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1. Introduction 
SP4 occupies an important position in the HBP, bridging experimental neuroscience with the 
platforms, where SP4 serves as a "first user".  SP4 formulates theoretical and computational models 
from the biological principles, and implements these models in the HBP platforms, thus bridging 
biology and technology.  One of the main goals of SP4 is to contribute models to understand key 
aspects of brain function, which requires investigation at different scales, as detailed in all of SP4 
work.   

At the cellular level, the goal is to understand how single neurons (and their dendrites) process 
synaptic inputs, and to generate simplified models of those.  Such simplified models can be 
implemented in HBP platforms, typically neuromorphic circuits. At larger scales, such as circuits, 
population-level or the whole-brain, the goal is to understand how neuronal properties combine 
with specific patterns of connectivity to account for collective behavior of neuronal populations.  
Models are designed in SP4 for each one of these levels.  This also includes the genesis of models 
of the different brain signals recorded experimentally, such as single units, local field potentials, 
voltage-sensitive dye up to electroencephalogram (EEG) or magnetoencephalogram (MEG) 
recordings.  This modeling of brain signals connects naturally to the different levels of modeling, 
and is thus multiscale, but most importantly, it provides an important bridge to experimental 
data.  The comparison between models and experimental data is a priority for SP4, and is at the 
heart of most of our computational models. 

SP4 also investigates a number of brain mechanisms and key cognitive processes.  The study of 
synaptic plasticity and its integration in computational models is central to understand how 
networks of neurons can learn and adapt to the changing environment.  Plasticity can also lead to 
the emergence of various network phenomena, which are under study in SP4. The recent success 
of deep learning techniques is also a motivation for such studies, which could contribute to the 
design of biologically plausible deep learning strategies and models.  Such models are also aimed 
at being implemented on HBP platforms, and SP4 plays a key role in the perspective of 
implementing learning strategies on neuromorphic computers. 

Finally, SP4 aims at contributing to understanding of key cognitive processes, such as vision, 
sensorimotor coordination, and spatial navigation as examples.  Here, computational models are 
designed with very specific sensory- or motor-driven goals, and such models naturally connect to 
different HBP platforms, such as neuro-robotics or neuro-informatics.  The design of whole-brain 
models of the mouse, and later for the human brain, will also provide knowledge important to the 
understanding of normal brain activity, as well as various brain pathologies.  This research thus 
naturally connects to the medical informatics platform, and we expect such connections to grow 
in the next years with the maturation of our computational models. 

In the second year of SGA1, SP4 had the important objective of implementing nearly all of its 
models to the HBP platforms. The different models developed in this period, as well as their 
platform implementation, are described here, successively for each task, starting from the cellular 
level, circuits, networks, up to whole-brain levels. 

2. Results 

2.1 Bridging scales (WP 4.1) 
2.1.1 Simplified models of neurons (T4.1.1) 
The major task of the HUJI partner is to develop a systematic, analytical, (and public domain) 
method for reducing complex neuron model into simplified models, while preserving the I/O 
properties of the full model and saving significant computational time and memory. In the previous 
period we have developed such a method (schematically represented in Figure 2). The reduction 
method starts with the passive “skeleton” of a detailed model (Figure 2A and explained in the 
respective legend). In this period, we have expended the model to include NMDA spike – which 
typically occur at distal dendritic branches of cortical pyramidal cells. We have generated refined 
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models of the NMDA-spike based on recent experiments (Figure 3) and examined the impact of 
local dendritic inhibition on the NMDA-spike as well as on the neuron’s spiking output (Figure 4).   

 

 
Figure 2 An analytic reduction scheme for reducing neuron model complexity 

(NeuronReduce).  
A. Detailed passive model of 3D reconstructed L5 pyramidal cell from the rat neocortex. B. Each stem dendrite in 
the full model is reduced to a single cylinder that preserves the specific cable properties (Rm, Cm and Ri) of the 
original tree. The diameter and length of the respective cylinders are computed analytically such that they 
preserve both the transfer resistance from the most distal dendritic tip to the soma (ZL,0) as well the input 
resistance (Z0,0) at the soma end of the corresponding stem dendrite. C. Synapses (black numbered triangles on 
the full tree) all with identical transfer resistance to the soma, Zx,0; they are all mapped to the respective reduced 
cylinder so that Zx,0 is preserved in the two models. In the reduced model, these synapses are merged into one 
“Neuron” process (red synapses in B). The same mapping holds also for active conductances (schematic yellow 
region). D. Comparison of the composite somatic EPSP resulting from sequential activation of the four synapses 
shown in C for the full model (black trace) and the reduce model (red trace). The synapses were activated in 
temporal order 1, 2, 3, 4.  Modified from Eyal et al., (in preparation) 
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Figure 3 Dendritic NMDA spikes are susceptible to timed synaptic inhibition.  
(A) Reconstructed L5 pyramidal neuron model. Twenty synchronously activated AMPA- and NMDA-based excitatory 
synapses (red) and a single GABAA synapse (blue) were distributed around the center of a distal apical dendritic 
branch from which the membrane voltage was recorded (schematic electrode). (B) NMDA spikes generated in the 
modeled dendritic branch shown in (A); arrows point to the inhibition activation time. NMDA spike in the presence 
of inhibition (colored area); dashed trace without inhibition. (C) Normalized time integral of the NMDA spike for 
different activation times of the inhibitory synapse (the “vulnerability function”). Colored dots on the black curve 
correspond to the respective traces in (B). The blue and red areas respectively denote the regeneration and 
termination phases of the NMDA spike. (D). As in (C), with different GABAA peak conductance values. 

In addition to highlighting the impact of inhibition on the local NMDA spike we also explored the 
effect of inhibition on the global output of the cell; this is exemplified in Figure 4 below. 

 

 
Figure 4 Interaction of timed dendritic inhibition with dendritic NMDA spikes finely 
modulates the neuron’s output.   
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(A) Sixteen basal dendritic terminals synchronously activated, each by 20 excitatory and 2 inhibitory synapses. 
Voltage was recorded from the soma (black electrode) and from one of the activated branches (green electrode). 
(B) Local NMDA spike modulated by local timed inhibition. Arrows indicate the timing of inhibition with respect to 
excitation. Voltage was recorded from the green electrode in (A)).  (C) Somatic spikes for the respective cases 
shown in (B). (D) Mean (black line) and standard deviation (green lines) of 60 possible combinations of 16 activated 
terminal basal branches as in (C). The dashed line is the average number of spikes in the control condition without 
inhibition. 

 
Contributions to platforms 

The new work on the NMDA spike (nonlinear dendritic properties) and its control by dendritic 
inhibition, adds a significant facet to our understanding of the I/O properties of neurons and 
provide principles for how to incorporate the interaction between dendritic excitability and 
synaptic inhibition. These principles will be next used for incorporating NMDA-spikes intoi  
Neuron_Reduce (Figure 4 above). This advanced reduced neuron models, in luding 3-types of 
spikes (NMDA, Ca and Na – dependent spikes) will serve in SP6 as building block for large scale 
network simulations and in SP9 for reduced Neuromorphic neurons.   

Publications 

Guy Eyal, Oren Amsalem, Noa Rogozinski and Idan Segev. NeuronReduce: An accurate and 
computationally-efficient analytical method for reducing complex neuron models (in preparation). 

Doron M, Chindemi G, Muller E, Markram H, Segev I (2017). Timed Synaptic Inhibition Shapes 
NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons, 
Cell Reports, Nov 7;21(6):1550-1561. doi: 10.1016/j.celrep.2017.10.035. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

959 

3D reconstructions of 200 
cells in human neocortex 
(temporal, cingulate and 
frontal) 

Yes This morphological data on human cells served for 
the basis on modelling on human neurons 

955 

3D reconstructions of 300 
pyramidal neurons from 
the mouse somatosensory 
cortex across layers II-IV 

Yes This morphological data on mouse cells served for 
the basis on modelling on mouse neurons 

1729 Comparative physiology 
of Mouse and human yes The data on excitatory synapses is used for 

developing the reduced model (merging synapses) 

1730 

Comparative physiology 
of mouse and human 
neocortical pyramidal 
neurons and interneurons 

yes This data is used to reduce model complexity of 
both human and mouse cortical neuron 

759 

Morphological and 
physiological data from 
the same neurons in adult 
human 

yes 
This data is used to first build detailed model of 
adult human neurons which are then used by the 
Neuron_reduce algorithm 

757 

Morphological and 
physiological data from 
the same neurons in adult 
mouse 

yes 
This data is used to first build detailed model of 
adult mouse neurons which are the used by the 
Neuron_reduce algorithm 
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84 Detailed models of 
human cortical neurons yes These models of human neurons are used to 

reduce model complexity 

 

2.1.2 Simplified model of dendritic integration under in vivo conditions (T4.1.1) 
This model, developed at the UNIC, is a continuation of the model reported last year which is 
aimed at understanding dendritic integration in neurons with nonlinear excitable dendrites.   

Achieved Impact 

We considered the case of dendrites endowed with Na spikes, as shown experimentally by recent 
in vivo work.  We designed a multi-compartmental model where dendritic excitability was 
modelled by the AdEx mechanism, while in vivo conditions were simulated by correlated synaptic 
activity. We systematically compared the firing responses of three models: point neuron, neuron 
with passive dendrite and neuron 
with active dendrite [Figure 5]. 

In this comparison, we adjusted 
the output firing rate to be in the 
same range of values for all three 
models. We checked the 
responses for different input 
firing rates, refractory periods 
and synaptic weights. The neuron 
with active dendrite was 
predominantly processing 
synaptic correlation inversely 
compared to neurons with passive 
dendrites and to point neurons.  

To check how biologically realistic 
are the firing rate responses to 
correlated synaptic activity for 
multicompartmental AdEx model, 
we compared these simulations to 
a Hodgkin-Huxley model [Figure 
6]. 

We used the same morphology as 
for the multicompartmental AdEx 
model. To make our model more 
biologically realistic we also 
adjusted its morphology by 
tapering a dendrite, such that the 
EPSPs at soma, and local EPSPs as 
a function of distance from soma 
are now in the range of values 
measured experimentally. 

In Fig. 6 we can see propagations and collisions of sodium dendritic spikes in the Hodgkin-Huxley 
model. Increasing the density of voltage-dependent ion channels in the dendrite changed the 
somatic firing rate response to correlation of synaptic input. For low densities of voltage-
dependent channels, the response to correlation was mainly positive, but for higher densities the 
response became inverse [Figure 7]. 

 

Figure 5 input for three different AdEx models.  
The three models shown are the point neuron model (left), a neuron 
with passive dendrite (middle), and a neuron with active dendrite 
(right). We compared the responses of models for different input 
firing rates (first row), for different refractory periods (second row) 
and for different synaptic weights (third row). 
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This behavior of the Hodgkin-Huxley model is in accordance with the behavior of simpler 
multicompartmental AdEx models. This shows that inverse processing of correlation can be present 
independently on the type of model, and is a consequence of the presence of excitable dendrites.   
more realistic models 

 

 

 

 

 

 

 

 

Contributions to platforms 

Our model is now accessible in the HBP Collaboratory for further testing and usage. The multi-
compartmental AdEx neuron is also in principle implementable on the BRAINSCALES neuromorphic 
hardware developed by Heidelberg University and Dresden University within the SP9 platform. 

Publications 

Figure 6 Propagation and collision of 
dendritic spikes in a Hodgkin-Huxley 
model of a dendrite. 
 (a) Sodium spike is created near the center of 
dendrite and propagates toward soma and 
distal dendritic end. (b) The correlated 
synaptic bombardment (cG = 0.1, τj = 5 ms) 
creates two sodium spikes (600 μm and 1200 
μm from soma) which 

wavefronts collide and cancel due to 
refractory period. 

 

Figure 7 Somatic firing rate 
responses to correlated synaptic 
activity for Hodgkin-Huxley model of 
neuron with dendrite with synapses 
of weights: 0.5 nS and 1.5 nS.  
First row : The responses of the neuron for 
different densities of fast sodium and 
potassium channels in dendrite. While 
changing dendritic densities the somatic 
densities were left unchanged (12 mS/cm2 for 
Na conductance and 7 mS/cm2 for K 
conductance).  

Second row : The responses of the neuron 
with active dendrite for different input firing 
rates. 
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Górski T, Veltz R, Galtier M, Fragnaud H, Goldman J, Teleńczuk B and Destexhe A. (2017) Sodium 
spikes endow dendrites with inverse firing rate response to correlated synaptic activity.  (under 
review) 

bioRxiv preprint: https://www.biorxiv.org/content/early/2017/05/14/137984   

Conclusion & Outlook 

This study shows that different models of nonlinear excitable dendrites can lead to inverse 
correlation processing in neurons.  This was seen in the Hodgkin-Huxley model, as well as in a 
simpler model, where dendritic excitability was accounted by the AdEx model.  In all cases, the 
propagation of dendritic spikes and their collision is responsible for the observed effect. 

In the future, we would like to extend this model by considering network simulations of neurons 
endowed with such inverse correlation dependence.  Here, the neuromorphic platform may turn 
to be a very efficient tool to perform such network simulations.  This work is planned in SGA2. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 
2.1.3 Discrete model of dendritic spike propagation in dendrites (T4.1.1 - T4.1.3) 

Description of the model 

T.4.1.3 “Mean-field models of interacting spiking neurons with dendritic compartment “, 
prelude a un model mean-field. 

The INRIA partner has worked on a simplified description of the propagation of dendritic spikes in 
dendrite under the assumption that whenever two such spikes collide, they annihilate. Indeed, a 
detailed model was studied in [Gorski et al. 2017] but it is very computationally expensive and 
too detailed to be (easily) incorporated in a neural network. 

Hence, we designed a mathematical model, called discrete-state model, aiming at grasping the 
core mechanisms of spike propagation / annihilation. The simulation is exact in that it is not based 
on a (time) discretization of the propagation of dendritic fronts. Finally, it allows to see whether 
the annihilation of spikes is enough to explain decrease of mean somatic spikes number.  

More precisely, suppose that we are given a set of spatio-temporal synaptic inputs  
and assume that each input  produces two contra-propagating fronts (e.g. dendritic spikes). 
Starting from , we build the set of fronts and annihilation events recursively. The complexity is 

 whereas the cost of adding a dendritic spike is  making it suitable for 
incorporation in a network of spiking neurons with dendritic compartments (preliminary work has 
been done toward this end). 

