An efference copy of the motor commands are also sent to the forward predictive model, which must learn to 
predict the positions and velocities (state variables) of the arm. The deviation of the predicted state from the 
reference state, obtained by visual and proprioceptive feedback, is used to learn the forward predictive model. 
The forward predictive model is a network of recurrently connected neurons whose connection strengths are 
adjusted by a synaptically local rule. 

 Achieved Impact 

14) Predicting non-linear dynamics by stable local learning in a recurrent spiking neural 
network 

Aditya Gilra and Wulfram Gerstner 

eLife 6:e28295. DOI: 10.7554/eLife.28295, 2017 

15) Non-linear motor control by local learning in spiking neural networks 

Aditya Gilra and Wulfram Gerstner 

arXiv:1712.10158 q-bio.NC) 

16) A stable local learning scheme for recurrent spiking neural networks 

Aditya Gilra and Wulfram Gerstner 



   

 

 
D4.7.3 (D25.3 D58) SGA1 M24 ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 16 / 44 

 

Talk at the workshop “Machine Learning Meets Biology: Algorithms and Cortical Mechanisms”, 
Geneva (Switzerland), 2017 

14a) Predicting non-linear dynamics: a stable local learning scheme for recurrent spiking 
neural networks 

Aditya Gilra and Wulfram Gerstner 

Talk at the In-depth meeting on network learning, Fürberg (Austria), 2017 

 Component Dependencies 

Summarised links to components this Key Result depends on: 

Component 
ID  Component Name HBP 

Internal Comment 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this model 

2.1.6 Learning algorithms for neuromorphic hardware and 
robotics 

Guillaume Bellec, Zeno Jonke, David Kappel, Robert Legenstein, Wolfgang Maass, Dejan 
Pecevski, Christoph Pokorny, Arjun Rao, Anand Subramoney 

CDP5 collaboration between SP9 (TU Graz, U Heidelberg, TU Dresden), SP3 (U Amsterdam), 
SP6 (KTH) and SP10 (FZI Karlsruhe) 

Experimental data from neuroscience provided the basis for the design of new learning 
methods for networks of spiking neurons, in particular for neuromorphic hardware and 
neurorobotics. 

Wolfgang Maass (SP9), in collaboration with Jeannette Hellgren-Kotaleski (SP6), organised an 
interdisciplinary CDP5 Brainstorming Workshop of SP1, SP2, SP4, SP6, SP9, SP10 on “Cellular 
Determinants of Functional Network Plasticity” in Fürberg, Austria, October 2016. In particular, 
results from molecular biology on intracellular processes in the postsynaptic density of synapses 
were examined from the systems perspective of network plasticity. A concrete outcome of these 
interdisciplinary discussions was a new perspective of the likely role of a key molecule in the 
postsynaptic density, CAMKII, for network plasticity 17). In addition, results and discussions on 
various long lasting processes on the molecular level in neurons and synapses provided new 
mechanisms for network learning (work in progress at TU Graz). 

In addition, Wolfgang Maass (SP9) in collaboration with Cyriel Pennartz (SP3), organised a CDP5 
Brainstorming Workshop on “Functional Network Plasticity” in Fürberg, Austria, May 2017. This 
workshop produced discussions and insights about network plasticity from several disciplines. 
Among the new results that were discussed at this workshop, and later results that benefited from 
discussions at this workshop, were 18), 19), 20), 21), 22), 23). Another collaboration between SP3 
and SP9, which also started at this workshop, addresses the role of dendritic spikes for the 
interaction of bottom-up input and top-down feedback in cortical columns (work in progress). 

The study 23) provides brain-derived principles for integrating synaptic rewiring into network 
plasticity. This forms the basis of a current collaboration between TU Graz and TU Dresden on an 
implementation of reward-based rewiring on the SANTOS chip for Spinnaker 2. It has also lead to 
a method for deep learning with sparse connectivity 24). Obviously, sparse connectivity is an 
essential prerequisite of efficient hardware or software implementations of deep learning. The 
relevance of this new method is highlighted by the fact that 24) has been accepted at a very 
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competitive conference in Machine Learning (International Conference on Learning 
Representations 2018). The method from 23) is currently applied at FZI Karlsruhe for reward-based 
learning and rewiring in neural robot controllers. An already completed collaboration with FZI 
Karlsruhe is reported in 25). 

 

Figure 6: Deep learning for artificial neural networks 
This can be performed with rewiring (DEEP R) in a sparsely connected network with just a small loss in performance; 
comparison with other algorithms. Left: Accuracy against connectivity for MNIST. Right: performance on the TIMIT 
dataset. 

 Achieved Impact 

17) CaMKII activation supports reward-based neural network optimization through 
Hamiltonian sampling 

Z. Yu, D. Kappel, R. Legenstein, S. Song, F. Chen, and W. Maass 

arXiv:1606.00157 (2017) 

18) Learning probabilistic inference through STDP 

D. Pecevski and W. Maass 

eNeuro (2016) 

19) Feedback inhibition shapes emergent computational properties of cortical microcircuit 
motifs 

Z. Jonke, R. Legenstein, S. Habenschuss, and W. Maass 

Journal of Neuroscience, 37(35):8511-8523 (2017) 

20) A probabilistic model for learning in cortical microcircuit motifs with data-based divisive 
inhibition 

R. Legenstein, Z. Jonke, S. Habenschuss, and W. Maass 

arXiv:1707.05182 (2017) 

21) Associations between memory traces emerge in a generic neural circuit model through 
STDP 

C. Pokorny, M. J. Ison, A. Rao, R. Legenstein, C. Papadimitriou, and W. Maass 

bioRxiv:188938 (2017) 

22) Assembly pointers for variable binding in networks of spiking neurons 

R. Legenstein, C. H. Papadimitriou, S. Vempala, and W. Maass 

arXiv preprint arXiv:1611.03698 (2017) 
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23) Reward-based stochastic self-configuration of neural circuits 

D. Kappel, R. Legenstein, S. Habenschuss, M. Hsieh, and W. Maass 

arXiv:1704.04238 (2017) 

24) Deep rewiring: training very sparse deep networks 

G. Bellec, D. Kappel, W. Maass, and R. Legenstein 

International Conference on Learning Representations (ICLR), (2018) 

25) Scaling up liquid state machines to predict over address events from dynamic vision 
sensors 

Kaiser, J., Stal, R., Subramoney, A., Roennau, A. and Dillmann, R. 

Bioinspiration & biomimetics, 12(5), p.055001 (2017) 

 Component Dependencies 

Summarised links to components this Key Result depends on: 

Component 
ID  Component Name HBP Internal Comment 

1 
SP9: BrainScaleS 1 
neuromorphic computing 
system (hardware) 

Publicly 
accessible via 
Collab 

Hardware emulation environment 

2 
SP9: SpiNNaker 
neuromorphic computing 
system (hardware) 

Publicly 
accessible via 
Collab 

Hardware emulation environment 

450 
SP9: SpiNNaker 48-chips 
standalone system 
(hardware) 

Boards 
publicly 
available for 
purchase or 
loan 

Hardware emulation environment 

451 
SP9: SpiNNaker 4-chips 
standalone system 
(hardware) 

Boards 
publicly 
available for 
purchase or 
loan 

Hardware emulation environment 

457 
SP9: BrainScaleS 2 
neuromorphic computing 
system (hardware) 

Prototype 
accessible HBP 
internal 

Hardware emulation environment 

467 
SP9: SpiNNaker 2 small-
scale NM-MC system 
(hardware) 

Prototype 
accessible HBP 
internal 

Hardware emulation environment 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this model 

1342 
CDP5: Guiding platform 
design on functional 
plasticity (model) 

No CDP5 result 
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2.2 Key Result 2: Plasticity and thalamocortical activity 
patterns 

2.2.1 Slow-wave activity in a model of memory consolidation 

Pier Stanislao Paolucci, Maurizio Mattia, Fabrizio Capuani, Elena Pastorelli, Markus Diesmann, 
Hans Ekkehard Plesser 

CDP5 collaboration between SP3 (INFN Rome, ISS Rome) and SP6/SP7 (FZ Jülich) 

Preparing the study of the interplay between slow waves and plasticity. 