In Figure 8, the synaptic inputs are the blue dots and the lines, the propagating fronts.  It shows 
the networks of propagating fronts for different propagating speeds but same inputs  drawn from 
a realistic distribution. One can see that increasing speed increases the dendritic spikes reaching 
the soma ( ). Intuitively, this occurs because a front has less chance to meet another front 
for higher propagation speeds. Finally, in Figure 9, we present the dependency of the mean 
number of spikes reaching the soma as a function of the ratio of shared spikes. In this scenario, 
each synaptic input triggers a dendritic spike, so the results correspond to the case of large 
synaptic weights of the multi-compartmental AdEx model, see [Gorski etal. 2017]. 

https://www.biorxiv.org/content/early/2017/05/14/137984
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Figure 9 
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Publications 

Gorski Tomasz, Veltz Romain, Galtier Mathieu , Fragnaud Hélissande, Goldman Jennifer , 
Teleńczuk Bartosz , Destexhe Alain (2017)  

Achieved Impact 

This model is now continued in different directions, including its incorporation into a network of 
spiking neurons, and extending its biological relevance without sacrifying simplicity. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A 

 

Simplified model of 
dendritic integration under 
in vivo conditions 

Yes 
Used to build a simplified model to study the 
effects of the parameters on the average 
dendritic spikes number 

 

2.1.4 Information encoding in Reconstructed Human Neurons (T4.1.2) 
Description of the model 

The UA partner has collaborated with Dr. H. Mansvelder (SP1) and received 50 3-dimensional 
morphological reconstructions of L2/3 cortical pyramidal neurons. Morphologies were obtained 
from resective neurosurgery in  T1.2.2, 2.2.2, and 2.2.6, and were used by UA to build 
conductance-based spiking neuron models. Models were simulated using NEURON (Carnevale and 
Hines, 2006) and probed for their dynamical transfer properties, as in the experiments of Köndgen 
et al. (2008) and Testa-Silva et al., (2014) (but see also Linaro et al., 2017). Briefly, sinusoidally 
oscillating input currents were injected in the soma, allowing us to temporally modulate the 
instantaneous output firing rate of the model and quantify its output ‘transfer gain’ (Figure 10a, 
inset). When studied in this way, the neuronal transfer properties resemble those of electronic 
filters, whose low-pass performances in the Fourier domain (Figure 10a) define how fast can they 
encode inputs. We also systematically measured AP slope at its onset (Figure 10b) 

 

 

 

 
Figure 10 Reconstructed human cortical cells (left) display very 
broad bandwidth, when probed as transfer information channels. 
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We asked whether the total dendritic length played any role, in terms of those biophysical 
properties potentially relevant for information processing and cognition. HUJI (Etay et al. 2014) 
in fact previously suggested in silico that the size of dendrite migth be responsible for the 
enhanced encoding capability (Testa-Silva et al., 2014). We found that i) the total dendritic length 
is sufficient to justify a broader bandwidth of neuronal dynamical transfer properties, as there is 
a significant direct correlation (Pearson’s r = 0.4, p < 0.01) between the “cutoff frequency” and 
the dendritic length (Figure 10b); ii) the total dendritic length is sufficient to justify a “kinkier” 
AP in the model, as there is a very significant direct correlation (Pearson’s r = 0.55, p < 0.0005) 
between the “phase slope” of AP shape and the dendritic length (Figure 11c); iii) larger neurons 
track better rapidly changing temporal information, when compared to smaller cells - for the 
exact same input (Figure 11d); 

 

 
Figure 11 Both the bandwidth (quantified as its cutoff frequency) and the AP onset velocity 
significantly correlated to the dendrite total length, as predicted by the theory developed by 
HUJI. 

 

Dynamical transfer properties. The dynamical transfer properties of each model neuron were 
probed by emulating a somatic time-varying input current injection, as in the experiments of 
Köndgen et al. (2008) (see also Linaro et al., 2017). This allowed us to temporally modulate the 
instantaneous output firing rate of each model neuron and quantify the output ‘transfer gain’ (or 
the normalized ‘response magnitude’) of the cell, at each Fourier frequency component of the 
input (Figure 10a, inset). Briefly, rapidly varying sinusoidal inputs, with amplitude I1 and frequency 
F (1–1’000 cycle/s) were injected simultaneously to a DC baseline I0 and a randomly fluctuating 
waveform: 

𝐼𝐼(𝑡𝑡) =  𝐼𝐼0 + 𝐼𝐼1 sin(2𝜋𝜋𝜋𝜋 𝑡𝑡) +  𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)       (1) 

𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) was synthesized as an exponentially filtered realization of a Gaussian white-noise process, 
to mimic at the soma a barrage of balanced background excitatory and inhibitory irregular synaptic 
inputs (Arsiero et al., 2007): it had zero-mean, variance s2 and correlation length τI = 5 ms, and 
was generated iterating the following expression, 

𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡 + 𝑑𝑑𝑡𝑡) = (1 − 𝑑𝑑𝑡𝑡/𝜏𝜏𝐼𝐼)𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) + 𝑠𝑠�2𝑑𝑑𝑡𝑡/𝜏𝜏𝐼𝐼𝜉𝜉𝑡𝑡       (2) 

where {𝜉𝜉𝑡𝑡} is a sequence of independent pseudo-random numbers, with Gaussian distribution 
(Press et al., 2007). The variance s2 of the fluctuating component was chosen by hyperpolarizing 
the membrane of each model cell at -75mV and iteratively searching (by the regula falsi algorithm; 
Press et al., 2007) for the value of s that resulted in subthreshold membrane potential fluctuations 
of ~3mV. After s was fixed, the DC baseline I0 was chosen iteratively by the same strategy to lead, 
at F = 0 cycle/s, to a mean firing rate of ~10 spike/s.  Such an iterative algorithmic parameters 
search replaced the preliminary characterisation of the model’s stationary F-I curve, required to 
elect the ‘working point’ for probing the dynamical response properties. I1 was chosen as 1/6 of 
I0 and each stimulation lasted 120 s. 
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The firing times {tk} were measured at the soma and collected for each model neuron across all 
values of F. The output ‘transfer gain’ (or the normalized ‘response magnitude’) at each frequency 
F was computed by taking the magnitude of the following complex number 

𝑟𝑟1(𝜋𝜋) = 𝑎𝑎𝑎𝑎𝑠𝑠�∑ exp(𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡𝑘𝑘)𝑁𝑁
𝑗𝑗=1 �/𝑁𝑁        (3) 

where N is the number of spikes and j is the imaginary unit. This was further normalised to the 
𝑟𝑟1(𝜋𝜋0), with 𝜋𝜋0 = 3 cycle/s. The cutoff was finally defined as the highest frequency Fc at which 
𝑟𝑟1(𝜋𝜋𝑐𝑐) = 𝑟𝑟1(𝜋𝜋0)/√2 (Figure 10a). 

Achieved Impact 

See 2.5.1 The impact of Axon Initial Segment on Information encoding (T4.1.2) 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

759 

Morphological and 
physiological data from 
the same neurons in adult 
mouse  

Yes Data provided was necessary for model building 

 

2.1.5 The impact of Axon Initial Segment on Information encoding (T4.1.2) 
Description of the model 

The UA partner has made significant progress on simplified as well as morphologically detailed 
models of neurons, including the axon initial segment at variable distance from the soma (Figure 
12, sketch). The same current-based probing protocol described in the previous section has been 
applied first to simplified “ball-and-stick” models and then to the detailed reconstructed L5 rat 
pyramidal cells (Figure 13), released by the group of Dr. H. Markram. The dynamical transfer 
function of these models was investigated and found to unexpectedly depend on (i) the distance 
between the soma and the Axon Initial Segment (AIS) and on (ii) the total dendritic length. At the 
same time, the relationship between the slope of the action potential in the phase plane and the 
transfer bandwidth was explored and found to be direct. 
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Figure 12 Modulation of the action potential slope  

Modulation of the action potential slope in the phase-plane (top right) by the distance between the Axon Initial 
Segment and soma (top). The transfer function is affected only at high frequency (bottom right). 

 

 
Figure 13 Modulation of the bandwidth of the dynamical transfer properties of reconstructed 
L5 thick tufted rat cortical pyramidal cells by the distance between the axon initial segment 
and the soma. 

Implementation to platforms 

Component 1008 contributes to CDP2-UC-001-single cell modeling 

Implementation to platforms 

Within the Brain Simulation Platform (WP6.4) and in collaboration with Dr. M. Migliore (T 6.4.5-
6), we contributed an online “Collab” named “Dynamical response properties”. It features a 
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Jupiter notebook interacting with the NEURON simulation platform. It receives several neuronal 
model as an input and it demonstrates the injection of ad hoc stimuli, required for characterizing 
the model’s dynamical transfer properties. 

Publications 

Linaro D, Biró I, Giugliano M (2018) Dynamical response properties of neocortical neurons to 
conductance-driven time-varying inputs, European Journal of Neuroscience 47(1):17–32, 
https://doi.org/10.1111/ejn.13761  

Goriounova NA, Heyer DD, Wilbers R, Verhoog MB, Giugliano M, Verbist C, Obermayer J, Kerkhofs 
A, Smeding H, Verberne M, Idema S, Baayen JC, Pieneman AW, de Kock CPJ, Klein M, Mansvelder 
HD (2018)  A cellular basis of human intelligence (submitted) 

Verbist C, Giugliano M (2018) The location of the Axon Initial Segment determines neuronal 
encoding properties of the axon. (in preparation) 

Achieved Impact 

These models are now continued in different directions, including correlation transfer and self-
consistent sparse rhythms generation in collaboration with SP6 (Migliore) and SP1 (Mansvelder). 

Conclusion & Outputs (UA) 

These models aim at bridging the subcellular and the cellular scales, and ultimately to offer an 
actual phenomenological component to be included in mean-field models: theoretical descriptions 
at the population models should not only include an equivalent of the frequency-current curve 
and of the spike-frequency adaptation but also the high-frequency signal encoding properties 
revealed by the present study. These models will be continued in the next period, where they will 
challenged with respect to the correlation transfer properties upon controlling the fraction of 
common inputs. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A 

The basis of sharp spike 
onset in standard 
biophysical models 
(Telenczuk et al.2017) 

no This paper inspired the model  

 

2.1.6 Mean-field Models of GIM networks (T4.1.3) 
The INRIA partner has worked on a mean-field model of neuronal population activity as prelude to 
the addition of dendritic compartments for the Component 1031 in  T.4.1.3.. 

Description of the model 

The INRIA partner has worked on a mean-field model of neuronal population activity, for networks 
of Generalised (GIM) integrate and fire neurons. This has been published recently [Drogoul etal. 
2017]. The network was based on a single population of excitatory neurons with chemical synapses 
and gap junctions. The mean field model is based on recent work on stochastic spiking neural 
network [De Masi et al. 2015] and reads: 

 

https://doi.org/10.1111/ejn.13761
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where g(t,v) is the distribution of 
membrane potentials in the population, 

lambda controls the time constant of the membrane potential dynamics and f is the instantaneous 

firing rate function. 

 

 
 

 

 

 

Figure 14 Simulations of f(v) = v8 for values of lambda close to the dynamical instability.  
Is shown the contour plot of the membrane potential probability density (t,v) -> g(t,v)  
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Figure 15 Simulations of f(v) = v8 for values of lambda far from the dynamical instability. 
Left: plot of the membrane potential probability density (t,v) -> g(t,v). Right: raster plot. 

 

We report here the effect of noise on the transition from asynchronous activity to partial 
synchronisation in excitatory globally pulse-coupled networks. We are able to predict numerically, 
the critical connectivity strength that leads to synchronisation as function of the noise level. This 
is done thanks to the mean field formulation (see equations above) which greatly simplifies the 
study. An example of oscillatory behaviour at the level of the mean field is shown in Figure 14.  

In Figure 15. Left, we show that for larger connection strengths, the synchronisation improves 
compared to Figure 14. Figure 15 right shows that finite size effects are captured by the finite 
size network as the spikes of each neurons occur in precisely timed windows. 

Implementation to platforms 
(indicate here the components related to this model) 

Component 1030, “Mean-field models of interacting populations of rate and spiking neurons ” 
(T4.1.3). 

Component 1031,“Mean-field models of interacting spiking neurons with dendritic compartment” 
(T4.1.3) 

Implementation to platforms 
This model was integrated to the collaboratory and the Model Catalog in SP5. 

Publications 

Drogoul, Audric, and Romain Veltz. “Hopf Bifurcation in a Nonlocal Nonlinear Transport Equation 
Stemming from Stochastic Neural Dynamics.” Chaos: An Interdisciplinary Journal of Nonlinear 
Science 27, no. 2 (February 2017): 021101. https://doi.org/10.1063/1.4976510. 

Achieved Impact 

This model is now continued in different directions, including the addition of dendritic 
compartments. 

Conclusion & Outlook 

This model aims at brigding two scales, from cellular (spiking neurons) to population-level aspects. 
The model will be continued in the next period, in particular with the addition of dendritic 
compartments (preliminary work already done). 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.1.7 Long range dependence in Integrate and Fire models (T4.1.3) 
Description of the model 

https://doi.org/10.1063/1.4976510
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INRIA: Long-range dependence (LRD) has been observed for several years in the spiking activity of 
neurons. Often, this is interpreted as originating from a non-Markovian system. In this model, we 
show that a purely Markovian integrate-and-fire (IF) model, with a noisy slow adaptation term, 
can generate interspike intervals (ISIs) that appear as having LRD. We compare it For comparison 
with a new model of individual IF neuron with fractional (non-Markovian) noise. The correlations 
of its spike trains are studied and proven to have LRD, unlike classical IF models. 

The mathematical models write 

 
Where Z contains the adaptation part (𝛾𝛾 = 0 stands for the model without adaptation). the noises 

fractional Brownian motions (fBm) of scaling parameter  𝛼𝛼 ∈ (0,1) and  are 

The spike trains are modeled as the successive times where the membrane potential variable V 
cross a fixed deterministic threshold. At such times, V is reset to a fixed value. 

We have compared two fundamentally different cases: 

(Markov case)  

 

 

For each model, we use the detrended fluctuation analysis and the Rescaled Range Statistics to 
evaluate the Hurst parameter (see Figure) 

The main conclusion is that for a fixed (and small) number of Interspike intervals, it is impossible 
to discriminate if the data have been simulated with the Markov or the non Markov setting. 
However, the evolution of the curves as a function of the size of the spikes train give better 
results. 
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Figure 16 
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Figure 17 

Publications 

Richard A., Orio P. and Tanré E. (2018) An integrate-and-fire model to generate spike trains with 
long-range dependence.  (to appear in Journal of Computational Neuroscience) 

ArXiv preprint: https://arxiv.org/abs/1702.03762 

Achieved Impact 

This neuronal model is now used as the elementary part in a network. These neurons are connected 
with synapses modeled by (stochastic) synaptic weights. The behavior of large networks is studied 
(mean-field limit). 

Conclusion & Outlook 

This model aims at understanding deeply the nature of noise in individual neurons and the effect 
on the associated mean-field network. Understanding the best noise model at each scale of brain 
area is a big challenge. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.1.8 Stability of Synchronization under stochastic perturbations in LIF neural 
network (T4.1.3) 

Description of the model 

INRIA: We consider a finite network of leaky integrate and fire neurons with independent additive 
Gaussian noises. We study the synchronization of the network, that is we evaluate the probability 

https://arxiv.org/abs/1702.03762


 

 

 

 

 

D4.7.2 (D25.2 D33) SGA1 M24 ACCEPTED 180907.docx PU = Public 07-Sep-2018 Page 24 of 111 
 

that every neurons spike precisely at the same time. We both obtain results if the initial state of 
the network is already synchronized or not. 

Implementation to platforms 

Component 1030, “Mean-field models of interacting populations of rate and spiking neurons” 
(T4.1.3). 

Publications 

Guiraud P. and Tanré E. (2017) Stability of synchronization under stochastic perturbations in leaky 
integrate and fire neural networks of finite size. 

ArXiv preprint: https://arxiv.org/abs/1609.07103 

Achieved Impact 

This model is being extended to  the thermodynamic/mean-field limit. 

Conclusion & Outlook 

This model gives us a good comprehension of the effect of small adative noise in a network of LIF 
neurons. We prove the persistence of the synchronization phenomenon similarly to the 
deterministic model. Moreover, for some values of the parameters the noise increase the spiking 
rate of the network in addition to the synchronization. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.1.9 Transient firing rates are a function of the geometry of the neural model 
(T4.1.3) 

Description of the model 

ULEEDS: We consider a population as the distribution of neurons over the state space of individual 
neurons. Because we consider the state space of two dimensional (2D) neural models, we are able 
to study models with adaptation, or other variables in a way that has not been done before. Our 
basis is the differential Chapman-Kolmogorov equation: 

  
Here, ρ is the density, v a two dimensional vector representing the state variables, F the neural 
model and W the transition matrix for the stochastic process. 

Because we can simulate a large number of models in comparable condition, not just two 
dimensional ones, such AdExp or conductance-based, but also one dimensional models such as LIF, 
QIF, EIF, etc, we can observe broader patterns of behaviour.  

For conductance based neurons the model is given by: 

 

(2) 

(1) 

https://arxiv.org/abs/1609.07103
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and the transition probability for shot noise: 

 
Some populations produce a strong transient respons (“ringing”), some don’t. Conductance based 
models converge calmly to their steady state output, LIF, QIF, but also AdExp neurons produce 
pronounced rining. Of the 1D models, the effect is stronger in QIF than in LIF. 

So far, this effect has been explained as filtering by the synapses. We propose a complementary 
geometrical interpretation. For space reasons, we restrict ourselves to one example: conductance 
based neurons. 

For conductance based neurons without maximum conductance the stochastic process pushes 
neurons into a direction where they are not restrained, and the population disperses well before 
reaching threshold boundary. When they reach the threshold boundary – which is not in the 
direction of the stochastic process, but reached under endegenous neural dynamics they pass as 
a group and drift toward equilibrium, leaving barely a blip in the firing rate. 

(3) 

Figure 18 The evolution of the population density for neurons without a maximum 
conductance, neurons disperse in the g-direction, well before reaching threshold 
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Let us contrast this with a simulation where we introduce a maximum conductance gmax = 0.8, 
which for simplicity we assume to voltage independent. This then introduces a reflecting boundary 
at g = gmax, and therefore introduces a scale by which an efficacy can be judged to be large. As 
expected, probability mass is squashed against this boundary (Figure 19A) )and has nowhere to go 
but laterally, in the direction of the threshold. Interestingly, the mass has not dispersed and clear 
groupings of mass huddled against the boundary can be observed. The traversal of the threshold 
by these groupings produces clear oscillations in the firing rate: a ``ringing'' effect. The firing rate 
jump response reflects the effect of the presence of a maximum conductance in state space. 

 

We run two simulations: one with and one without maximum conductance, but otherwise 
identical, and repeat this experiment for two different synaptic efficacies: J = 1, 3 mV.  Both 
simulations show a simulation with an input rate of 3 kHz. In case of no maximum conductance, 
probability mass can disperse in the g direction and mostly does so before arriving at the threshold. 
In Figure 19 one sees that the introduction of a maximum conductance leads to a reduced response 
firing rate for high inputs. This can be interpreted as the population unable to respond to an 
increase of input once the majority of its ion channels are already open. Such an effect has been 
proposed as the explanation of the experimentally observed sublinear addition of two cortical 
waves originating from different positions. Figure 19 shows that the firing rates of Monte Carlo 
simulations and our method agree over the entire range of input. 

Even when the effects on the response firing rate are moderate, the transient dynamics can be 
radically different. For an efficacy J = 1 mV and and input rate fin = 3 KHz, the firing rates for 
maximum conductance, compared to no maximum come out as 175 Hz vs 195 Hz. In Figure 19 C 
we show the response firing rate as a function of time. The result for the unrestrained conductance 
is given by the red line, which despite the high output firing rate still almost produces no 
overshoot. When we restrict the maximum conductance we see a somewhat reduced firing rate 
but a pronounced transient response (“ringing'”) which persists much longer than for an 
unrestrained conductance.  It is striking to see that the reintroduction of a barrier in state space 
results in pronounced transients. In both cases, the calculated firing rates agree well with Monte 

Figure 19 If there is a maximum conductance, neurons group against this boundary and 
do not disperse before reaching threshold. This is visible in the firing rate 
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Carlo sin. We attribute this ringing to a geometrical effect: the introduction of a barrier in the 
direction of where the stochastic process is pushing neurons. 

Implementation to platforms 

(indicate here the components related to this model) 

Component 1030, “Mean-field models of interacting populations of rate and spiking neurons” 
(T4.1.3). 

Implementation to platforms 

This model was integrated to the collaboratory (8740). Here the matrix, model and XML files are 
stored that can be used in conjunction with MIIND. MIIND is in the software catalogue and is 
available on the Simulator Platform since 16/02/2018 

Publications 

Computational Geometry for Modeling Neural Populations: from Visualization to Simulation 

Marc de Kamps, Mikkel Elle Lepperød, Yi Ming Lai 

bioRxiv 275412; doi: https://doi.org/10.1101/275412  

Achieved impact 

This model was important as part of the validation of the 2D method, and is part of the methods 
paper. The observation that a visualization of state space can lead to predictions about transient 
dynamics may be of benefit to the neuroscience community as a whole. 

Achieved Impact 

Short list, or narrative, outlining which impact has been achied to-data based on this result. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

64 & 1034 MIIND Yes 

Explain the qualitative difference in transient 
firing rate of population of neuron, based on 
differences the geometry on underlying neuron 
model. Validation of MIIND 

 

2.1.10 Stochastic Input Probes Subthreshold Dynamics of the AdExp Neuron 
(T4.1.3) 

See HBP SGA1 M24 D472_ANNEX_restricted – 2.1 Stochastic Input Probes Subthreshold Dynamics of 
the AdExp Neuron (T4.1.3). 

Achieved Impact 

This model was important as part of the validation of the 2D method, but is too detailed to include 
in the methods paper. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

64 & 1034 MIIND Yes We modeled how sub threshold stimulation of 
AdExp can lead to peaks in a response 
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spectrum when the population is subjected to 
noise, despite the stimulus being weak.    

 

2.1.11  Non-Markov processes in population density techniques (T4.1.3) 
ULEEDS : Using random network theory, it is possible to model random walks that are subject to 
events that are not Poisson distributed. The righthand side of Eq 1 then generalizes to a so-called 
generalized Master equation: 

 
For gamma distributed spike intervals the solution entails a convolution of a kernel dependent on 
shape factor α with the recent history of the density. The difference between Poisson distributed 
and non-Markovian gamma distributed interspike intervals is profound: 

 

 
Figure 20 Density profile for LIF (left) and QIF (right) neurons for gamma distributed input 
spike trains for different shape factors  

Implementation to platforms 

Component 1030, “Mean-field models of interacting populations of rate and spiking neurons” 
(T4.1.3). 

Implementation to platforms 

The code was developed in Python. We will make a C++ implementation and integrate this in 
MIIND, which has been installed on the Simulator Platform. 

Publications 

Yi Ming Lai and Marc de Kamps Phys. Rev. E 95, 062125 – Published 20 June 2017 

The actual or potential results for the different communities are discussed. 

Achieved Impact 

This is a very general method that allows the inclusion of non-Markov processes in population 
density techniques. It is relevant when spike statistics is not well explained by Poisson or white 
noise assumptions.  

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.062125
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64 & 1034 MIIND Yes 

MIIND was used to help explain the difference in 
membrane potential distributions caused by 
different stochastic processes. The distributions 
between Markov (Poisson) and non-Markov 
(gamma distributed interstice intervals) lead to 
profound differences in the population 
response. To validate MIIND 

 

2.1.12  Development of the MIIND simulator (T4.1.3) 
ULEEDS :  At the 8th of January 2018 we made the full 2D simulator available at 
http://miind.sf.net. We uploaded a number of meshes that we used in the preparation of bioarxiv 
paper These meshes are also available in the collab. On 16 February 2018 MIIND was installed on 
the Simulation Platform with the help of the Julch support team, so that an installed version is 
available to consortium. A tutorial is  available at http://miind.sf.net/tutorial.pdf The Juelich 
team was abkle to surmount all installation issues using this document, without our interevention. 

PhD student Hugh Osborne has integrated MIIND into the The Virtual Brain. We will briefly describe 
how this works, as this has ramifactions for the workflows that encompass MIIND. 

The Virtual Brain and MIIND are both systems which facilitate the development of neural mass or 
mean field population models with explicit descriptions of how multiple populations are 
connected. In this way, the complex dynamics arising from interaction of these populations can 
be studied.  

TVB provides a framework to describe a network of nodes (the connectivity) which, while it can 
be abstract, generally represents regions of the human or primate brain. Connections between 
nodes represent white matter tracts which transfer signals from one node to the next based on 
length and propagation speed. TVB also allows the description of “coupling” functions which 
modulate these signals as they pass from one node to another. Typically, the number of nodes is 
in the order of 100 or so. However, TVB also allows the definition of a “surface” which can be 
associated with 10s of thousands of nodes to simulate output from common medical recording 
techniques such as EEG and BOLD fMRI. TVB has impressive clinical relevance as well as supporting 
more theoretical neuroscience research. Users can build simulations using the graphical user 
interface or directly using the python source code.  

While MIIND and TVB have many functional similarities, both have differing strengths with respect 
to the underlying simulation techniques and surrounding infrastructure. It was therefore clear that 
implementing the smaller system, MIIND, in the more developed infrastructure of TVB might yield 
benefits from both. 

Although it is possible to model delayed connections and synaptic dynamics between populations 
in MIIND, TVB provides a quick and intuitive method of defining such structures and behaviours 
through the connectivity network and coupling functions. Some users of MIIND may find it useful 
and appropriate to house their simulations in a such structures. Furthermore, as there is some 
overlap of models used in both MIIND and TVB, there is opportunity to compare results using the 
same experimental conditions. 

Currently, TVB allows only a single model definition for all nodes in the connectivity network. 
MIIND is not limited in this way so there is scope for developing more complex brain networks. 
Though not computationally as fast as integrating mean field models, MIIND’s one dimensional 
simulations run faster than integration techniques over neural circuits of comparable numbers of 
individual neurons and MIIND also supports MPI, a parallelisation method used in many high 
performance computing (HPC) systems. Implementing MIIND in TVB with an emphasis on speed will 
encourage use of MIIND simulations by TVB users and perhaps inform future development of 
parallelised TVB code. 

Finally, MIIND’s population density technique provides a rigorous link between a population’s 
underlying neuron model and the dynamics of the population. Adding these techniques to TVB’s 

http://miind.sf.net/
http://miind.sf.net/tutorial.pdf
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repertoire would complement the existing mean field models and contribute to the goal of bridging 
scales. 

 
Figure 21 Components of a basic TVB Simulation with the addition of a new potential model 
object, MIIND Adapter 

The figure above shows a subset of required components to run a simulation in TVB. Most existing 
models define a system of differential equations which are then integrated using, for example, 
Euler or Runge-Kutta methods. The Identity integrator performs no integration and simply returns 
the value given by the model. To implement MIIND in this system, an additional model has been 
added called MIIND Adapter. The MIIND Adapter makes calls to a MIIND generated shared library 
which initialises and manages its own simulation. The MIIND library simulates all nodes (as many 
as defined in the TVB connectivity matrix) such that the firing rate of each node in MIIND is output 
to the Identity integrator in TVB at the end of each iteration. This output can be picked up by the 
monitors and stored for analysis at the end of the simulation. TVB simulates propagation and 
transformation of the firing rate from source nodes via the connectivity and coupling components 
and passes the values back to MIIND to be input to each target node. 

 
Figure 22  

(left) Each node in the MIIND simulation passes its activity to the MIIND Adapter in TVB and receives incoming 
activity from the connectivity network. (right) In the simple case, nodes in MIIND are unconnected and are only 
concerned with a single input 
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Figure 23 

Running TVB with the default 76 node connectivity, white matter propagation speed and linear 
coupling with only the models and integrator definitions differing, in one case with TVB’s standard 
Wilson-Cowan model and EulerDeterministic integrator, the other case using the MIIND Wilson-
Cowan model with matching parameters and the Identity integrator; the output is almost identical 
but for some variation due to the different integration techniques. 

Using the MIIND Adapter in TVB also allows for the possibility of generating more complex networks 
of populations within a single TVB node and for the networks and models to differ from node to 
node. 

 

 
Figure 24 TVB is aware of four equal MIIND Adapter nodes in its network but the nodes 
themselves can differ in complexity and behaviour in MIIND 

  

 
Figure 25 
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The MIIND Adapter expects a well defined interface for the shared library to allow it to initialise 
the MIIND simulation and send and receive activity from the nodes. However, as long as this 
interface is respected, any MIIND simulation with the correct number of input and output nodes 
can be generated and plugged into the adapter without the need for a code change in TVB. An 
example script is provided to demonstrate how a simple TVB simulation using the MIIND Adapter 
can be set up with populations of LIF neurons. 

 

 
Figure 26 Two plots from another simple TVB simulation, this time using a MIIND generated 
shared library for populations of LIF neurons, the expected damped oscillatory behaviour is 
visible for many nodes.  
Noise is apparent from the initial random node activity generated by default in TVB. 

To generate a shared library file which can be used with TVB’s MIIND Adapter, the C++ MIIND code 
is very similar to any normal “MIIND only” simulation 

Implementation to platforms 

Component 1030, “Mean-field models of interacting populations of rate and spiking neurons” 
(T4.1.3).  