Sleep is a physiological state in which periodically the brain falls expressing at its early stage a 
rhythmic activity at around 1 Hz. This is a rather stereotypical activity, a default activity pattern 
(Sanchez-Vives et al., Neuron 2017), which is invariantly expressed across animal species with 
widely different phylogenetic roots (Hobson et al., Nat Rev Neurosci 2009). Such invariance across 
evolution highlights the importance of the sleep function, which in turn is manifold ranging from 
neocortical maintenance, energy conservation and memory consolidation (Siegel, Nature 2005). 
In particular, the latter implies an impact of sleep slow rhythms in shaping/rewiring the cortical 
network synaptic matrix. More specifically, synapses appear to be downscaled after a sleep cycle 
with the exception of the largest 20% (De Vivo et al., Science 2017). Such global phenomena may 
in turn have a causal role in redistributing spontaneous spiking activity expressed during the whole 
sleep period (Watson et al., Neuron 2016). Thus, understanding the impact of synaptic plasticity 
during sleep-like brain states is of fundamental importance to understand its capability to 
contribute both to the self-consistency of this rhythm and to the impact on reinforcing memory 
engrams. 

During SGA1, INFN and ISS improved both the simulation engine and the cortical models by showing 
that i) large–scale simulations of SWA are possible when synaptic plasticity is incorporated; ii) the 
conditions under which SWA is self-consistently expressed have been identified; and iii) the 
simulations are `affordable in terms’ in terms of computational cost. 

We started by refining a procedure, based on mean-field theory, to generate a cortical model with 
memories capable of sustaining SWA matching experimental in vitro measures of the phenomenon 
(Capone et al., Cereb Cortex 2017). The rhythmic alternation between Up and Down local 
activities levels gives rise to travelling waves (SWA), when coupled to a near neighbourhood lateral 
connectivity. Together this cortical network model and the simulation engine were improved to 
enable fast, scalable and efficient simulation of models expressing both SWA and irregular 
asynchronous activity. Tested model networks included up to tens of billions of synapses 
interconnecting up to tens of millions of neurons simulated on platforms including up to thousands 
of hardware cores and software processes. Neurons have been arranged in spatial grids (composed 
of up to 96x96 cortical modules, grid step 400 μm). The modules have been interconnected 
assuming a connection probability decaying with the distance with a decay length λ = 240 μm 
compatible with biological values (Pastorelli et al., PDP 2018). For this activity on such large 
systems a fast simulation engine as DPSNN was instrumental.  

The preparation of the study of the interplay between SWA and memories requires plastic 
synapses. Therefore, we improved DPSNN by adding the classic spike-timing-dependent plasticity 
(STDP) described in (Gütig et al., J Neurosci, 2003). This STDP model was chosen as being a flexible 
two-factor STDP and being implemented also in NEST (Gewaltig and Diesmann, 2007). We observed 
that the computational cost of this simple plastic model is not prohibitive for the DPSNN simulator. 
Simulation speed on one thousand cores is about 1ns per synaptic /event for non-plastic models 
and preliminary measure show a decrease of about a factor 3 when plasticity is switched on. The 
simulations of the cortical model in SWA showed that, even in the presence of an evident effect 
of oscillations on synaptic weights (Figure 8), the rhythmic multiscale activity patterns generated 
by the cortical systems with plastic synapses is stable for a relatively long transient period (Figure 
9). 
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Figure 7: Snapshot of a slow wave propagating on a 96x96 grid of cortical modules 

Grid step 400 μm. The model includes a total of 11.5M neurons and 17.5G.  

 
Figure 8: Time variation of relative synaptic strengths of a cortical column undergoing 

oscillatory activity. 
Time variation of synapses connecting the population of neurons participating to the up-states (circles), neuron in 
population not participating to up-states (green triangles), or two neurons where the presynaptic population 
participates to the up-state, while the postsynaptic does not (blue triangles), or vice-versa (red squares). All 
synapses strengths are normalised by the strength of the synapses connecting two neurons participating to the 
oscillation. In the caption, p stands for participating in the up-state, while not p (!p) for not participating. 
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Figure 9: Time course of the slow-wave activity on a cortical module with plastic synapses. 

Time variation of the firing rates of excitatory neurons participating to the slow-wave up-state activity (top panel), 
of excitatory neurons that do not participate in the slow-wave up-state (middle panel), and of inhibitory neurons 
(bottom panel). The figure shows that the interaction between the causal variant of STDP and SWA caused a 
progressive decrease of the amplitude of the waves, but that slow-wave activity persists for a relatively long 
transient period. 

The porting of the SWA model without plasticity from DPSNN to NEST has been completed. In the 
final months of SGA1 we are testing the behaviour of NEST with the same STDP plasticity and 
preparing the delivery of the models in NEST format (SP6). Models and results will be shared with 
interested HBP partners using the HBP Collaboratory. In SGA2 perspective the provision of NEST 
models is expected to enable the run on the HBP Neuromorphic and Neurorobotic Platforms. 

The activity of this SGA1 task is essential to prepare tools and models necessary for investigating 
the multiscale interplay between sleep and plasticity, which is a focus in SGA2. Key aspects of the 
SGA2 activity are: a) the evaluation of the stability properties of the SWA generated by a cortical 
network model incorporating plastic synapses and b) the study of the effect of SWA on the 
capability of recall memory engrams (distributed attractor states) stored in neocortex. Intuitively, 
we expect that the strong and coherent neuronal activation typical of SWA might strengthen (the 
relative weight of) synapses of functionally correlated neurons, while weakening the synapses 
connecting functionally uncorrelated neurons. To test this hypothesis, we must build a controlled 
simulation of a cortical module that (i) expresses SWA, (ii) incorporates synaptic plasticity, and 
(iii) is a realistic representation of mammalian cortical networks. This is possible as the 
collaboration within the HBP WP3.2 characterises itself by the effort to produce mesoscale models 
devised to bridge all brain scales when simulated on state-of-the art platforms with state-of-the 
art simulation engines. 

 Achieved Impact 

26) Slow waves in cortical slices: how spontaneous activity is shaped by laminar structure 

Cristiano Capone, Beatriz Rebollo, Alberto Munos, Xavi Illa, Paolo Del Giudice, Maria V Sanchez-
Vives, Maurizio Mattia 

Cerebral Cortex, 2017 

27) Gaussian and exponential lateral connectivity on distributed spiking neural network 
simulation 
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Elena Pastorelli, Pier Stanislao Paolucci, Francesco Simula, Andrea Biagioni, Fabrizio Capuani, 
Paolo Cretaro, Giulia De Bonis, Francesca Lo Cicero, Alessandro Lonardo, Michele Martinelli, Luca 
Pontisso, Piero Vicini 

Proceedings of PDP 2018, 26th Euromicro Intern. Conf. on Parallel, Distributed and Network-based 
Processing  

28) (NEST implementation of the SWA model)  

Distributed large scale simulation of synchronous slow-wave / asynchronous awake-like cortical 
activity 

Elena Pastorelli, Cristiano Capone, Francesco Simula, Paolo Del Giudice, Maurizio Mattia, Pier 
Stanislao Paolucci 

Poster presented at: 2017 NEST Conference, 19-20 December 2017, Haus Overbach, Julich, 
Germany 

29) (DPSNN implementation of the SWA model)  

Distributed large scale simulation of synchronous slow-wave / asynchronous awake-like cortical 
activity  

Elena Pastorelli, Cristiano Capone, Francesco Simula, Paolo Del Giudice, Maurizio Mattia, Pier 
Stanislao Paolucci 

Poster presented at: MSBDY 2017 (Brain Dynamics on Multiple Scales) Int. Workshop, 19-23 June 
2017, Max Planck Inst. for the Physics of Complex Systems, Dresden, Germany 

 Component Dependencies 

Summarised links to components this Key Result depends on: 

Component 
ID  Component Name HBP 

Internal Comment 

733  

SP3: Single-area non-
laminar model generating 
cortical slow waves - NEST 
flavour – WaveScalES 
(model) 

No KR builds on and contributes to this model 

743 

SP3: Multi-scale software 
model of cortical 
structures expressing slow 
waves and the transition to 
other consciousness states 
(model) 

No KR builds on and contributes to this model 

749 
SP3: Synaptic plasticity in 
slow wave activity 
simulations (model) 

No KR builds on and contributes to this model 

2.2.2 Thalamocortical model simulating wakefulness, sleep, 
and state transitions 

Johan Storm, Ricardo Murphy, Andre Nilsen, Bjørn Erik Juel, Hans Ekkehard Plesser 

CDP5 collaboration between SP3 (U Oslo) SP7 (FZ Jülich) and SP9 (U Manchester) 

We are developing a large multilayer thalamocortical network model consisting of 
conductance-based spiking neurons that can transition between wake- and sleep-like activity 
patterns when the neuronal properties are appropriately adjusted.  
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Cycling through distinct states of consciousness (such as wakefulness and different sleep stages) 
seems to be of importance for learning. However, the exact roles these states play in learning is 
not well understood. Some hypothesise that sleep is a price that must be paid for the ability to 
learn (such as in the synaptic rescaling suggested in the SHY hypothesis), while others suggest 
sleep is important for consolidation of memories formed during wakefulness (for example 
evidenced by pattern replay, see also KR2.1). Perhaps distinct sleep stages play different roles in 
synaptic plasticity and memory formation, consolidation, or other types of memory processing? In 
any case, models are useful for studying how naturally fluctuating brain states interact with 
plasticity and learning in the brain. 

We are developing a large scale thalamocortical model in NEST, with the ability to cycle between 
wake-like and sleep-like stages, primarily to investigate clinically promising measures and 
biologically relevant mechanism of consciousness. The model also has the functionality to receive 
and respond to “retinal” input, with appropriate response patterns (across cortical regions) to 
structured visual stimuli in the wake-like state. Currently the connectivity required to induce such 
responses is hard-coded, but we wish to test how and to what extent the connectivity can be 
learned or modified by experience. Thus, the model can provide a testbed for investigating the 
effect of particular learning rules (e.g. KR1.1-KR1.3) once planned extensions such as 2/3-
compartment neuron models are implemented. Thus, this model can become useful for 
investigating how learning and plasticity interacts with the sleep and wake states that mammalian 
brains naturally cycle through, in addition to being suitable for testing and generating predictions 
about consciousness in humans (which is the main purpose for the model). 

The model is currently being prepared for publishing on the HBP Collaboratory and github to be 
available to the public. In addition, the model is being tested for compatibility with the SpiNNaker 
system in Manchester. 

 

Figure 10: Initial results showing functionality of the thalamocortical model. 
In A, a trace of the LFP (top) and a raster-like plot of membrane potential (bottom) of excitatory cells in V1 is 
shown as the relevant conductances are slowly changed from wake-like to sleep-like values. In B, the activity in 
two populations of cells in V1 (vertically and horizontally tuned cells in the top and bottom panels respectively) 
before, during, and after a moving vertical grating stimulus is fed into the primary thalamic nuclei in the model.  

 Achieved Impact 

30) Simulating deep sleep and awake states in a mammalian thalamocortical model 

Nilsen, Andre Sevenius; Murphy, Ricardo; Juel, Bjørn Erik; Storm, Johan Frederik. 

Poster at the 2nd Nordic Neuroscience Meeting, Stockholm (Sweden), 2017 

31) Implementation of the Hill-Tononi thalamocortical network model in the neural simulator 
NEST 

Murphy, Ricardo; Nilsen, Andre Sevenius; Juel, Bjørn Erik; Storm, Johan Frederik. 

Poster at the Human Brain Project Summit, Glasgow (UK), 2017 
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32) The Hill-Tononi thalamocortical network model implemented in NEST. 

Nilsen, Andre Sevenius 

Talk at Human Brain Project Summit, Glasgow (UK), 2017 

 Component Dependencies 

Summarised links to components this Key Result depends on. 

Component 
ID  Component Name HBP 

Internal Comment 

2  
SP9: SpiNNaker 
neuromorphic computing 
system (hardware) 

Yes/No Hardware emulation of model in SGA2 

743 

SP3: Multi-scale software 
model of cortical 
structures expressing slow 
waves and the transition 
to other consciousness 
states (model) 

No KR builds on and contributes to this model 

969 
SP4: Plasticity - Two-
compartment neuron 
(model) 

No KR builds on and contributes to this model 

749 
SP3: Synaptic plasticity in 
slow wave activity 
simulations (model) 

No KR builds on and contributes to this model 

1341 CDP5: Concept showcases 
in big systems (model) No CDP5 result 

2.3 Key Result 3: Platform development and 
applications 

2.3.1 In-the-loop training with neuromorphic hardware 

Sebastian Schmitt, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici, Walter Senn, 
Wolfgang Maass 

CDP5 collaboration between SP9 (U Heidelberg, TU Graz) and SP4 (U Bern) 

CDP5 partners have ported deep spiking networks to neuromorphic substrates, which were 
trained in software, with the hardware in the loop. 

Partners from U Heidelberg, TU Graz and U Bern have successfully implemented a deep spiking 
network architecture on the BrainScaleS wafer-scale system. In 33, 34), a deep neural network 
trained in software (using Tensorflow) was converted to a spiking network on the BrainScaleS 
system. This process was followed by “in-the-loop” training, where in each training step, the 
network activity was first recorded in hardware and then used to compute the parameter updates 
in software via backpropagation of errors (“backprop”). An essential finding was that the 
parameter updates do not have to be precise, but only need to approximately follow the correct 
gradient, which simplifies the computation of updates. Using this approach, after only several 
tens of iterations, the spiking network showed an accuracy close to the ideal software-emulated 
prototype. 

The presented techniques demonstrate that deep spiking networks emulated on analogue 
neuromorphic devices can attain good computational performance despite the inherent variations 
of the analogue substrate. The speedup compared to biological real time, including 
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reconfiguration of the hardware and spike in and output, was found to be a factor of 1,000, i.e., 
the full training set of approx. 5,000 images was classified within 5 s of wall-clock time. 

Furthermore, the ability to overcome hardware imperfections and a transition from continuous 
signals to spikes with an approximate learning rule akin to backprop paves the way for training 
larger and more complex hierarchical models on the physical-model BrainScaleS system (see KR1.3 
and KR1.4). 

 

Figure 11: In-the-loop training. 
(A) Structure of the feed-forward, rate-based deep spiking network. (B) Schematic of the training procedure with 
the hardware in the loop. (C) Classification accuracy over training step. Left: software training phase, right: 
hardware in-the-loop training phase. 

 Impact 

33) Pattern representation and recognition with accelerated analog neuromorphic systems 

Mihai A. Petrovici*, Sebastian Schmitt*, Johann Klähn*, David Stöckel*, Anna Schroeder*, Guillaume 
Bellec, Johannes Bill, Oliver Breitwieser, Ilja Bytschok, Andreas Grübl, Maurice Güttler, Andreas 
Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch, Vitali Karasenko, Mitja 
Kleider, Christoph Koke, Alexander Kononov, Christian Mauch, Eric Müller, Paul Müller, Johannes 
Partzsch, Thomas Pfeil, Stefan Schiefer, Stefan Scholze, Anand Subramoney, Vasilis Thanasoulis, 
Bernhard Vogginger, Robert Legenstein, Wolfgang Maass, René Schüffny, Christian Mayr, Johannes 
Schemmel, Karlheinz Meier 

Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS) 

34) Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS 
Wafer-Scale System 

Sebastian Schmitt*, Johann Klaehn*, Guillaume Bellec, Andreas Grübl, Maurice Güttler, Andreas 
Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Vitali Karasenko, Mitja Kleider, Christoph 
Koke, Christian Mauch, Eric Mueller, Paul Mueller, Johannes Partzsch, Mihai A. Petrovici, Stefan 
Schiefer, Stefan Scholze, Bernhard Vogginger, Robert Legenstein, Wolfgang Maass, Christian Mayr, 
Johannes Schemmel, Karlheinz Meier 