Implementation to platforms 

MIIND was installed on the simulator platform on 16/02/2018 and is thereby available to the 
colloboration. 

Publications 

The MIIND tutorial: http://miind.sf.net/tutorial.pdf 

Achieved Impact 

With the release of the 2D code, MIIND makes two dimensional population density techniques 
publicly available. With these techniques any 2D system subject to shot noise can be simulated. 
1D models such as LIF, QIF and EIF are available as well and run much more effciently. We are 
working on a Python workflow to allow simulations directly to be run from the collab. With 
integration in TVB its application scope has been extended considerably, and we hope also to have 
extended the possibilities for TVB. 

MIIND has been taken up by Mikkel Lepperod from CINPLA, University of Oslo, and Martin-Preze-
Guevara from NEUROSPIN, who based his thesis (http://www.theses.fr/s177132) on simulations 
performed with MIIND. Mikkel has pushed the AdExp simulations hard. The experiences of two 
independent users has led to substantial feedback on our workflow and has prompted us to put 
more effort into a Python interface. 

Conclusion & Outlook (ULEEDS) 
In the last year ULEEDS has implemented the 2D population density method and evaluated it 
applicability on a large number of models. The code is now very robust and has been released 

http://www.theses.fr/s177132
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publicly. A substantial drain of our time was to make the method work on Fitzhugh-Nagumo 
neurons, which have a complex state space presenting numerical problems. We learnt that it is 
acceptable to limit the grid in the presence of stationary points and nucllines and to infer motion 
of density. A substantial amount of our time was taken up by taking code that was working on our 
own machines and bringing it in a state where we comfortable for others to take this up. With the 
installation on the Simulation Platform, the prospects for further take up are much better. We 
will develop a Python workflow and will work with the Juelich HPC centre towards one that can 
be run directly from the collab. We also have created a Docker container, facilitating remote 
installation. 

Modelling-wise, we will focus on networks of AdExp populations, as this model is studied 
intensively within the collaboration. Outside the collaboration we have demonstrated that the 
method also is useful in modelling central pattern generators as found in spinal cord. A good 2D 
model that captures this is Izhikevich neurons modelling persistent sodium channels. Preliminary 
simulations have indicated that the CPG behaviour is well captured by such models. Within the 
HBP this opens the possibilities for further collaboration. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

64 MIIND Yes Release of the model itself 

 

2.1.13 Mean-field Models of AdEx networks (T4.1.3) 

Description of the model 

The UNIC partner has worked on a mean-field model of neuronal population activity, for networks 
of Adaptive Exponential (AdEx) integrate and fire neurons.  This model was described one year 
ago in deliverable D4.7.1, and was published (Zerlaut and Destexhe, 2017; Zerlaut et al., 2018).  
In the second year of SGA2, this model was extended towards modeling the VSD (see section 2.13 
Model for Voltage-Sensitive-Dye imaging (VSDi) (T4.1.3)).  

A second extension of the model is towards including recent measurements of cellular transfer 
functions.  The transfer function is a central piece of the mean-field formalism, it maps the output 
of the neuron (expressed as a rate) as a function of its excitatory and inhibitory inputs.  At first 
order, the time evolution of the mean-field model is given by: 

 
 
 

where    is the mean activity of population μ, while      is its transfer function.   

 

This formalism is based on a Master Equation (El Boustani and Destexhe, 2009) and can be applied 
to any population of neurons, provided its transfer function is known.  This formalism was applied 
to networks of integrate-and-fire neurons, connected with conductance-based synapses, and was 
successful to predict the state space of such networks (El Boustani and Destexhe, 2009).  It was 
more recently applied to more complex neuron types, such as the AdEx model.  Here, the transfer 
function could be obtained from a semi-analytical procedure, where a mathematical template was 
fit to numerical simulations (Zerlaut and Destexhe, 2017).   The resulting mean-field model could 
predict not only the level of spontaneous activity, but also the response of the network to external 
stimuli (Zerlaut and Destexhe, 2017).   
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The same approach could be done to more complex neurons, and it was applied to real neurons 
from mouse V1 (Zerlaut et al., 2016).  In this approach, the same mathematical template was 
used and was constrained to recordings of neurons using conductance-based inputs injected using 
the dynamic-clamp technique.  This technique allowed us to measure the transfer function from 
30 neurons, electrophysiologically identified as RS neurons.  However, the experiments revealed 
a very strong cell-to-cell diversity of transfer functions, which could only be accounted by diversity 
in the level of excitability of the neurons.   

Components 

Component 1554, “Mean-field models of AdEx networks, spontaneous activity and responsiveness” 
(T4.1.3). 

Implementation to platforms 

This model was integrated to the collaboratory and the Model Catalog in SP5. 

References 

El Boustani, S. and Destexhe, A.  A master equation formalism for macroscopic modeling of 
asynchronous irregular activity states.  Neural Computation 21: 46-100, 2009. 

Publications 

Zerlaut Y., Telenczuk, B., Deleuze, C., Bal, T., Ouanounou, G. and Destexhe, A. (2016)  
Heterogeneous firing rate response of mice layer V pyramidal neurons in the fluctuation-driven 
regime. Journal of Physiology 594: 3791-3808. 

Zerlaut Y. and Destexhe A. (2017) A mean-field model for conductance-based networks of adaptive 
exponential integrate-and-fire models.   

ArXiv preprint: https://arxiv.org/abs/1703.00698  

Zerlaut Y., Chemla, S., Chavane F. and Destexhe A. (2018) Modeling mesoscopic cortical dynamics 
using a mean-field model of conductance-based networks of adaptive exponential integrate-and-
fire models.  Journal of Computational Neuroscience (in press). 

bioRxiv preprint: https://www.biorxiv.org/content/early/2017/11/12/abs/168385   

Achieved Impact 

This model is now continued in different directions, include adaptation, model Up/Down states, 
and integrate in the Virtual Brain. 

Conclusion & Outlook 

This model aims at brigding two scales, from cellular (spiking neurons) to population-level aspects.  
It will certainly help bridging scales, one of the objectives of theoretical neuroscience in HBP.  
The model will be continued in the next period, in particular in the Virtual Brain, where it will be 
tested at larger scales.  We will also investigate mean-field models based on the measurements 
of transfer functions in real neurons. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A Model of "dynamically 
realistic" network  yes  This component helps bridging scales  

 

2.1.14 Model for Voltage-Sensitive-Dye imaging (VSDi) (T4.1.3) 
Description of the model 

https://arxiv.org/abs/1703.00698
https://www.biorxiv.org/content/early/2017/11/12/abs/168385
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The UNIC partner has developed a model of the Voltage-Sensitive-Dye imaging signal, based on 
experimental data recorded in awake monkey in the laboratory of F. Chavane (CNRS Marseille). 
The experimentally recorded signal reflects the voltage change in primary visual cortex (V1) after 
the presentation of visual stimuli. According to the experimental system spatial resolution, every 
pixel in data represents the average voltage activity of around one to several thousand neurons. 
We thus modeled every spatial location as a population of excitatory and inhibitory Adaptive 
Exponential (AdEx) integrate and fire neurons. As we are interested in the average voltage of the 
population, we used a mean field model developed in T4.1.3 that describes the time evolution of 
the entire population and gives access to the population firing rate of excitatory and inhibitory 
neurons, νE and νI respectively. The average voltage of the population is then calculated according 
to the shot-noise theory (Destexhe, JCNS, 2009): 

 
where gL,GI,GE and EE, El, EI are conductances and reversal potentials and μV the average 
population voltage. Each mean-field is then arranged over a ring and subpopulations interact with 
each other according to a Gaussian connectivity.  

As a first step, the model has been tested on its capability to describe the response to a single 
viual stimuli. The response, in both model and experiment, is a propagating wave (see Figure 27). 
More than a qualitative accordance, the model reproduces quantitativey the velocity of 
propagation, which is around 0.3 m/s. The model is thus able to compare with VSDi data and to 
reproduce quantitatively and qualitatively the existence of propagating waves in the visual cortex. 

Secondly, the model has been tested on its capability to predict the interaction of colliding 
propagating waves. In the experimental setup, two visual stimuli are presented at different times. 
The collision of the waves results in a suppressive response, i.e. the actual response is lower than 
the linear prediction based on the response to single stimuli separately presented. In the model, 
two different inputs are presented at different times, mimicking the experimental setup, and 
giving rise to colliding waves of response similar to  the experimental protocol. The model predicts 
a sublinear response showing that, also in this case, the mean-field model is able to predict the 
suppression and its propagation (see Figure 28b). 

 
Figure 27 Spatio-temporal response to a stimuli: experiment and model.  
On the left the experimental response to a presented visual stimuli. On the right the response simulated with the 
model. In both cases we observe a wave propagation. Lines show the front of each wave, calculated from its spatial 
derivative. 
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Figure 28 Suppressive interaction of colliding waves.  
A. Experimental data. Top panels: space-time response to a single visual stimuli (two different monkeys). Lower 
panels: Difference between the linear prediction and the actual response to the presentation of two visual stimuli. 
B. Model. Left: response to a single stimulus. Right: suppression signal is calculated as in the experimental data. 

Components 

Component 1554, “Mean-field models of AdEx networks, spontaneous activity and responsiveness” 
(T4.1.3). 

Implementation to platforms 

This model was integrated to the collaboratory and the Model Catalog in SP5. 

Publications 

Zerlaut Y. and Destexhe A. (2017) A mean-field model for conductance-based networks of adaptive 
exponential integrate-and-fire models.   

ArXiv preprint: https://arxiv.org/abs/1703.00698  

Zerlaut Y., Chemla, S., Chavane F. and Destexhe A. (2018) Modeling mesoscopic cortical dynamics 
using a mean-field model of conductance-based networks of adaptive exponential integrate-and-
fire models.  Journal of Computational Neuroscience (in press). 

bioRxiv preprint: https://www.biorxiv.org/content/early/2017/11/12/abs/168385   

Achieved Impact 

This model is now going to be updated according to the developments on the mean-field, e.g. 
including adaptation. 

Conclusion & Outlook 

This model aims at having a direct comparison between population models (mean-field) and 
suitable data measuring the average activity of large population of neurons (VSDi). The model is 
capable of reproducing  experimental data and might be exploited to understand the mechanisms 
standing behind the observed activity. The model will be continued in SGA2, extending towards 
including adaptation and the diversity of experimental transfer functions.  We also aim at including 
this model in the VirtualBrain environment. 

Component Dependencies 

https://arxiv.org/abs/1703.00698
https://www.biorxiv.org/content/early/2017/11/12/abs/168385
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Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1554 

Mean-field models of 
AdEx networks, 
spontaneous activity and 
responsiveness 

Yes This component helps bridging scales 

 
2.1.15  Simplified model of local field potentials (T4.1.4) 
Description of the model 

The UNIC partner has considered the LFP signal generated by a population of neurons firing 
correlated spikes from homogeneous Poisson distribution. The LFP signal was calculated as a linear 
sum of unitary contributions from each spike, which was modelled as a LFP kernel. For the purpose 
of this study, the same LFP kernel was used for all neurons. 

To constrain the model, we analyzed data from rigid electrode arrays (Utah arrays), which allowed 
us to investigate both temporal and spatial aspects of the LFP signals. The properties of the LFP 
in space and time are determined to large degree by the correlations in the neural activity. We 
found that, in human Utah-array recordings, the correlation between unit activity and LFP is 
broad, but if one removes the correlations by denoising, the remaining relation has all the 
properties of unitary fields (Telenczuk et al.,  Nature Sci. Reports 2017). The unitary fields can be 
used as a "kernel" to calculate the LFP from population of neurons, solely from their spiking 
activity. This is the basis of our simplified model of LFPs. 

We simulated the results of this analysis by generating correlated spike trains, and verified that 
the relationship between the population activity and unit activity was very similar to the data 
(Figure 29).   

 
Figure 29 Correlations of simulated population activity (multi-unit activity) with the single-
neuron response of a neuron in the center of the electrode array.  
Left: Cross-correlogram averaged over neurons. Right: Spatial correlation map. 

In a second step, we considered a "kernel" to calculate LFPs from unit recordings.  The kernel 
includes both a temporal and a spatial component (Figure 30). 
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Figure 30 Temporal (left) and spatial (right) component of the simulated LFP kernel.  
Note that the LFP kernel of each cell is centered at the position of the cell (here center of the electrode array) 

To simulate the LFP, one applies a spatio-temporal convolution of the binned population spike 
counts with the LFP kernel, as shown in Figure 31. 

 
Figure 31 Example of simulated LFP 
To verify that our model correctly accounts for the data, we calculated a LFP averaged on spikes 
of one of the simulated single neurons (spike-triggered LFP average, st-LFP; see Figure 32). As 
expected, the st-LFP is extended in space and time. This phenomenon could be responsible for 
broadening of the LFP signals recorded experimentally. 
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Figure 32 The spike-triggered LFP (st-LFP) calculated from simulated LFP. 
Left: Comparison between spike-triggered LFP (red) and the used LFP kernel (blue). Note that the st-LFP is of 
higher amplitude and broader in time due to the effects of the correlations. Right : Spatial component of the st-
LFP. The st-LFP is spatially broader than the LFP kernel (compare with Figure 30, right panel) 

Implementation to platforms 

This model was integrated to the collaboratory and the Model Catalog in SP5. 

Publications 

Telenczuk, B., Dehghani, N., Le Van Quyen, M., Cash, S., Halgren, E., Hatsopoulos, N.G. and 
Destexhe, A.  Local field potentials primarily reflect inhibitory neuron activity in human and 
monkey cortex. Nature Scientific Reports 7: 40211, 2017. 

 
Achieved Impact 

This model is presently being written in a form usable by anyone in the HBP, to calculate LFPs 
from any spiking neuron simulation in HBP.   

Conclusion & Outlook 

This simplified model calculates the LFP from unit activity, based on the kernels calculated from 
human Utah-array recordings.  It can be applied to any spiking neuron simulations.  Three 
extensions are needed: (1) apply the model to a known case where LFP and unit activity are 
known, and compare the modeled LFP with the recorded LFP; (2) compare this model with the 
hybrid scheme for calculating LFPs; (3) release a python package so that any spiking network 
simulation can integrate the LFP signal. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.1.16  Models of local magnetic fields (T4.1.4) 
Description of the model 
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In the last couple years, the UNIC partner has worked on models of the local magnetic field (LMF).  
The LMF is measured in the neuronal tissue, and is therefore the magnetic correspondent to the 
LFP.  However, in contrast to the LFP which is generated by membrane currents, the LMF is mostly 
generated by axial currents which are invisible to the LFP.  We published a mixed experimental 
and modeling work of the LMF generated by muscle fibers (Barbieri et al., Nature Sci Reports, 
2016) and we are now extending this approach to model the LMF generated by a population of 
hippocampal neurons. 