Proceedings of the 2017 IEEE International Joint Conference on Neural Networks 

35) Neuromorphic Computing: Das Gehirn als Vorbild 

Sebastian Schmitt 

Talk at the HBP Innovation Day, Munich (Germany), 2017 
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36) User Training 

Sebastian Schmitt 

HBP Hackathon 2018 

37) Experiments on BrainScaleS 

Sebastian Schmitt 

Talk at the NICE Workshop, Portland (USA), 2018 

 Component Dependencies 

Summarised links to components this Key Result depends on: 

Component 
ID  Component Name HBP Internal Comment 

1 
SP9: BrainScaleS 1 
neuromorphic computing 
system (hardware) 

publicly 
accessible via 
Collab 

Hardware emulation environment 

1341 CDP5: Concept showcases 
in big systems (model) No CDP5 result 

2.3.2 Stochastic computing with spikes 

Akos Kungl, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici, Walter Senn, Wolfgang 
Maass 

CDP5 collaboration between SP9 (U Heidelberg, TU Graz) and SP4 (U Bern) 

CDP5 partners have ported hierarchical sampling networks to neuromorphic substrates. After 
training, these networks are simultaneously discriminative and generative models of the 
learned data and can therefore be used both for classification and for pattern completion. 

A major challenge in performing computing with neuromorphic substrates is the implementation 
of not only discriminative but also of generative models. Similar to the mammalian brain, such 
neural networks should be capable of recreating visual data based upon the training set, which 
enables them to also correct erroneous inputs or complete partially missing data based upon an 
internal Bayesian model evolved during training. In an extended neural sampling framework 38), 
we have demonstrated the ability of LIF neurons to sample from well-defined target distributions 
and perform Bayesian inference in the associated probability spaces. By endowing these networks 
with a hierarchical structure, it is then possible to train a model of complex visual data. Thereby, 
this work connects the concepts of probabilistic deep neural networks from machine learning to 
spiking neurons and hence to the neuromorphic systems developed in SP9. 

Based on this model, in a collaboration between U Heidelberg, U Bern and TU Graz, such a network 
was implemented on the BrainScaleS neuromorphic platform 40,41). This was achieved by utilising 
the concept of a “sea of noise”, i.e. by replacing the source of randomness via the spiking activity 
of a randomly connected neural network - a concept developed in a collaboration between FZJ 
and U Heidelberg and described in 39). 

We demonstrated that the implemented network is able to perform sampling from a targeted 
probability distribution. In order to test the discriminative and generative properties of the model 
we trained it on the MNIST handwritten digits dataset. The network reached a classification ratio 
comparable to that of an ideal software simulated model, and could successfully complete 
partially known digits and create recognisable ones based on its internal model. While the 
probabilistic nature of the model requires a fundamentally different kind of learning compared to 
the backpropagation of errors, the ability of the hardware to emulate hierarchical networks with 
both feedforward and feedback connectivity represents an important stepping stone towards 
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embedding the network models presented in KR1.3 and KR1.4, thereby paving the way for multiple 
Use Cases in SGA2. 

 

Figure 12: Stochastic computing with spikes 
(A) Schematic of the implemented network. The sampling network receives its noise input from the spiking activity 
of a randomly connected spiking neural network. (B) Bar plots of a sampled probability distribution (red) compared 
to the target distribution (blue). (C) Example images generated by the model after being trained on a subset of the 
MNIST hand-written digits dataset. (D) The network is capable of completing partially available data based on its 
internal model it obtained during learning. (E) The reached classification ratio is comparable with that of an ideal 
software implementation. 

 Impact 

38) Stochastic inference with spiking neurons in the high-conductance state 

Mihai A. Petrovici*, Johannes Bill*, Ilja Bytschok, Johannes Schemmel, Karlheinz Meier 

Physical Review E 94, 042312 (2016) 

39) Stochastic neural computation without noise 

Jakob Jordan, Mihai A. Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz Meier, Markus 
Diesmann, Tom Tetzlaff 

arXiv:1710.04931 

40) Robustness from structure: Inference with hierarchical spiking networks on analog 
neuromorphic hardware 

Mihai A. Petrovici*, Anna Schroeder*, Oliver Breitwieser, Andreas Grübl, Johannes Schemmel, 
Karlheinz Meier 

Proceedings of the 2017 IEEE International Joint Conference on Neural Networks 

33) Pattern representation and recognition with accelerated analog neuromorphic systems 

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3561
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Mihai A. Petrovici*, Sebastian Schmitt*, Johann Klähn*, David Stöckel*, Anna Schroeder*, Guillaume 
Bellec, Johannes Bill, Oliver Breitwieser, Ilja Bytschok, Andreas Grübl, Maurice Güttler, Andreas 
Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch, Vitali Karasenko, Mitja 
Kleider, Christoph Koke, Alexander Kononov, Christian Mauch, Eric Müller, Paul Müller, Johannes 
Partzsch, Thomas Pfeil, Stefan Schiefer, Stefan Scholze, Anand Subramoney, Vasilis Thanasoulis, 
Bernhard Vogginger, Robert Legenstein, Wolfgang Maass, René Schüffny, Christian Mayr, Johannes 
Schemmel, Karlheinz Meier 

Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS) 

41) Spike-based probabilistic inference with correlated noise 

Ilja Bytschok, Dominik Dold, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici 

BMC Neuroscience 2017, 18 (Suppl 1):P200 

42) Neural Sampling with Linear Feedback Shift Registers as a Source of Noise 

Marcel Großkinsky 

Bachelor Thesis, University of Heidelberg, 2016 

43) Stochastic Computation in Spiking Neural Networks Without Noise 

Dominik Dold 

Master Thesis, University of Heidelberg, 2016 

44) Magnetic Phenomena in Spiking Neural Networks 

Andreas Baumbach 

Master Thesis, University of Heidelberg, 2016 

45) Struktur schafft Robustheit: Eine Untersuchung hierarchischer neuronaler Netzwerke mit 
unpräzisen Komponenten 

Anna Schroeder 

Bachelor Thesis, University of Heidelberg, 2016 

46) Sampling with leaky integrate-and-fire neurons on the HICANNv4 neuromorphic chip 

Akos Kungl 

Master Thesis, University of Heidelberg, 2016 

47) Accelerated Classification in Hierarchical Neural Networks on Neuromorphic Hardware 

Carola Fischer 

Bachelor Thesis, University of Heidelberg, 2017 

48) Simulated Tempering in Spiking Neural Networks 

Agnes Korcsak-Gorzo 

Master Thesis, University of Heidelberg, 2017 

49) Simulated Tempering in Biologically Inspired Neural Networks 

Agnes Korcsak-Gorzo, Luziwei Leng, Oliver Julien Breitwieser, Johannes Schemmel, Karlheinz 
Meier, Mihai A. Petrovici 

Distinguished poster at the Deutsche Physikerinnentagung, Oldenburg (Germany), 2018 

50) Stochastic computation on spiking neuromorphic hardware 

Dominik Dold, Ákos F. Kungl, Andreas Baumbach, Johann Klähn, Ilja Bytschok, Paul Müller, Oliver 
Breitwieser, Andreas Grübl, Maurice Güttler, Dan Husmann, Mitja Kleider, Christoph Koke, 
Alexander Kugele, Christian Mauch, Eric Müller, Sebastian Schmitt, Johannes Schemmel, Karlheinz 
Meier, Mihai A. Petrovici 
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Poster at the Bernstein Conference, Göttingen (Germany), 2017 

51) Stochastic inference with deterministic spiking neurons 

Mihai A. Petrovici, Luziwei Leng, David Stöckel, Oliver Breitwieser, Ilja Bytschok, Jakob Jordan, 
Roman Martel, Johannes Bill, Johannes Schemmel, Karlheinz Meier 

Talk at the NICE workshop, Berkeley (USA), 2016 

52) Stochastic computation in spiking neural networks 

Mihai A. Petrovici 

Invited Talk at the Neuroscience Seminar of the Department of Physiology, Bern (Switzerland), 
2016 

53) Stochastic computation in spiking neural networks 

Mihai A. Petrovici 

Talk at the STRUCTURES Initiative, Heidelberg (Germany), 2016 

54) Exploring the substrate of intelligence 

Mihai A. Petrovici 

Lecture at the HBP Students’ Conference, Vienna (Austria), 2017 

55) Fast inference with spiking networks 

Mihai A. Petrovici 

Talk at the workshop “Machine Learning Meets Biology: Algorithms and Cortical Mechanisms”, 
Geneva (Switzerland), 2017 

56) A (deep) dive into probabilistic computing 

Mihai A. Petrovici 

Lecture at the HBP Summer School, Obergurgl (Austria), 2017 

57) Träumen Androiden von elektrischen Schafen? 

Mihai A. Petrovici 

Invited Talk at the NOVO Innovation Day, Bern (Switzerland), 2017 

58) Neuromorphic computing - The physics of cognition 

Mihai A. Petrovici 

Talk at the HBP National Outreach Event, Amsterdam (Netherlands), 2018 

59) Spiking neuron ensembles and probabilistic inference 

Mihai A. Petrovici 

Invited talk at the BDC Symposium, Heidelberg (Germany), 2018 

60) Experiments on BrainScaleS 

Sebastian Schmitt 

Talk, NICE2018, http://niceworkshop.org/2018-nice-workshop/ February 27 to March 1 

  

http://niceworkshop.org/2018-nice-workshop/
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 Component Dependencies 

Summarised links to components this Key Result depends on. 

Component 
ID  Component Name HBP Internal Comment 

1 
SP9: BrainScaleS 1 
neuromorphic computing 
system (hardware) 

Publicly accessible via 
Collab Hardware emulation environment 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this 
model 

1341 CDP5: Concept showcases 
in big systems (model) No CDP5 result 

1342 
CDP5: Guiding platform 
design on functional 
plasticity (model) 

No CDP5 result 

2420 

SP4: Plasticity - 
Prototype 
implementations of rules 
and testing within and 
without the SP9 
platforms (model) 

(currently in Fusi_plas-
ticity branch of the 
official SpiNNaker 
github repository. 
Eventually this branch 
will be merged into 
master branch) 

Towards Third-Factor learning rules on 
SpiNNaker  

2.3.3 Compartmental neurons in neuromorphic hardware 

Johannes Schemmel, Paul Müller, Karlheinz Meier, Walter Senn, Matthew Larkum 

CDP5 collaboration between SP9 (U Heidelberg), SP4 (U Bern) and SP3 (HU Berlin) 

We have developed and produced an accelerated mixed-signal neuromorphic system that 
incorporates inter-compartment connectivity and active dendrites supporting plateau 
potentials. 

Biological neurons are complex information-processing units. Computational and hardware 
modelling often reduces the state of the neuron to a membrane voltage at a single point. The 
most common of these models is the Leaky Integrate-and-Fire (LIF) model, which abstracts a 
neuron to a leaky integrator that emits an action potential whenever its membrane potential 
reaches a fixed threshold. However, spatially extended neurons can support more complex 
dynamics. The local properties of the neuronal membrane, such as diameter and transmembrane 
protein concentration, enable behaviour that exceeds that of the simple LIF model. Image 
processing in the fly visual system, for example, relies in part on dendritic filtering of the input 
(for a review, see e.g. London & Häusser, Annu. Rev. Neurosci. 2005). 

Parts of the dendritic tree can act as active components in information processing. It has been 
shown in Larkum, Trends in Neurosciences 2013, see also Figure 13, left), that neurons can act as 
nonlinear coincidence detectors for input arriving at dendrite and soma. While dendritic stimulus 
nearly vanishes at the soma (Figure 13A) and somatic stimulus evokes a single spike (Figure 13B), 
both stimuli combined interact nonlinearly, resulting in a burst at the soma (Figure 13C). 

Building on input from SP3 and SP4, UHEI has developed and fabricated a single-chip prototype 
system that enables the configurable interconnection of multiple physical neuron models. The 
resulting circuit forms the equivalent of a multi-compartment neuron, which can be adjusted to 
contain active dendrites. A simulated configuration that mimics the biological use case is shown 
in Figure 13, panels D-F. Four compartments are used to emulate three neuronal compartments 
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(inset): Dendritic (D) and somatic (E) stimulus interacts nonlinearly, causing a burst in the somatic 
compartment (F). 

The implementation of multi-compartment neurons, along with the embedded plasticity 
processing unit (see KR3.4) will enable the BrainScaleS 2 system to emulate the two-compartment-
based plasticity models described in KR1.1 - KR1.3. 

 
Figure 13: Simulation of multi-compartment functionality in the prototype chip system. 

(A-C) Figure taken from Larkum, Trends in Neurosciences 2013). The response of a layer 5 pyramidal neuron to 
separate and correlated dendritic and somatic stimulus is shown. The traces show the membrane voltage at the 
Na-spike initiation zone (blue), the Ca-spike initiation zone (black) and the dendrites (red). (D–F) Simulation of the 
corresponding circuit configuration. (D) Spike input into the NMDA compartment (green, bottom) is chosen as not 
to cause firing in any compartment. An attenuated version of the post-synaptic potential is seen in the Ca and Na 
compartments. (E) Current stimulus into the Na compartment which is adjusted to initiate a single spike. The 
pictogram shows the switch and resistor configuration to which the simulations in E–G will correspond in the final 
chip. (F) Both inputs combined suffice to cause firing in the Ca and NMDA compartments. This, in turn, induces a 
burst in the Na compartment. Note that the time scale is milliseconds for the biological reference and microseconds 
for the circuit simulation due to the accelerated nature of the neuromorphic device.  

 Impact 

61) An accelerated analog neuromorphic hardware system emulating NMDA-and calcium-based 
non-linear dendrites. 

Johannes Schemmel, Laura Kriener, Paul Müller and Karlheinz Meier 

Neural Networks (IJCNN), 2017 International Joint Conference on. IEEE, 2017. 

62) Neuromorphic implementation of dendritic computing 

Karlheinz Meier 

Talk at the Dendritic integration and computation with active dendrites workshop, Paris (France), 
2018 
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 Component Dependencies 

Summarised links to components this Key Result depends on. 

Component 
ID  Component Name HBP Internal Comment 

457 
SP9: BrainScaleS 2 
neuromorphic computing 
system (hardware) 

Prototype 
accessible HBP 
internal 

Hardware emulation environment 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

969 
SP4: Plasticity - Two-
compartment neuron 
(model) 

No KR builds on and contributes to this model 

1033 

SP4: Plasticity - STDP for 
a multi-compartment 
model with NMDA spikes 
(model) 

Yes KR builds on and contributes to this model 

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this model 

1341 CDP5: Concept showcases 
in big systems (model) No CDP5 result 

1342 
CDP5: Guiding platform 
design on functional 
plasticity (model) 

No CDP5 result 

2419 

SP4: Plasticity - 
Algorithms for 
multicompartment 
models (model) 

Yes KR builds on and contributes to this model 

2.3.4 An embedded plasticity processor for the BrainScaleS-
2 system 

Johannes Schemmel, Benjamin Cramer, Karlheinz Meier, Nicolas Fremaux, Wulfram Gerstner, 
Mihai A. Petrovici, Walter Senn 

CDP5 collaboration between SP9 (U Heidelberg) and SP4 (EPFL-LCN Lausanne, U Bern) 

In computational neuroscience, new learning rules are being continuously suggested, either 
driven by empirical observations from biology or by functional requirements in machine-
learning contexts. Across this ever-expanding plethora of plasticity mechanisms, there exists 
a huge disparity in terms of independent variables (such as spike times or membrane 
potentials) parameters and time scales. A purely analogue physical (neuromorphic) 
implementation would therefore be confined to choosing only a small subset of these plasticity 
rules. To increase the flexibility of the BrainScaleS system, an on-chip plasticity co-processor 
has been designed and built, and preliminary experiments have been successfully performed. 