The first part of this modeling work consisted of building a model of the LMF based on experimental 
measurements of LMF using a new device, the Magnetrode (Barbieri et al., 2016).  This study 
recorded the LMF from muscle fibers, which can produce relatively strong magnetic fields.  In 
addition, the propagation of the action potential (AP) in the muscle fiber is well understood and 
there exists computational models that can be used.  Thus, we designed a computational model 
of AP propagation along the muscle fiber, which was modeled as a cylindrical cable composed of 
one thousand compartments of 10 μm length and 40 μm diameter. All compartments had a 
membrane capacitance of 1 μF/cm 2 and were endowed with sodium currents, TEA- and 4AP-
sensitive potassium currents, Kir and leak currents. The central compartment of the cable was 
additionally provided with a mono-exponential excitatory synaptic current. In order to 
characterize the passive and active currents and the synaptic input, we started from the 
parameters obtained from voltage-clamp recordings on xenopus culture myocytes . We then 
adjusted those parameters in order to reproduce the AP shape recorded in the skeletal muscle 
cell. Figure 33 shows the comparison between the average AP across recordings and the simulated 
AP.  

 

 
Figure 33 Comparison between action potential recorded in the mouse soleus muscle (red) 
and simulations.   
All simulations were performed using the NEURON simulation environment (Hines and Carnevale 1997). 

To calculate the LMF, we used the analytical approach developed by Roth and Wikswo (1985) for 
an axon in a nerve bundle, and we generalized it to the case of an arbitray arrangement of cylindric 
cables. The method of Roth and Wikswo (1985) consists in writing, in Fourier frequency space, the 
expression of the potential for each region of different conductivity, as an expansion in the 
eigenfunctions of Laplace’s equation in cylindrical coordinates. The coefficients in these 
expansions were then determined from boundary conditions at the surfaces between regions. By 
differentiating the expressions of the potentials, it is then possible to calculate the current 
densities, through the relationship J = −σ ∇φ, where J, σ and φ represent respectively the current 
density, the conductivity and the potential. From the expressions of the current densities, the 
azimuthal component of the MF was then calculated using Ampere’s law.  Because intra- and 
extra-cellular currents flow in opposite directions, each producing a LMF of opposite sign, we can 
expect that the LMF generated by the extra-cellular currents could screen, at least partially, the 
LMF generated by the intra-cellular currents. Using Ampere’s law permits to evaluate the 
importance of these effects by calculating the contributions due to the different currents involved. 
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The MF generated by the entire muscle was calculated from the MF of each single fiber at different 
distances from the center, by using the superposition principle . The peak-to-peak amplitude of 
the magnetic signal calculated at a close distance from the muscle ranged between 3 and 12 nT, 
when varing the conductivities, σρ and σz , in a range of plausible values. Figure 34 shows that, 
taking into account the effect due to the dimension of the probe, the agreement between the 
theoretical and experimental magnetic signal was excellent, both in its amplitude and temporal 
pattern, for a set of biologically plausible values. 

 

 
Figure 34 Magnetic field generated by the entire muscle. Comparison between experimental 
recordings using magnetrodes (gray; Barbieri et al., 2016), with simulations from a 
computational model comprising 900 fibers 

To understand the magnetic fields generated by neurons, our first approach will be to use that 
model combined with the model of hippocampal slice that we are presently investigating (see 
Annexe : 2.2 Models of hippocampal LFP and local magnetic fields (T4.1.4 )).  This work will be 
done in SGA2. 

References 

Hines, M. L. and N. T. Carnevale (1997). The NEURON simulation environment. Neural computation 
9 (6), 1179–209.  

Roth, B. and J. Wikswo (1985). The electrical potential and the magnetic field of an axon in a 
nerve bundle. Mathematical biosciences 76 (1), 37–57. 

Implementation to platforms 

This model was integrated in the Model Catalog in SP5. 

Publications 

Barbieri, F., Trauchessec, V..  Caruso, L., Trejo Rosillo, J., Telenczuk, B., Paul, E., Bal, T., 
Destexhe, A., Fermon, C., Pannetier-Lecoeur, M. and Ouanounou, G.  Local recording of biological 
magnetic fields using Giant Magneto Resistance-based micro-probes. Nature Scientific Reports 6: 
39330,  2016. 

Achieved Impact 

This model is now used to calculate magnetic fields generated by larger-scale models of the 
hippocampus. 

Conclusion & Outlook 

This model provides a way to calculate the LMF based on detailed NEURON simulations.  It can be 
potentially applied to any model using cellular morphologies, and dendrites.  This model will be 
continued in SGA2, aiming to contribute to understanding magnetic signals at larger scales, such 
as in magneto-encephalography. 

Component Dependencies 

Summarized links to components this key result depends on. 
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Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.1.17 Models of hippocampal LFP and local magnetic fields (T4.1.4) 
See HBP SGA1 M24 D472_ANNEX_restricted – 2.2 Models of hippocampal LFP and local magnetic 
fields (T4.1.4). 

Achieved Impact 

UNIC expect that this model will be extended towards calculating LFPs and magnetic fields 
generated by larger-scale models of the hippocampus. 

Conclusion & Outlook 

UNIC have shown that unitary inhibitory fields which are recorded in the hippocampus are 
originating from the synaptic distribution of basket cells placed on the somatas of pyramidal cells. 
Furthermore, we show that excitatory unitary may also be recordable from the hippocampus and 
that they contribute towards total appearance of the LFP in the hippocampus. This model not only 
tests a biophysical hypothesis concerning the strong contribution of inhibitory synaptic currents 
to LFPs.  It can be applied to generate either simplified models, such as phenomenological models 
of the LFP, or more detailed models, such as large-scale models of neocortex or hippocampus.   

We are presently integrating the calculation of the magnetic field by the hippocampal slice 
population. This work will be done in SGA2. 

 
Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.1.18 Improved LFP model with quasi-active conductances (T4.1.4) 
Description of the model 

NMBU: The local field potential (LFP), the low-frequency part of extracellular potentials recorded 
in neural tissue, is often used for probing neural circuit activity, however, interpreting the LFP 
signal in terms of neural activity is challenging, as in general thousands of neurons contribute to 
the recorded signal (Lindén et al., Neuron, 2011). While the cortical LFP is thought mainly to 
reflect synaptic inputs onto pyramidal neurons, little is known about the role of the various 
subthreshold active conductances in shaping the LFP (Einevoll et al., Nat Rev Neurosci, 2013).  

By means of biophysical modelling, the NMBU partner has obtained a comprehensive qualitative 
understanding of how the LFP generated by single pyramidal neurons (Ness et al., J Physiol, 2016) 
and simple cortical populations (Ness et al., in review by J Neurosci) depends on active 
subthreshold currents, and we have identified the key role of the hyperpolarization activated Ih-
current in shaping the LFP.  

In particular it was found that the Ih-conductance could cause a strong peak in the LFP power 
spectrum (LFP-PSD) for synaptic input that selectively targeted the apical dendrite of either 
single-cells or cortical populations (Figure 35, top row, Ness et al., 2016). Such peaks are 
traditionally interpreted in terms of oscillatory neuronal spiking activity, but importantly, these 
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results demonstrate that peaks in the LFP-PSD can also be caused by the Ih-conductance in absence 
of any network oscillations. 

 

 
Figure 35 The LFP power spectrum (LFP-PSD) from cell populations with 4,000 L5 pyramidal 
cells receiving synaptic input with different levels of correlations (columns) to the apical 
dendrite (top row) or uniformly distributed (bottom row).  
The cell models either contain all original active conductances (red), or all active conductances have been removed 
(black). It was confirmed that the difference between the two cases was caused almost exclusively by the Ih-
conductance. 

Furthermore, it was demonstrated that cortical populations which received uniformly distributed 
(Figure 35, bottom row) and correlated synaptic input, exhibited a very strong Ih-induced low-
frequency amplification of the LFP-PSD, and the strength of this amplification could be more than 
two orders of magnitude (Ness et al., in review). 

These two different effects of the same Ih-conductance based on the parameters of the synaptic 
input, i.e., a resonance peak in the LFP-PSD for distal apical synaptic input, and a low-frequency 
amplification for uniformly distributed correlated synaptic input, was reproduced for many 
different cell models, and under many different circumstances, demonstrating that it was a robust 
phenomenon. Using quasi-active conductances we were able to obtained a good qualitative 
understanding of the underlying mechanisms, and make experimentally testable predictions for 
when and how the Ih-conductance can shape the LFP. 

We believe that this work is an important step in the direction of a better understanding of the 
cortical LFP signal, which is needed to take full advantage of this brain signal in the future. 

Implementation to platforms 

Component 896, “Improved LFP model with quasi-active conductances” (T4.1.4). 

Implementation to platforms 

Model Catalog  entry name: Effect of active conductances on LFP from cortical population. 

The model is also implemented in its own Collab: “Active conductances and LFPs from single 
cells“, where the model can be used to reproduce the main findings from Ness et al. (2016): 

https://collab.humanbrainproject.eu/#/collab/5170/nav/40008 

Publications 

https://collab.humanbrainproject.eu/#/collab/5170/nav/40008
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Ness, Remme, Einevoll (2016) Active subthreshold dendritic conductances shape the local field 
potential. J Physiol 594:3809–3825. 

Ness, Remme, Einevoll, h-type membrane current shapes the local field potential (LFP) from 
populations of pyramidal neurons. Under review by Journal of Neuroscience. 

Achieved Impact 

This model has proven very valuable in understanding the effect of subthreshold active 
conductances on the LFP, and the publication on the effect of active conductances on the LFP 
from single neurons was chosen for a Perspective article by Journal of Physiology (Nolan, 2016, 
Local field potentials get funny. J Physiol 594:3487–3488). 

The developed model has also been adopted and used in at least one independent research 
project: Aspart et al., Differential polarization of cortical pyramidal neuron dendrites through 
weak extracellular fields, bioRxiv 216184. 

We expect the model to be very useful for estimating the effect of active conductances on brain 
signals like the LFP, ECoG, EEG and MEG in future studies with larger neural networks. 

Conclusion & Outlook 

The main goal of “WP4.1 – Bridging scales” is to provide models linking different scales of 
investigation, and we have developed a model for investigating how the microscopic subthreshold 
active ion-channels can effect the mesoscopic LFP signal from single cells and small neural 
populations. This model will in the years to come be equally applicable to macroscopic large-scale 
neural network models and predictions of non-invasive brain signals like the EEG and MEG. In our 
work we identified the potential key importance of the Ih-conductance in shaping the LFP from 
cortical populations, and used our model to make experimentally testable predictions of how and 
when the Ih-conductance will affect the LFP.  

Component Dependencies 

Summarized links to components this key result depends on. 

 

Component 
ID  

Component Name HBP 
Internal 

Comment 

101 Nmc-portal (service) Yes We used cell models from the nmc-portal: 
https://bbp.epfl.ch/nmc-portal 

208 NEURON (software) No The NEURON simulator was used for all neuron 
simulations 

 

2.1.19  Simplified EEG models (T4.1.4) 
Description of the model 

The NMBU partner has developed a simplified and memory efficient formalism for calculating 
electroencephalography (EEG) signals from neural simulations with detailed multi-compartment 
cell models. This will help relating large-scale brain simulations to experimentally measurable 
quantities like the EEG, and also greatly simplify analysis by simplifying the link between the EEG 
signal and the underlying neural sources. 

Extracellular potentials arising from multi-compartment cell models are often calculated by a 
compartment-based approach (CB model), by summing the contributions to the extracellular 
potential from each cellular compartment (Figure 36A). We have developed and implemented an 
alternative dipole-based approach (DB model), where the extracellular potential following 
arbitrary neural activity is approximated by a single time-dependent dipole (Figure 36B). The 
extracellular potential from a single cell can have a complex shape close to the cell (Figure 36C), 
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and the dipole approximation is often not suited to represent the extracellular potential in this 
region (compare Figure 36C and Figure 36D). However, the extracellular potential will tend 
towards a more dipolar shape as the distance from the cell increases, making the the DB model 
suitable for approximating the contributions from cell models to signals such as the EEG and MEG, 
which are measured non-invasively outside the head (compare Figure 36E with Figure 36F). This 
approach can easily be added to existing large-scale network simulations, where each cell can be 
represented as a single current dipole, or the dipoles of all cells in different neural sub-populations 
can be summed  to obtain population dipoles, greatly simplifying the connection between the EEG 
and the underlying signal generators. 

 

 

 

To calculate the EEG signals arising from neuronal current dipoles requires a head model. A good 
starting point for building intuition and benchmarking more complicated numerical methods is the 
analytic four-sphere model, which takes into account the different electrical conductivity of the 
brain, cerebrospinal fluid (CSF), skull and scalp (Figure 37A). We found serious typographical errors 
in formulas presented in literature (Nunez & Srinivasan, 2006, Electric Fields of the Brain), and 
presented in Næss et al. (2017) a corrected version of the four-sphere model, with accompanying 
open-source code, that had been numerically validated by the Finite Element Method (FEM; Figure 
37B, Figure 37C). Note that the obtained current-dipoles can also be used in combination with 
arbitrarily complicated head models. 

Figure 36 Extracellular potentials become increasingly 
dipolar with distance from the source.  

A: A single synaptic input (red dot) to a pyramidal cell model gives 
rise to an extracellular potential. In the compartment-based model, 
the contribution to the extracellular potential from the current of 
each cell compartment (red arrows) is summed. B : In the dipole-
based model, a single time-dependent dipole is instead used to 
approximate the contribution to the extracellular. C, D: Cross-
section of the extracellular potential close to the cell for a chosen 
time-point. E,F: same as C,D but showing a larger region (zoomed 
out). 



 

 

 

 

 

D4.7.2 (D25.2 D33) SGA1 M24 ACCEPTED 180907.docx PU = Public 07-Sep-2018 Page 46 of 111 
 

 

 

 

Implementation to platforms 

Component 902, “Simplified EEG models” (T4.1.4). 

Implementation to platforms 

The four-sphere model has been implemented in the model catalog: “Corrected Four-Sphere Head 
Model for EEG Signals” 

Publications 

Næss, Chintaluri, Ness, Dale, Einevoll, Wójcik, 2017, Corrected Four-Sphere Head Model for EEG 
Signals. Front Hum Neurosci 11:1–7. 

Næss, Ness, Hagen, Halnes, Halgren, Dale, Einevoll. Biophysical modeling of single-neuron and 
population contributions to ECoG, EEG and MEG signals. In preparation. 

Achieved Impact 

This model is already in use in several different research projects, and we expect it to be very 
valuable for understanding the biophysical origin of the EEG signal. 