Former approaches to implement plasticity in accelerated, analogue neuromorphic hardware 
systems provide high efficiency by building dedicated electronic circuits, approximating the 
desired behaviour of a specific plasticity rule. This approach affords only little flexibility, since 
the implementation of new learning algorithms involves the design of specialised hardware 
circuits. However, in order to allow a large community of modellers to benefit from features of 
the BrainScaleS system such as the acceleration factor or the system size, flexibility in the 
implementable plasticity mechanisms should be provided. This is done by using a hybrid approach: 
a general-purpose processor, the plasticity processing unit (PPU), is combined with analogue 
neuromorphic hardware. The analogue elements provide a speed-up, necessary for performing 
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long learning experiments and at the same time an energy efficient implementation. The PPU 
provides flexibility in the implementable learning algorithms. 

With the PPU, plasticity algorithms beyond simple spike-timing-dependent plasticity (STDP) could 
be realised. Here, we show how it can be used to update synaptic weights iteratively to yield a 
stable state. These updates let the network evolve to a state where it becomes exquisitely 
sensitive to changes in its input, thereby increasing its computational power. This form of 
plasticity is only weakly sensitive to substrate imperfections and requires little tuning, which is of 
particular relevance for analogue neuromorphic substrates. 

Together with the implementation of multi-compartment neurons (see KR3.3), the PPU endows 
the BrainScaleS 2 system with the necessary flexibility for implementing the learning models 
discussed in KR1.1-1.3. 

 
Figure 14: An embedded plasticity processor for the BrainScaleS-2 system 

(a) Photograph of the HICANN-DLS die with the functional areas highlighted. The digital control and IO area handles 
the chip configuration and communication with the host. For in-the-loop reconfiguration during an experiment, 
there exists the PPU which is an embedded processor that can be programmed to perform various tasks, e.g. 
implement synaptic plasticity. (b) Abstract view of the on-chip network. There are 32 different inputs represented 
by the green triangles on the left. The blue triangles at the bottom represent the 32 neurons which can receive 
input from up to 32 synapses, show by the grey circles. (c) Abstraction of the on-chip network on the level of 
neurons and synapses. Every spike input to the chip is an abstract input-neuron which are represented by the 
green circles. The up to 32x32 synapses are represented by the grey arrows, targeting the on-chip neurons drawn 
as blue circles. (d) Every synapse has a correlation sensor that measures exponentially weighted pre-post spike 
time pairings. This figure shows the measured STDP kernel function for different spike-time differences. The blue 
range shows the variation in the correlation sensors sensitivities which varies due to analogue effects. (e) Average 
spike frequency of the on-chip neurons during a network emulation, where the PPU reconfigures the synaptic 
weights iteratively to yield a stable, moderate spiking activity. For each of the initial weights shown with different 
colours, the target frequency of 20Hz is reached after some time. 
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 Impact 

63) Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System 

Friedmann, Schemmel, Grübl, Hartel, Hock, Meier 

IEEE Transactions on Biomedical Circuits and Systems (2017) 

64) From LIF to AdEx Neuron Models: Accelerated Analog 65 nm CMOS Implementation 

Syed Ahmed Aamir*, Paul Müller*, Laura Kriener, Gerd Kiene, Johannes Schemmel and Karlheinz 
Meier 

Accepted at 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) 

65) Exploring Collective Neural Dynamics under Synaptic Plasticity on Neuromorphic Hardware 

David Stöckel 

Master Thesis, University of Heidelberg (2017) 

66) STDP in a flexible neuromorphic hardware system 

Benjamin Cramer and David Stöckel 

Talk at the In-depth meeting on network learning, Fürberg (Austria), 2017 

62) Neuromorphic implementation of dendritic computing 

Karlheinz Meier 

Talk at the Dendritic integration and computation with active dendrites workshop, Paris (France), 
2018 

 Component Dependencies 

Summarised links to components this Key Result depends on. 

Component 
ID  Component Name HBP Internal Comment 

457 
SP9: BrainScaleS 2 
neuromorphic computing 
system (hardware) 

Prototype 
accessible HBP 
internal 

Hardware emulation environment 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this model 

1341 CDP5: Concept showcases 
in big systems (model) No CDP5 result 

1342 
CDP5: Guiding platform 
design on functional 
plasticity (model) 

No CDP5 result 

2.3.5 Plasticity rules in neuromorphic hardware  

André Grüning, Brian Gardner, Anna Bulanova, Andreas Hartel, Eric Müller, Eric Nichols, Oliver 
Rhodes, Steve Furber 

CDP5 collaboration between SP9 (U Manchester, U Heidelberg) and SP4 (U Surrey, EITN Paris) 

We co-develop biologically plausible learning rules and their implementation on the current 
neuromorphic platforms. 
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For future improved artificial intelligence and a better understanding of the brain, it is important 
to take neurobiological plasticity mechanisms seriously and explore their functional and 
computational properties on a larger scale. However, when bringing these rules together with 
next-generation computing hardware such as the neuromorphic platforms, these plasticity 
mechanisms cannot be implemented on the neuromorphic platforms straight away. In this task we 
therefore developed learning algorithms that are on the one hand biologically inspired, but 
adapted such that they are implementable on the neuromorphic platforms. Likewise, we also 
adapt the neuromorphic platforms such that they can support these biologically inspired learning 
rules. Our contribution consists of several efforts. 

Gradient-descent learning on spike pattern likelihood 

We developed a learning rule that strikes the balance between biological plausibility, technical 
performance, and suitability for implementation on the neuromorphic platforms in current state. 
This approach serves to eventually test both the computational function of the rule on a large 
scale as well as to test whether the neuromorphic platforms in their current state are capable to  

 
Figure 15: Two postsynaptic neurons trained under the proposed synaptic plasticity rules 

Two postsynaptic neurons trained under the proposed synaptic plasticity rules that learned to map between a 
single, fixed input spike pattern and a four-spike target output train using the INST or FILT rule. (A): a frozen set 
of pseudo-Poisson spike trains serves as input to the neuron. Blue represents the use of the theoretically better 
founded INST rule, while red denotes the use of its heuristically improved FILT version. (B) A single learning run: 
The neuron was trained for 200 ms simulated time. For both rules actual output spikes times converge in several 
tens of training epochs to the target spike times denoted by crosses, with FILT showing better convergence. (C) 
Average van-Rossum distance of actual and target output spikes across 10 repetitions of the experiment: The error 
of the mean is lower for the heuristic FILT rule, demonstrating more reliable converge to the target spike times. 
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support these rules. This is by no means straight-forward as the neuromorphic platforms impose a 
number of constraints (based on their architecture) that are not transparent at first sight.  

The supervised INST/FILT rule we developed utilises gradient descent on the likelihood of target 
spike frames and has only modest requirements for neuromorphic hardware compared to more 
biologically faithful approaches 67), Figure 15. More specifically, this rule only requires access to 
standard STDP traces, which, as of HICANN-DLS v2, are the only analogue hardware quantities that 
are accessible to the local plasticity processing unit (PPU). The implementation work on the 
HICANN-DLS v2 prototype has begun in SGA1 and will be carried over to SGA2 68) in a collaboration 
with U Heidelberg. 

Evolving the SpiNNaker neuromorphic platform to support Third-Factor learning rules 

Two years ago, the SpiNNaker platform did not provide the infrastructure/API to support learning 
rules that varied much from the standard Hebbian/STDP plasticity rules: The platform was 
optimised towards the efficient computation of downstream spike-based information flow in 
milliseconds of biological time. However, many rules that are of biological or conceptual interest 
deviate from this scheme and require lateral or downstream information flow (such as rewards or 
other third signals) which had not been a design consideration for the SpiNNaker platform.   

Therefore, we carried out explorative experiments on the SpiNNaker platform to test the 
implementability of our plasticity rules (Figure 16, 69)). This included an effort to route a 
supervision signal (target spikes, Figure 17) to individual neurons and was successful as a prototype 
(Figure 18). 

 

 
Figure 16: Overview of (intermediate-level) data flow in the Spinnaker platform 

Dataflow on c-code level in blue is the standard SpiNNaker platform. To introduce Third-Factor supervised 
plasticity, code to enable data flow to include information on target spikes (the supervisory signal) had to be 
developed and integrated: Green illustrates the data flow that had to be modified to accommodate target spikes, 
and the purple arrow shows how the target spikes now enter the data flow within the SpiNNaker infrastructure 
code. Figure adapted on a drawing of the original SpiNNaker dataflow, courtesy of James Knight at partner UMAN. 



   

 

 
D4.7.3 (D25.3 D58) SGA1 M24 ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 37 / 44 

 

 
Figure 17: Supervised learning experiment with 3 frozen random input spike pattern, and 3 

corresponding targets 
With the new dataflow (Figure 16) included into the Spinnaker code, the INST/FILT rule was implemented on 
SpiNNaker and successfully used in a simple learning experiment. First row: 3 frozen (pseudo-Poisson) spike input 
spike patterns of 1s duration for 1000 incoming connections are applied to a single neuron in random order. The 
neuron’s task is to produce a differently timed spike in response to each of the three input patterns. Middle and 
bottom row: actually produced and target spike times, respectively. Agreement of target and actual output spike 
coded in blue (within 1ms precision), deviation in red. After 12s the network has learned to produce all spike times 
correctly. 

In the course of this work, it became apparent that a more systematic approach to implementation 
of such a learning rule was needed, and we therefore set up a cross-SP4-SP9 working group within 
CDP5 to facilitate the extension of the SpiNNaker API and underlying code infrastructure such that 
various custom third-factor plasticity rules can easily be implemented by third parties on 
SpiNNaker. Within this work group we prioritised existing plasticity rules with respect to their 
estimated implementation complexity within SpiNNaker, and are using in this sense simpler rules 
as stepping stones to progress to more complex rules. These rules are  

• the Brader-Fusi-Senn Rule (Brader et al., Neural Computation 2007), see Figure 18. 

• the Urbanczik-Senn Rule, in progress (see KR1.1-1.3). 

• the INST/FILT rule, planned for SGA2 

We deem that these rules represent a good cross-section of currently available rule types, and 
hence that developing the SpiNNaker API for these rules will facilitate future implementation of 
many other state-of-the art plasticity rules.  
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Figure 18: Replication of Figure 1 from (Brader et al., Neural Computation 2007) 
Two SpiNNaker simulation runs (left/right) of the Brader-Fusi-Senn rule on a single neuron with the same 
parameters, inputs are Poisson trains with the same mean rates. Due to stochasticity of the input, one run results 
in a Long Term Potentiation (LTP) transition (left panel, middle subpanel), and the other one does not (right panel). 
In this rule the weights are binary, and plasticity changes are tracked using bistable internal weight variables with 
a slow drift towards maximum or minimum weight (third subpanel from the top). The plasticity updates occur at 
presynaptic spike times: potentiation if V is above the threshold (red line, second subpanel from the top) and Ca 
is in the interval between black and red lines (fourth subpanel); depression if V is below the threshold, and Ca is 
between black and green lines; no change otherwise.   

 Impact 

67) Supervised learning in spiking neural networks for precise temporal encoding 

B. Gardner and A. Grüning 

PLoS ONE, 11(8), 1–28 (2016) 

68) Towards utilising the dls v2 for supervised learning 

B. Gardner and A. Grüning 

doi: 10.5281/zenodo.999476 (Sep 2017) 

69) Supervised Learning on the SpiNNaker Neuromorphic Hardware E. Nichols, B. Gardner and 
A. Grüning 

doi: 10.5281/zenodo.574582 (July 2017) 
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 Component Dependencies 

Summarised links to components this Key Result depends on. 

Component 
ID  Component Name HBP Internal Comment 

457 
SP9: BrainScaleS 2 
neuromorphic computing 
system (hardware) 

Prototype accessible 
HBP internal Hardware emulation environment 

467 
SP9: SpiNNaker 2 small-
scale NM-MC system 
(hardware) 

Prototype accessible 
HBP internal Hardware emulation environment 

468 SP9: Principles for brain-
like computation (model) No CDP5-related results  

969 
SP4: Plasticity - Two-
compartment neuron 
(model) 

No KR builds on and contributes to this 
model 

1066 
SP4: Plasticity - Synaptic 
plasticity and learning 
(model) 

No KR builds on and contributes to this 
model 

1203 SP4: Plasticity - INST/FILT 
rule (model) No KR builds on and contributes to this 

model 

1341 CDP5: Concept showcases 
in big systems (model) No CDP5 result 

1342 
CDP5: Guiding platform 
design on functional 
plasticity (model) 

No CDP5 result 

2420 

SP4: Plasticity - Prototype 
implementations of rules 
and testing within and 
without the SP9 platforms 
(model) 

(currently in 
Fusi_plasticity branch 
of the official 
SpiNNaker github 
repository. 
Eventually this 
branch will be 
merged into master 
branch) 

Towards Third-Factor learning rules on 
SpiNNaker  

2.3.6 Robots learning sensory-motor loops with spiking 
neurons 

J. Camilo Vasquez Tieck, Jacques Kaiser, Rüdiger Dillmann, Wolfgang Maass, Walter Senn, 
Wulfram Gerstner 

CDP5 collaboration between SP10 (FZI Karlsruhe), SP9 (TU Graz) and SP4 (EPFL-LCN Lausanne, 
U Bern) 

In order to use spiking neural networks in closed-loop sensory-motor robotics experiments, 
we need to integrate models for learning, representation and processing of input and output 
motor information. Here, we highlight the collaborations to incorporate different models in 
our robotics scenarios, specifically: reinforcement learning with SPORE and SP9 (UGraz), a 
dynamic model for a robotic arm SP4 (EPFL-LCN), and one of the learning rules from SP4 
(UBern). 

An important prerequisite for cross-SP collaboration is the development of a full pipeline where 
models can be integrated and different experiments can be performed. As a demonstration, we 
show an initial experiment setup (see Figure 20) containing a ball that has to be steered in the 
centre of a plane and then balanced there. The vision system is event-based, using a simulation  
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Figure 19: Closed-loop experiment setup. 
The main components for communication and synchronization are presented. The SNN is simulated in Nest with 
the SPORE extension for reinforcement learning. The world and model are simulated in Gazebo. A simulation of a 
dynamic vision sensor (DVS) is used to get visual feedback. 

 

Figure 20: The running system: extract from the simulation after 20 hours of training. 
The SNN learns to balance the ball in the centre of the plane. The plots on the left show the SNN activation, the 
reward signal and the encoded input. On the right, one can see the ball being balanced in the middle of the plane. 
The top middle panel shows the DVS simulation of the current scene. 

for a DVS (Dynamic Vision Sensor) camera. The control of the different degrees of freedom is 
modelled after biology, using simple muscles for each direction. A reward is calculated based on 
the relative position of the ball to the centre of the plane. The SPORE (Synaptic Plasticity with 
Online Reinforcement) framework for reinforcement learning is used for training. Different 
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populations are connected to the DVS input, the reward and the muscles respectively. This ball-
balancing with a robotic platform experiment demonstrates the potential of using spiking neurons 
for closed-loop robot control. The network contains 550 spiking neurons and converges on average 
after 20 hours of training. 

There is a great need of robot controllers that are adaptive, flexible and can learn. With the latest 
biological inspired models and techniques developed within HBP we were able to perform a 
validation on different robotics experiments to provide a real/simulated embodiment for the brain 
and a real application. In the SGA2 phase, the collaboration between SP10, SP4 and SP9 will move 
towards more complex scenarios and the integration of other models (see KR1.5). 