Conclusion & Outlook 

We have implemented and verified the calculation of current dipoles, based on arbitrary neural 
activity in multi-compartment neurons, and a natural next step is to add this calculation of current 
dipoles to existing large-scale network simulations. This will allow for predictions of EEG signals 
based on either the simple four-sphere head model, or more realistic head models. The relative 
contribution to the EEG signal from different neuronal sub-populations can then be quantified, 
and we can test the feasibility of obtaining direct mappings from sub-population firing rates and 
population current dipoles. If feasible, this would allow for predictions of EEG signals directly from 
point-neuron network simulations or mean-field models while still being firmly rooted in the 
underlying biophysics. 

This four-sphere model will also be implemented in the open-source software LFPy2.0, which runs 
on top of the NEURON simulator, allowing for easy simulation of EEG and MEG signals within a 
well-established software tool.  

Component Dependencies 

Summarized links to components this key result depends on. 

Figure 37  
A: Four-sphere head model, with different conductivity 
for the brain, cerebrospinal fluid (CSF), skull and scalp. 
B: A finite element mesh of the four-sphere model for 
validation of the analytic four-sphere model. C: The 
analytic and the FEM version of the four-sphere models 
give indistinguishable EEG surface potentials for 
current dipoles in cortex (Næss et al. 2017) 
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Component 
ID  

Component Name HBP 
Internal 

Comment 

84 Simplified EEG models Yes Human cell models were used for estimating the 
EEG contribution of different cell-types 

209 
NEST – The Neural 
Simulation Tool 
(software) 

No NEST was used for network simulations 

660 NEST Support for 
Modellers (service) Yes We received support in developing our NEST 

simulations 

208 NEURON (software) No The NEURON simulator was used for biophysically 
detailed neuron simulations 

896 
Improved LFP model with 
quasi-active 
conductances 

Yes This framework will be used to investigate the 
impact of active conductances on the EEG signal 

 

2.2 Generic Models of Brain circuits (WP 4.2) 
2.2.1 Simplified network models of different cortical areas (T4.2.1) 
The JUELICH partner has developed a layer-resolved multi-area spiking model of all vision-related 
areas of the macaque cortex (Figure 38). The model builds on a 1 mm2 cortical microcircuit model 
which was developed previously (Potjans and Diesmann, Cereb Cortex, 2014) and which we ported 
to different platforms in this Task. The models consist of excitatory and inhibitory leaky integrate-
and-fire neurons connected with population-specific connection probabilities and all neurons 
receiving an independent, homogeneous Poisson drive. Each area in the multi-area model is 
represented by a 1 mm2 microcircuit with the full density of neurons and synapses. During the past 
year, we have described the porting of this model to the Collaboratory (Senk et al., LNCS, 2017), 
SpiNNaker (van Albada et al., in revision), and Open Source Brain (Gleeson et al., BioRxiv, 2018). 

As a first step toward the multi-area model, a population-resolved connectivity map was derived 
from axonal tracing data, cortical architecture and geometry, and statistical regularities (Schmidt 
et al., Brain Struct Func, 2017; Figure 38). Assuming a constant volume density of synapses, a 
hierarchical trend in neuron density yields larger numbers of synapses per neuron (indegrees) in 
higher areas. Statistical mapping of the laminar location of synapses to the location of the target 
cell bodies leads to the prediction that feedback also targets layer 4 neurons. The combined 
quantification of neuronal population sizes and connectivity enables translation between different 
connectivity measures, such as connection probabilities and indegrees, and yields the fundamental 
data needed to formulate dynamical models of the system at cellular resolution.  

Based on this connectivity matrix and model definition, the JUELICH partner has performed large-
scale simulations on the JUQUEEN supercomputer and validated the model by comparisons with 
experimental resting-state data (Schmidt et al., in revision) including V1 spiking data (Chu et al., 
CRCNS.org, 2014; Figure 39) and fMRI functional connectivity (Shen et al., J Neurosci, 2015; Fig. 
1D). The model reproduces slow fluctuations not present in the isolated microcircuit model. The 
correspondence between predicted and measured spiking activity and functional connectivity is 
best for intermediate cortico-cortical connection strengths, where the network is in a metastable 
regime. This matches earlier work on multi-area models with simplified equations for the 
individual areas (Deco et al., PNAS, 2009; Cabral et al., NeuroImage, 2011, Deco et al., J Neurosci, 
2012), and shows how the microscopic and macroscopic dynamics of cortex can be reconciled.  

Activity in the model propagates predominantly in the feedback direction, akin to findings during 
visual imagery and sleep (Nir et al., Neuron, 2011; Dentico et al., NeuroImage, 2014; Sheroziya 
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and Timofeev, J Neurosci, 2014). Our recent work shows that this is due to the most unstable 
eigenvector of the network’s effective connectivity having its largest entries in parietal cortex, 
where activity bursts originate in the model and propagate to temporal and occipital areas. This 
is a global network effect, as the stability of the areas in the model considered separately is not 
systematically related to the order of area activations. 

Stronger cortico-cortical synapses onto inhibitory than onto excitatory neurons keep the model in 
a regime with plausible spike rates. Accordingly, a population-resolved Granger causality analysis 
shows more significant cortico-cortical interactions onto inhibitory than onto excitatory 
populations. Furthermore, the analysis shows that substantial effective communication can arise 
over a range of connection strengths due to the influence of the dynamical state of the 
populations, but that the weakest connections do not contribute significantly to communication. 
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Figure 38 Construction principles of the model.  
Top: Determination of the population sizes. Bottom: Construction of the model connectivity. Local connectivity 
within areas is based on the microcircuit model of Potjans and Diesmann (2014). Cortico-cortical connections are 
first determined on the area level from binary data from the CoCoMac database and quantitative tracing data from 
Markov et al. (2014), which is completed using the exponential fall-off of connection density with inter-areal 
distance (Ercsey-Ravasz et al., 2013). The resulting connectivity spans six orders of magnitude, as shown in the 
matrix plot of area-averaged indegrees (center bottom). Synapses between each pair of cortical areas are then 
distributed over source and target layers based on layer-specific tracing data from Markov et al. (2014) and 
CoCoMac. Synapses in the receiving area are subsequently assigned to cells according to layer- and cell-type-
specific dendritic densities from Binzegger et al. (2004). These derivations result in disctinct laminar patterns 
between feedforward, feedback, and lateral connections. Based on a theoretical method using mean-field theory 
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(Schuecker et al., PLoS CB, 2017), the resulting connectivity matric is refined to improve the phase space of the 
network. 

 
Figure 39 Comparison of the V1 spiking dynamics with spike recordings from 140 neurons 
across all layers in V1 of lightly anesthetized macaque (Chu et al., CRCNS.org, 2014).  
(A) Spectrogram of the spike histogram across all neurons. (B) Raster plot of spiking activity for the initial recording 
phase. (C) Raster plot of spiking activity in the later recording phase, with higher synchrony presumably indicating 
drowsiness. Neurons are sorted according to depth of the recording electrodes with neurons closest to the surface 
of the brain at the top. (D) Power spectral density of spike histograms for the three different simulations with weak 
(χ=1), intermediate-strength (χ=1.9), and strong (χ=2.5) cortico-cortical synapses. (E) Comparison of simulated 
power spectral density with χ=1.9 (black) with experimental recording during low-fluctuation (green) and high-
fluctuation (purple) phases and the full recording (yellow), and simulated activity of 140 neurons (grays) and all 
neurons (black) across all populations of area V1. Inset : enlargement for frequencies up to 5Hz. (F) Distribution 
of spike rates across single cells in experimental data (green, purple, yellow) and for simulated spike trains across 
all layers and populations of V1. 

Implementation on platforms 

The microcircuit model of Potjans and Diesmann was already implemented on the High-
Performance Analytics & Computing platform, and in this Task has been additionally ported to the 
Collaboratory and to the Neuromorphic Computing Platform. 

The multi-area model has been implemented on the High-Performance Analytics & Computing 
platform, has been made available within HBP via the collaboratory, and will be made available 
via GitHub. Both the microcircuit model and the multi-area model have been added to the model 
catalog. 

Publications 

Gleeson P, Cantarelli M, Marin B, … van Albada SJ, van Geit W, R Silver RA. Open Source Brain: a 
collaborative resource for visualizing, analyzing, simulating and developing standardized models 
of neurons and circuits (2018) bioRxiv:29484 

Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ. Multi-scale account of the network 
structure of macaque visual cortex (2017) Brain Struct Func. 

Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, van Albada SJ. A multi-scale layer-resolved 
spiking network model of resting-state dynamics in macaque cortex. In revision. 

Schuecker J, Schmidt M, van Albada SJ, Diesmann M, Helias M. Fundamental activity constraints 
lead to specific interpretations of the connectome (2017) PLoS CB 13(2):e1005179. 
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Senk J, Yegenoglu A, Amblet O, Brukau Y, Davison A, Lester D, Lührs A, Quaglio P, Rostami V, 
Rowley A, Schuller B, Stokes A, van Albada SJ, Zielasko D, Diesmann M, Weyers B, Denker M, Grün 
S. A Collaborative Simulation-Analysis Workflow for Computational Neuroscience Using HPC (2017) 
In: Di Napoli E, Hermanns MA, Iliev H, Lintermann A, Peyser A (eds) High-Performance Scientific 
Computing. JHPCS 2016. Lecture Notes in Computer Science, vol 10164, pp. 243–256. Springer, 
Cham. 

van Albada SJ, Rowley AG, Senk J, Hopkins M, Schmidt M, Stokes AB, Lester DR, Diesmann M, 
Furber SB. Performance comparison of the digital neuromorphic hardware SpiNNaker and the 
neural network simulation software NEST for a full-scale cortical microcircuit model. In revision. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

777  4x4 mm2 motor cortex 
model (model) Yes Generation of cortical mesocircuit model 

944 Full density model of 
cortical microcircuit Yes Model has been published as Potjans TC and 

Diesmann M (2014) 

348 Component 115-3: 
Elephant (software) Yes Software used for analysis of neural activity data 

1207 Large-scale model of 
visuo-motor integration Yes Model 

885 Macaque connectivity 
database (CoCoMac) No CoCoMac connectivity database (axonal tract-

tracing) in a standard nomenclature 

660 NEST Support for 
Modellers Yes Component provides support to groups using NEST 

as simulation tool 

209 NEST - The Neural 
Simulation Tool Yes Software for simulation of mesocircuit model 

330 HPC systems at JSC Yes HPC infrastructure used for simulation 

517 
Rule-and data-based 
connectivity generation 
in NEST 

Yes Software 

679 

SP6-T6.3.6-SGA1-Tools 
for configuring 
stimulation and recording 
in NEST simulations 

Yes Software 

682 
SP6-T6.3.6-SGA1-Tool for 
LFP recording in NEST 
simulations 

Yes Software 

419 Python No Software 

1851 
T3.2.3(1) Detailed 
dynamical laminar 
organization in different 

Yes Data 
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cortical areas (under 
consideration) 

373 Collaboratory Storage 
Service Yes Data storage for experimental data used in 

reproducible analysis workflow 

2678 

Prototype 
implementation of 
unified connectivity 
generation scheme for 
very large networks 

Yes Software 

1030 
Mean-field models of 
interacting populations of 
rate and spiking neurons 

Yes Model  

861 

SP2- Selective attention 
in perception and 
learning in humans and 
monkeys 

Yes Model 

862 

SP2- Ultra-high field fMRI 
of sub-units in higher-
level visual areas and 
face areas in human and 
monkey  

Yes Data 

662 NEST Requirements 
Management Yes Service 

237 VisNEST No Software 

819 
Mouse cortical regions for 
object recognition 
learning 

Yes Data 

2907 Synapse turnover in long-
range projections Yes Data 

324 

Federated data storage 
with flexible permission 
management and remote 
access 

Yes Data storage for experimental and simulated data 
to be used in validation workflow 

 

2.2.2 Model for neuron-glia interactions and dimensionality reduction (T4.2.2) 
Description of the new model 

The TUT partner has worked on modeling neuron-astrocyte interactions in order to provide 
computational models that can facilitate better understanding of the role of glial cells, specifically 
the astrocytes, in synaptic and network level plasticity and learning (Havela et al. 2017). The 
developed model is complex, consisting of a large number of equations. In brief, the well-
established biophysical and biochemical mechanisms are described for the neuronal 
compartments. The astrocyte compartment of the model is presented as follows. The differential 
equation for the astrocytic calcium concentration is given as  
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 ,  

 

where the major calcium processes in the astrocyte process are described by IP3R channel (JIP3R), 
leak current into the cytoplasm from the ER (JleakER), and sarco/ER calcium-ATPase (SERCA) pump 
(JSERCA). The calcium and IP3 concentrations, as well as the active fraction of IP3Rs, are modelled 
according to several earlier studies further analysed by Manninen et al. 2017 and Manninen et al. 
(in press). The differential equation for the astrocytic IP3 concentration is given as 

 

 , 

 

where IP3
* = 0.16 μM  is the baseline of IP3 in the cytoplasm in the resting state, τIP3 = 7000 ms is 

the IP3 decay rate, rIP3 = 0.0005 ms-1 is the IP3 production rate, and [2AG] is the concentration of 
endocannabinoid (2-AG) released from the postsynaptic neuron. A classical stimulation protocol 
of long-term plasticity was used to test the model functionality. 

 

 
Figure 40 Simulation of the model by varying the frequency of the stimuli and the volume of 
the postsynaptic terminal (equivalent to spine).  
Stimulation frequencies used were 1 Hz, 5 Hz, and 10 Hz. Top row) Postsynaptic calcium levels with spine radius 
0.5, 1, and 2µm. Middle row) 2-AG production with spine radius 0.5, 1, and 2µm. Bottom row) Astrocytic calcium 
responses with spine radius 0.5, 1, and 2 µm. (Havela et al. 2017). 

As an extension of the work, dimensionality reduction was applied to a nonlinear mathematical 
model of synaptic signal transduction pathway related to neuron-astrocyte interactions (Lehtimäki 
et al. 2017). A combination of Proper Orthogonal Decomposition (POD) and Discrete Empirical 
Interpolation Method (DEIM) was used to simulate the system dynamics in a lower dimension 
without losing the complexity of the model. This a fundamental step required to analyze the 
system dynamics for the mathematical abstraction of astroglial functions and, consequently, for 
novel plasticity algorithms. 

In summary, we report here the first results of a model that has the potential to become a 
prototype synapse model involving neuron-glia interactions to modulate synapses in network 
models. The integrated model was validated against typical neuronal spiking and astrocyte calcium 
excitability data. The model was able to capture the dynamical responses of both neurons and 
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astrocytes during the simulation of the full model when varying the frequency of the stimuli and 
the volume of the postsynaptic neuron compartment (Figure 40). As an extension of the work, 
dimensionality reduction was shown to consume considerably less computational resources than 
the original model. Dimensionality reduction is an essential theoretical tool for improving the 
scale and quality of future computational models of the brain by connecting reduced small scale 
models via the inputs and outputs to form optimally performing large scale models as well as for 
abstracting the dynamics of complex biophysical models. 