 Impact 

70) Scaling up liquid state machines to predict over address events from dynamic vision 
sensors 

Kaiser, Jacques and Stal, Rainer and Subramoney, Anand and Roennau, Arne and Dillmann, Rüdiger 

Bioinspiration & biomimetics. https://doi.org/10.1088/1748-3190/aa7663 (2017) 

71) Learning Closed-Loop Robot Control with Spiking Neurons and Event-Based Vision 

Michael Hoff 

Master Thesis, KIT Karlsruhe and FZI Karlsruhe, 2017 

72) Using Spiking Neural Networks in Closed-Loop Sensory-Motor Robotics Experiments 

J. Camilo Vasquez Tieck 

Talk at Human Brain Project Summit, Glasgow (UK), 2017 

 Component Dependencies 

Summarised links to components this Key Result depends on: 

Component 
ID  Component Name HBP Internal Comment 

924 
SP10:NRP - Functional 
brain model for visual 
perception (model) 

No (papers were accepted, to 
Bioinspiration & Biomimetics and ICANN 
2017 

KR builds on and 
contributes to this 
model 

922 
SP10: Functional brain 
model for humanoid 
grasping (model) 

Yes 
KR builds on and 
contributes to this 
model 

921 
SP10: NRP - Functional 
body and movement 
learning 

Yes 
KR builds on and 
contributes to this 
model 

  

https://doi.org/10.1088/1748-3190/aa7663
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3. Component Details 
The following is a list of the newly released internal Components for this Deliverable. 

3.1 CDP5: Concept showcases in big systems (model) 

Field Name Field Content Additional Information 

ID  1341  

Component Type Model  

Contact GRÜNING, André  

Component 
Description A collection of experiments run on the SP9 neuromorphic systems.  

Latest Release  Release date given by the publication 
date of the documents listed below.  

TRL 3  

Location  Manchester, Heidelberg  

Format NA  

Curation Status PLA registered  

Validation - QC Unchecked   

Validation – Users Yes See publications below 

Validation – 
Publications Yes 

Aamir et al. 2017), Friedmann et al. 2017), 
Gardner et al. 2017), 
Nichols et al. 2017), Petrovici et al. 2017a), 
Petrovici et al. 2017b), 
Schemmel et al. 2017), Schmitt et al. 
2017), Stöckel 2017) 

Privacy Constraints No Privacy Constraint  

Sharing consortium  

License Release License Unspecified  

Component Access 
URL NA  

Technical 
documentation URL NA  

Usage documentation 
URL NA  

Component 
Dissemination 
Material URL 

NA  
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3.2 CDP5: Guiding platform design on functional 
plasticity (model) 

Field Name Field Content Additional Information 

ID  1342  

Component Type Model  

Contact GRÜNING, André   

Component 
Description SP9 developments with contributions from CDP5. 

Latest Release  Release date given by the publication 
date of the documents listed below.   

TRL 3   

Location  Manchester, Heidelberg   

Format NA   

Curation Status PLA registered   

Validation - QC Unchecked   

Validation – Users Yes See publications below 

Validation – 
Publications Yes 

Aamir et al. 2017), Friedmann et al. 2017),  
Gardner et al. 2016), 
Gardner et al. 2017), Nichols et al. 2017), 
Schemmel et al. 2017), Stöckel 2017) 

Privacy Constraints No Privacy Constraint   

Sharing consortium   

License Release License Unspecified   

Component Access 
URL NA   

Technical 
documentation URL NA   

Usage documentation 
URL NA   

Component 
Dissemination 
Material URL 

NA   
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4. Summary and Outlook 
The breadth of activities undertaken within the HBP offers unique scientific opportunities, but 
also represents a challenge for efficient collaboration. This circumstance is particularly relevant 
for CDP5, given how development and learning are core topics for all Sub Projects, as they 
represent the key for understanding intelligence, be it biological or artificial. 

In the two-year period since its inception, CDP5 has become a terrain for true scientific 
collaborations on the topic of plasticity across the HBP SPs. The major challenge of the SGA1 
period was to achieve a common language, of using common tools and of achieving common goals 
between specialists from areas as diverse as biology, theory, high-performance computing and 
neuromorphic engineering. As our selection of Key Results shows, this challenge has been met, 
thereby laying an auspicious groundwork for continuation in the following SGA2 period. The 
development of an organisational infrastructure consisting of regular discussions, workshops with 
HBP-internal and external participation and multiple lab exchanges has been instrumental in 
achieving this goal. 

One aspect that is unique to the HBP is the research-driven advancement of novel, beyond von-
Neumann, brain-inspired computing technologies, for which CDP5 plays an instrumental role. 
Guided by insights from experiments and theory, these neuromorphic platforms – including both 
the hardware and the software infrastructure – are being continuously enhanced, as espoused by 
several of our Key Results. Owing to these advances, the neuromorphic platforms, in turn, will 
foster insight into the computational principles of the brain on spatial and temporal scales that 
are otherwise prohibitive to classical simulation. 

Among the achieved Key Results, we highlight the link from the theoretical work on computation 
in hierarchical (deep) networks to the first small-scale hardware implementation in the 
BrainScaleS system. On the theory side, significant progress has been made on the role of synaptic 
and neural dynamics – in particular, the interplay between synaptic plasticity and neuronal 
compartmentalisation – in shaping the flow of information in such networks; additionally, we are 
gaining an understanding of how emerging oscillations in large-scale networks may benefit this 
type of computation. On the emulation side, we have demonstrated the ability to implement these 
hierarchical networks on a highly accelerated substrate, while training them with a classical 
computer in the loop; at the same time, we have developed new hardware that is able to 
accelerate the learning process as well. Due to these advances in the SGA1 period, we have 
decided to emphasize this line of research in SGA2, within a correspondingly focused CDP5: 
“Biological deep learning”. 

 


	1. Introduction
	2. Results
	2.1 Key Result 1: Brain-inspired learning algorithms
	2.1.1 Natural gradient learning for spiking neurons
	2.1.1.1 Achieved Impact
	2.1.1.2 Component Dependencies

	2.1.2 Sequence learning by shaping hidden connectivity
	2.1.2.1 Achieved Impact
	2.1.2.2 Component Dependencies

	2.1.3 Error backpropagation across cortical areas
	2.1.3.1 Achieved Impact
	2.1.3.2 Component Dependencies

	2.1.4 Deep generative networks with spiking neurons
	2.1.4.1 Achieved Impact
	2.1.4.2 Component Dependencies

	2.1.5 Motor learning with spiking neurons through adaptive control
	2.1.5.1 Achieved Impact
	2.1.5.2 Component Dependencies

	2.1.6 Learning algorithms for neuromorphic hardware and robotics
	2.1.6.1 Achieved Impact
	2.1.6.2 Component Dependencies


	2.2 Key Result 2: Plasticity and thalamocortical activity patterns
	2.2.1 Slow-wave activity in a model of memory consolidation
	2.2.1.1 Achieved Impact
	2.2.1.2 Component Dependencies

	2.2.2 Thalamocortical model simulating wakefulness, sleep, and state transitions
	2.2.2.1 Achieved Impact
	2.2.2.2 Component Dependencies


	2.3 Key Result 3: Platform development and applications
	2.3.1 In-the-loop training with neuromorphic hardware
	2.3.1.1 Impact
	2.3.1.2 Component Dependencies

	2.3.2 Stochastic computing with spikes
	2.3.2.1 Impact
	2.3.2.2 Component Dependencies

	2.3.3 Compartmental neurons in neuromorphic hardware
	2.3.3.1 Impact
	2.3.3.2 Component Dependencies

	2.3.4 An embedded plasticity processor for the BrainScaleS-2 system
	2.3.4.1 Impact
	2.3.4.2 Component Dependencies

	2.3.5 Plasticity rules in neuromorphic hardware
	2.3.5.1 Impact
	2.3.5.2 Component Dependencies

	2.3.6 Robots learning sensory-motor loops with spiking neurons
	2.3.6.1 Impact
	2.3.6.2 Component Dependencies



	3. Component Details
	3.1 CDP5: Concept showcases in big systems (model)
	3.2 CDP5: Guiding platform design on functional plasticity (model)

	4. Summary and Outlook