 

Implementation to platforms 

Component ID 70: Astrocyte neuron interaction SYNAPSE model (ANI model) (T4.2.2.). 

Implementation to platforms 

This model was integrated to the collaboratory and the Model Catalog in SP5. 

Publications 

R. Havela, T. Manninen, A. Saudargiene, M.-L. Linne. Modeling neuron-astrocyte interactions: 
towards understanding synaptic plasticity and learning in the brain. Lecture Notes in Computer 
Science 10362 (eds. D.-S. Huang et al.), pp. 157-168, 2017.  

https://link.springer.com/chapter/10.1007%2F978-3-319-63312-1_14   

M. Lehtimäki, L. Paunonen, S. Pohjolainen, M.-L. Linne. Order reduction for a signaling pathway 
model of neuronal synaptic plasticity. Proceedings of the 20th IFAC World Congress, 50(1): 7687-
7692, 2017. 

https://www.sciencedirect.com/science/article/pii/S2405896317316385 

Achieved Impact 

T4.2.2. has ongoing discussion with SP6 (specifically T6.4.3.) to incorporate the neuron-astrocyte 
interaction model as part of the somatosensory and other simulation models. Dimensionality 
reduction was applied to the model to facilitate the analysis of synapse and network model 
dynamics and development of plasticity algorithms with SP4 collaborations. Novel results were 
obtained as mathematical model order reduction has not been applied in neuroscience without 
linearization of the mathematical model and never to the model type used here. In addition, the 
new models were presented to gliobiologists in several meetings in 2017, both at HBP and 
externally. The comments were encouraging and several scientists in the field contributed their 
knowledge to the development of T4.2.2. models. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A Astroglia model 
evaluation and analysis Yes 

Evaluation and analysis of simulated data for 
construction of new neuron-astrocyte interaction 
model 

358 Collaboratory Jupyter 
Notebook No Software/Service 

 

2.2.3 Evaluation and reproducibility of synapse and network models (T4.2.2) 
Description of the evaluation and reproducibility studies 

The TUT partner has, in addition to development of the new model, done evaluation and 
reproducibility studies on existing glial models, both for synapses and networks (more than 100 

https://link.springer.com/chapter/10.1007%2F978-3-319-63312-1_14
https://www.sciencedirect.com/science/article/pii/S2405896317316385
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models published by the end of 2017). Two publications (Manninen et al. 2017, Manninen et al. 
2018) summarize the results of these extensive evaluations. We conclude that most of the models 
are generic in nature, not describing any specific brain region, and they were generated from a 
small set of previously published models without clear explanation what was built on top of the 
previous models and what new predictions the models were able to show. Furthermore, only a 
few of the models are available online which makes it difficult to reproduce the simulation results 
and further develop the models.  

 

Implementation to platforms 

Component ID 70: Astrocyte neuron interaction SYNAPSE model (ANI model) (T4.2.2.).  

Component ID 973: Astrocyte-neuron interaction NETWORK model (ANN model) (T4.2.2.). 

Implementation to platforms 

The reports (the publications) were integrated to the collaboratory (HBP SP4 Collab: Storage 
repository ‘TUT’), with links to reimplemented models in the model repositories. The four models 
reimplemented in Python and used in Manninen et al. 2017 can be found in ModelDB, Accession 
number 223648 (https://senselab.med.yale.edu/ModelDB/). 

Publications 

T. Manninen, R. Havela, M.-L. Linne. Reproducibility and comparability of computational models 
for astrocyte calcium excitability. Frontiers in Neuroinformatics 11:11, 2017. 

https://www.frontiersin.org/articles/10.3389/fninf.2017.00011/full  

T. Manninen, R. Havela, M.-L. Linne. Computational models for calcium-mediated astrocyte 
functions. Frontiers in Computational Neuroscience (in press; doi: 10.3389/fncom.2018.00014). 

https://www.frontiersin.org/articles/10.3389/fncom.2018.00014/abstract  

Achieved Impact 

The evaluation and reproducibility work on glial models has been shared with several other SPs 
and tasks, including SP4, SP6, specifically T6.4.3., and SP9. T4.2.2 has been in contact with the 
developers of T6.4.3. and made visits to Geneva and Lausanne to discuss about the component. 
The work of T4.2.2. will influence the development of biophysically-detailed modeling of glial 
functions in different brain regions and model types. The work was also instrumental for the 
development of the new model (Havela et al. 2017, Lehtimäki et al. 2017). 

Conclusion & Outlook (TUT) 

The new model, and its background material, aims to help integrate the two important 
components of the brain, the conventionally modeled neuronal system with the less conventionally 
modeled glial system. This is an important step in SP4 while seeking to understand the 
neuromodulatory role of astrocytes in large-scale neuronal network dynamics, plasticity and 
learning. Although there are more than 100 models available we showed that none of the existing 
models have the capacity to properly represent the cortical astrocytes in plasticity and learning 
and therefore new validated models are required. The developed model will be utilized in the 
next period, in particular cortical network dynamics will be studied using a variety of influences 
from glial cells in synaptic and in extrasynaptic locations. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

358 Collaboratory Jupyter 
Notebook No Software/Service 

https://senselab.med.yale.edu/ModelDB/
https://www.frontiersin.org/articles/10.3389/fninf.2017.00011/full
https://www.frontiersin.org/articles/10.3389/fncom.2018.00014/abstract
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2.3 Learning and Memory (WP4.3) 
2.3.1 STDP for structural Plasticity (WP4.3) 
The EPFL Partner has worked on the problem of structural plasticity: Experimental results of many 
labs over the last 20 years have shown that synaptic contacts can appear or disappear, but that a 
pair of nearby cortical pyramidal neurons has either no contact at all or 4-8 contacts. The EPFL 
partner has developed a mathematical model that summarized synapse formation, growth, and 
deletion in a small number of phenomenological equations. These equations include Hebbian and 
anti-Hebbian terms that depend on spike timing as well as heterosynaptic terms that enable to 
control of firing rates.  

Key findings have been 

1) The synaptic plasticity model is intrinsically stable even if there are no hard bounds or soft 
bounds; 

2) The synaptic plasticity model enables solutions such that some presynaptic neurons make 
multiple connections onto a given postsynaptic one whereas others make not contact at all; 

3) The distribution of synaptic contact numbers is bimodal, similar to those observed in 
experiments; 

4) The time scale of synapse elimination and synapse survival is consistent with experiments; 

5) The synaptic plasticity model is suitable for large networks 

6) Large-scale simulations of a simplified model of barrel cortex showed complex reorganization 
of cortical connectivity after a simulated lesion of whisker input. 

The schematics of the model is shown in the next figure: 

 

 
Figure 41  
(a) Each presynaptic neuron can make multiple (up to 10) contacts onto the same postsynaptic neuron. (b) These 
contacts can grow, shrink, or disappear according to a local STDP learning rule that has Hebbian and anti-Hebbian 
terms. (c) The stable state of the learning rule is such that many presynaptic neurons make no connection at 
(number of contacts = 0). However, those that establish a connection, make about 4-8 contacts. Two contacts or 
10 actual contacts are very rare. (d) The total connection weight wj is the sum over all its weights wj,k. Mathematical 
analysis of the learning rule shows that solutions with m contacts of equal weight exist if m>2. Solutions correspond 
to the intersection of the straight dashed lines (for different values of m) with the solid line. Contact weights grow 
in the red regime and decrease in the blue regime. 
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Achieved Impact 
Short list, or narrative, outlining which impact has been achied to-data based on this result. 

• The results have been published (print and free online) in the highly competitive journal 
Cerbral Cortex. M. Deger, A. Seeholzer and W. Gerstner (2018)  
Multi-contact synapses for stable networks: a spike-timing dependent model of dendritic spine 
plasticity and turnover.  

Cerebral Cortex doi: 10.1093/cercor/bhx339 

• The code is available online https://github.com/mdeger/nest-
simulator/blob/stdp_structpl_synapse/models/stdp_structpl_connection_hom.h 

• The code has been integrated into NEST as part of the HBP platform initiative 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

66 
Plasticity: STDP for 
structural Plasticity 
(STDPstructural)  

No This component has been crucial for our results 
published in the paper 

1066 
Plasticity models: SP4 
(theory) T 4.3.1. synaptic 
plasticity and learning  

No This component provided the generic framework 
for the modelling efforts 

65 

Plasticity: STDP with 
heterosynaptic plasticity 
and homeostasis for 
memory formation 

No This component provided the basis for component 
66 (see above) 

209 NEST the neural 
simulation tool  No 

This component provided the basis for the 
simulation done in this paper.  

In addition, the code of the model has now been 
integrated into NEST. 

 

2.3.2 Somato-dendritic prediction error learning under imperfect conditions (WP4.3) 
The UBern partner has worked on the paradigm of somato-dendritic prediction error learning 
(Urbanczik & Senn, 2014). The main focus lay on exploring the functionality of the learning rule 
in more realistic settings which prohibit analytical analysis. The plasticity rule relies on comparing 
somatic firing to the firing rate based on a dendritic estimate, and on utilizing potentiation and 
depression to drive this difference to zero. Our work focused on the implications for learning that 
follow from various model components that were introduced to reproduce STDP plasticity 
experiments. 

Key findings have been 

• Multiple model components can lead to a systematic bias in the learning rule, precluding 
functional learning for even very simple tasks. Among these are spiking currents and the 
associated refractory periods, or probabilistic action potential backpropagation 

• The dendritic estimate of the somatic firing rate can be used to restabilize learning at discrete 
fixed points, trading off stability and accuracy 

https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx339/4780821
https://github.com/mdeger/nest-simulator/blob/stdp_structpl_synapse/models/stdp_structpl_connection_hom.h
https://github.com/mdeger/nest-simulator/blob/stdp_structpl_synapse/models/stdp_structpl_connection_hom.h
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• This already allows for useful learning in stereotyped learning tasks that focus on qualitative 
seperations in levels of activity, as already reported for unsupervised and reinforcement 
learning tasks 

• For supervised learning, multiple dendrites can be combined in a way such that the convex 
combination of all their unreliable estimates leads to a close approximation of the learning 
signal (see figure for an illustration in a simplified setup) 

• This coding scheme makes specific predictions about the kind of voltage-gated conductances 
we would expect to find in spines from different dendritic branches 

 

 

Figure 42  

Left: The somatic firing rate in blue and the estimates thereof of three dendrites. Below: a periodic signal (red) is 
taught. Synaptic plasticity of synapses impinging onto the dendrites (green) convex-combine in the soma (blue) 
that progressively improves its tracking of the teacher through learning. For the periods shown, the teacher is 
turned off, i.e. the traces represent the current state of learning. For these simulations, spiking currents and the 
voltage backflow into the dendrite are set to zero. 

 

 

Achieved Impact 

The code is partly available on https://github.com/unibe-cns/STDP_Multicompartment. The 
paper is an extension of our previous model on dendritic error-backpropagation, Schiess, Urbanczik 
& Senn, PLoS Comp Biol 2016 (https://doi.org/10.1371/journal.pcbi.1004638), with code 
available at https://github.com/unibe-cns/dendriticBackprop 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1032  

Plasticity: Dendritic 
predictive plasticity that 
reproduces STDP data 
(Algo STDP predictive)  

Yes This component built the basis for the model 
considered here 

 

https://github.com/unibe-cns/STDP_Multicompartment
https://doi.org/10.1371/journal.pcbi.1004638
https://github.com/unibe-cns/dendriticBackprop
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2.3.3 Natural gradient learning for spiking neurons (WP4.3) 
See Deliverable CDP5 1.1 Natural gradient learning for spiking neurons 

 

Collaboration between SP4 (UBern) and SP9 (UHeidelberg) involving CDP5 

Elena Kreutzer, Mihai Petrovici, Walter Senn (UBern) 

 

2.3.4 Sequence learning by shaping hidden connectivity (WP4.3) 

Please refer to Deliverable CDP5 - 1.2 Sequence learning by shaping hidden connectivity  for details 
of the model. 

 

Collaboration between SP4 (UBern) and SP9 (UHeidelberg) via CDP5 
Kristin Völk, Mihai Petrovici, Walter Senn (UBern) 

 

2.3.5 Error-backpropagation across cortical areas (WP4.3) 
Please refer to Deliverable CDP5 - 1.3 Error backpropagation across cortical areas 

for details of the model. 

 

Collaboration between SP4 (UBern),  SP9 (UHeidelberg) and external partner (UMontreal, YB) 
João Sacramento, Rui Costa, Yoshua Bengio, Walter Senn (UBern) 

 

2.3.6  Synaptic correlates of working memory and its capacity (WP4.3)  
The Weizmann partner has worked on developing the synaptic theory of working memory and 
understanding within the framework of this theory of why working memory capacity is limited to 
4 items for most people. This result is known from numerous behavioural experiments but its 
neuronal mechanism is unknown. The Weizmann partner constricted a recurrent neural network 
model with short-term synaptic plasticity (STP) and used analytical derivations and numerical 
simulations to relate the working memory capacity to parameters characterising short-term 
plasticity. The key insights from this project are: 

(i) Recurrent networks with STP can maintain several items in working memory via 
periodic brief reactivations (population spikes, or PSs) of corresponding neuronal 
representations. 

(ii) Working memory capacity scales with the time constants of synaptic depression and 
facilitation but decreases with the decay time constant of synaptic currents. 

(iii) Working memory can be regulated by external excitatory input, which has to be 
above a critical value. 

(iv) When the external input dips below the critical value, all items are removed from 
working memory. 

The architecture of the network and example of working memory is shown below. 
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Figure 43  
(A) Network architecture: a number of recurrent excitatory neural clusters, shown in different colors, reciprocally 
connected to an inhibitory neuron pool, shown in black. (B) Model of a synaptic connection with STP. In response 
to a presynaptic spike train (lowel panel), the neurotransmitter release probability u increases and the fraction of 
available neurotransmitter x decreases (middle panel), representing, correspondingly, synaptic facilitation and 
depression. The effective synaptic efficacy is proportional to ux (upper panel. (C) Network simulation with five 
loaded memory items. Upper panel : firing rates of different clusters. Five clusters are sequentially stimulated by 
brief external excitation (shaded colored rectangles). Different colors correspond to different clusters as in A. 
Following the stimulation, four clusters continue sequential activation in the form of PSs while the remaining item 
fades away. 

 

Achieved Impact 

Short list, or narrative, outlining which impact has been achied to-data based on this result. 

The results of this project were published in the following publication in Neuron, one of the top 
three journals in the neurosciences: 

Y. Mi, M. Katkov & M. Tsodyks. Synaptic correlates of working memory capacity. Neuron, 93: 323-
330 (2017). 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.3.7 Phenomenological model of information recall from long-term memory (WP4.3) 
The Weizmann partner has worked on mathematical modelling of information recall as probed by 
free recall of randomly assembled lists of words. The model is based on two basic principles of 
neuronal representation of information and associative retrieval. It is verified by comparing the 
performance of the recall in terms of the average number of words recalled from a list of 
increasing length. The main results that were achieved are the following: 

(i) The average number of words recalled from the list of L randomly assembled words 
depends on the sparseness of neural representations of items in long-term memory.  

(ii) In the limit of very sparse representations, the recall performance (number of words 
recalled on average from a list of   words) is given by the following simple formula: 

 
(iii) Words that have larger neuronal representations and/or larger overlaps with other 

word representations have higher chance to be recalled 
(iv) The model not only accounts for average recall performance observed experimentally 

but also predicts the correct distribution of the performance. 

L
2Nrec L=
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The graphical representation of the recall process and analytical solution to the model are 
illustrated in Figure 44 below: 

 

 
Figure 44 
Graph representation of recall process. Each arrow points to a memory item that has largest overlap with the 
representation of the current item. Red circle is the initial item. After several items are retrieved, recall enters a 
loop after which no new items can be recalled. The formula below the figure gives the average number of words 
recalled as a function of the total number of words in the list, f is the sparseness parameter that represents the 
average fraction of neurons in the network that encode a single memory item.  

Achieved Impact 

(i) The results of this project are published in the paper in Neuron, one of the top three journals 
in the neurosciences.  

M. Katkov, S. Romani & M. Tsodyks. Memory Retrieval from First Prinicples. Neuron, 94:1027-1032 
(2017). 

(ii). The code is available online at https://github.com/mkatkov/memoryRetrieval 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A 
Penn Electrophysiology of 
encoding and retrieval 
study  

No 

provides a comprehensive collection of raw data 
for 200 human subjects performing free recall 
experiments on multiple lists of words, that 
allowed to test the model predictions in a 
quantitatively precise manner. 

 

2.3.8 Balancing new against old information: the role of puzzlement surprise in 
learning (WP4.3) 

The EPFL partner has worked on a generalized model of synaptic plasticity under the influence of 
neuromodulation. It is well known that, in a reward-based learning paradigm, theories of 
reinforcement learning can be related to the action of the neuromodulator dopamine on synaptic 
plasticity. Here we asked the question whether, even in the absence of reward, surprise could 
play a role analogous to reward. To address this question, we developed a novel definition of 

https://www.google.com/url?q=https://github.com/mkatkov/memoryRetrieval&sa=D&ust=1519123659177000&usg=AFQjCNHakZZ1D88YtWtWgZs2yQpqx2dZ5w
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surprise that combines aspects of both the traditional Shannon-surprise and the well-known 
Baysian surprise measures, but also includes the level of commitment to an opinion. Our focus has 
been on the immediate surprise when confronted with an unexpected event, called puzzlement 
surprise in the following. Puzzlement surprise is different from enlightenment surprise that 
corresponds to the amount of ‘gain in our understanding’ after we have integrated the unexpected 
event into our world model. Examples of enlightenment surprise would be the Baysiane surprise 
measure or the compression progress measure proposed by J. Schmidhuber.  

Puzzlement surprise Scc is a confidence-corrected (CC) surprise measure defined as the Kullback 
Leibler divergence 

 

 
 
between the distribution  

that describes the momentary belief after having seen n examples  

 

and 

that describes the belief of a naïve observer for which the present example would be the 
first one. 

Key findings with our novel puzzlement surprise measure are 

(i) For the same level of confidence (commitment to an opinion), puzzlement surprise 
decreases with the likelihood of an event; 

(ii) For the same level of low likelihood of an event, puzzlement surprise increases with 
the commitment to an opinion; 

(iii) Puzzlement surprise in a one-dimensional task increases the learning rate at which 
new information is integrated (see Figure 45); 

(iv) Puzzlement can also be used in high-dimensional and underspecified tasks where 
exact world models are difficult to formulate. 

  

Figure 45 At each time step, a data sample Xn is independently drawn from a normal 
distribution whose underlying mean may change at unpredictable change points.  
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On average, the underlying mean remains unchanged for 15 time steps corresponding to a hazard rate H=0.066. 
The standard deviation of the distribution is fixed to 4 and is assumed to be known to the subject. A Using a 
surprise-modulated belief update the estimated mean (blue) quickly approaches the true mean (dashed red) ; 
observed samples shown in black circles. A few selected change points are indicated by green arrows. \textbf{B.} 
B. The weight factor gamma (magenta) with which new data is integrated increases at the change points, resulting 
in higher influence of newly acquired data samples on the new value of the mean 

Achieved Impact 

Our results have been published in Neural Computation, a highly respected theory journal. 

M. Faraji, K. Preuschoff and W. Gerstner (2018)  

Balancing New Against Old Information: The Role of Puzzlement Surprise in Learning  
Neural Computation 30: 34-83  

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1066 
Plasticity models: SP4 
(theory) T 4.3.1. synaptic 
plasticity and learning  

No This component provided the generic framework 
for the modelling efforts for this key result. 

 

2.3.9  Stable local learning in a recurrent spiking network (WP4.3) 
Please refer to Deliverable CDP5  - 1.5 Motor learning with spiking neurons through adaptive 
control for details of the model. 

 

2.3.10  Learning rules that can be implemented on the neuromorphic platforms 
(WP4.3) 

Please refer to Deliverable CDP5 – 3.5 Plasticity rules in neuromorphic hardware for details of the 
model. 

 

2.3.11 Evolving the SpiNNaker neuromorphic platform to support Three-Factor 
learning rules (WP4.3) 

Please refer to Deliverable CDP5 – 3.5 Plasticity rules in neuromorphic hardware for details of the 
model. 

 

2.4 Models of Cognitive Processes (WP 4.4) 
2.4.1 Topological similarity to estimate functional connectivity (T4.4.1) 
Description of the model 

UPF: The quest to understand how the structural network of interconnections shapes brain 
function lies at the heart of the field of brain connectivity. So far, we still lack a unitary model of 
the relationship between the shape of the brain’s connectome and the emergent activity patterns. 
One of the main reasons is that interactions between different brain areas do not only depend on 
the structure of the connectome but also on the local and global dynamics characterizing a given 
brain state, such as rest, sleep, and anesthesia. The existence of different state dependent 
activity patterns sustained by the same underlying anatomy exposes how elusive is the relationship 
between the network structure and function. 

http://lcn.epfl.ch/%7Egerstner/PUBLICATIONS/Faraji18.pdf
http://lcn.epfl.ch/%7Egerstner/PUBLICATIONS/Faraji18.pdf
http://lcn.epfl.ch/%7Egerstner/PUBLICATIONS/Faraji18.pdf
http://lcn.epfl.ch/%7Egerstner/PUBLICATIONS/Faraji18.pdf
http://lcn.epfl.ch/%7Egerstner/PUBLICATIONS/Faraji18.pdf
http://lcn.epfl.ch/%7Egerstner/PUBLICATIONS/Faraji18.pdf
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The UPF partner has developed a model, named as topological similarity, to analytically estimate 
the contribution of the structural brain connectivity alone on the cross-correlations between brain 
areas at rest. The model is based on three axiomatic assumptions on the diffusion of influence or 
information over the network: 

1. In a network, information travels along all possible paths (with equal probability). Very 
often, network approaches of information transmission consider only the shortest paths. 

2. Information content (or signal power) decays with path distance. This assumption implies 
that despite information travels along all possible paths, shorter paths are still more 
influencial than longer paths. 

3. Two brain regions are correlated if they receive inputs from the same sources. 
 

The first two assumptions define how information travels along a network and determine how 
much the dynamics of one brain region affected the dynamics of any other brain region. Given 
that the structural connectivity is encoded by the weighted adjacency matrix A, where A(i,j) > 0 
if there is a link pointing from region i to region j and A(i,j) = 0 if no such link exist, then the 
influence between any pair of nodes can be quantified by the communicability measure C. By 
definition, communicability is the matrix exponential of the adjacency matrix, C = exp(gA), which 
is a weighted sum of the powers of the adjacency matrix, and g is a parameter for global coupling 
strength. 

 

 
 

Applying this model to structural human brain connectivity we were able to estimate the cross-
correlations between brain regions which are expected in resting-state only due to the 
connectivity alone, Figure 46M for one hemisphere and Figure 46N for the whole brain. Comparing 
to empirically observed functional connectivities via fMRI during resting-state, Figure 46E and 
Figure 46F, we could quantify that the shape of the brain's connectome only accounts for up to 
45% of the empirical functional connectivity. 
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Figure 46 Contribution of whole-network common inputs to the brain’s spontaneous 
correlation structure.  
The figure shows results obtained separately for only one hemisphere (Left panels) and for the whole brain (Right 
panels). (a), (b) structural connectivity matrices (SC). (c), (d) Scatterplots depicting the relationship between SC 
and the empirical functional connectivity (FC). (e), (f) Empirical functional connectivity matrices (FC). (g), (h) Mean 
absolute error (MAE) between the empirical FC and the topological similarity T computed for different values of 
the global coupling parameter, g. The dotted lines correspond to the mean absolute error between the raw SC 
matrix and the empirical FC. (i), (l) Scatterplots of the empirical FC and the best-fitting topological similarity. (m), 
(n) Best-fitting Topological similarity matrices. We included also the Pearson’s correlation values r corresponding 
to the best-fitting matrices obtained optimizing the mean absolute error. 

Implementation to platforms 

Component ID:1069, “Influence of topological heterogeneities on network activity” (T4.4.1). 

Component ID:999, “Macroscopic model of spontaneous human brain activity” (T4.4.1). 

Implementation to platforms 

This model was integrated to the collaboratory and the Model Catalog in SP5. 

Publications 

R.G. Bettinardi, G. Deco, V.M. Karlaftis, T.J. Van Hartevelt, H. M. Fernandes, Z. Kourtzi, M.L. 
Kringelbach, and G. Zamora-López (2017) "How structure sculpts function: Unveiling the 
contribution of anatomical connectivity to the brain’s spontaneous correlation structure" CHAOS 
27, 047409. 

http://aip.scitation.org/doi/10.1063/1.4980099 

Achieved Impact 

According to the records from the publisher's own records (The American Institute of Physics), the 
publication above is among the 10 most read articles of the journal CHAOS along 2017. 

The model has served as the basis to define a generalised framework to describe the network-
dynamic properties of weighted networks: 

M. Gilson, G. Zamora-López, N.E. Kouvaris, and G. Deco (2017) "Dynamic communicability and 
flow to describe complex network dynamics with linear feedback" (in press) 

arXiv preprint: https://arxiv.org/abs/1712.05693v1.  

http://aip.scitation.org/doi/10.1063/1.4980099
https://arxiv.org/abs/1712.05693v1
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Conclusion & Outlook 

This model has solved a long-standing question in the field of brain connectivity: how the long-
range brain connectome relates to resting-state functional connectivity. Previous efforts to 
answer this question always relied in assuming simple local dynamics for the regions of the brain, 
e.g., Gaussian noise diffusion (Ornstein-Uhlenbeck process). Therefore, those approaches could 
not fully dissentangle the contribution of the structural connectome from that of local dynamics. 
Our approach is free of the local dynamics bias and is based uniquely on the simplest axiomatic 
assumptions possible, but yet realistic, on how information propagates on the network. 

Therefore, the results arised from the model are crucial for understanding the capacity of more 
realistic network models of whole brain dynamics to resemble empirical observations. Any 
improvement achieved by adding more complexity to the models is only interpretable under the 
baseline the present model sets. 

Component Dependencies 

Summarized links to components this key result depends on. 

 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.4.2  Macroscopic model of spontaneous human brain activity (T4.4.1)  
Description of the model 

In the human brain, spontaneous activity during rest consists of rapid transitions between 
functional network states over time but the underlying mechanisms are not understood. Several 
models have been proposed in the past to reproduce the whole-brain spontaneous activity. While 
those models could reasonably reproduce the time-averaged functional connectivity of the brain 
at rest, they have failed to capture its temporal fluctuations. The reason, we find, is the type of 
local dynamics those models used to characterise the local dynamics of brain regions. To explore 
identify the type of local dynamics giving rise to realistic fluctuations, the UPF partner has 
developed a whole brain network model where the local dynamics of the brain regions are 
characterised by the canonical form of the Hopf bifurcation. 

The model considers the structural connectome for the human brain extracted via diffusion tensor 
imaging and tractography. The corresponding connectivity is encoded into the weighted adjacency 
matrix A where A(i,j) > 0 if there is a link pointing from region i to region j and A(i,j) = 0 if no 
such link exist. The local dynamics z(i,t) of a brain region is characterised by the Hopf normal 
form, see Eq. (1), where z(i,t) is a complex variable and η(i,t) is an additive external Gaussian 
noise each region receives. The noise each region receives is independent. The local dynamics of 
each region i depends on two parameters: 

• a(i), the bifurcation parameter, and 
• ω(i), the natural frequency of the region. 

The bifurcation parameter sets the dynamical mode of the brain region. If a < 0 the local dynamics 
are characterised by the external noise η(i,t) fluctuating around the fix point z(t) = 0. If a > 0 then 
z(t) oscillate. In the vecinity of a = 0 the local dynamics are characterised by small noisy 
oscillations due to stochastic resonance. See Figure 47. 
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Given the BOLD signals from resting-state fMRI, the natural frequencies ω(i) for each brain region 
are determined from the experimental data. While Eq. (1) represents the equation for each region, 
Eq. (2) represents the dynamics of the coupled system, where g is a global coupling parameter 
and the brain regions are diffusively coupled. 

Using this model we could reveal the dynamical cortical core of the human brain, which is driving 
the activity of the rest of the whole brain. 

 

 
Figure 47 Construction of individual brain network models.  
(A) The brain network model was based on individual structural connectivity (SC) matrices from 24 participants 
derived from tractography of DTI (left) between the 68 regions of the Desikan-Kahilly parcellation (middle). The 
control parameters of the models were tuned using the grand average FC and FCD derived from fMRI BOLD data 
(right). (B) For modelling local neural masses we used the normal form of a Hopf bifurcation, where depending on 
the bifurcation parameter, the local model generates a noisy signal (left), a mixed noisy and oscillatory signal 
(middle) or an oscillatory signal (right). It is at the border between noisy and oscillatory behaviour (middle), where 
the simulated signal looks like the empirical data, i.e. like noise with an oscillatory component around 0.05 Hz. 

Implementation to platforms 

Component ID:999, “Macroscopic model of spontaneous human brain activity” (T4.4.1). 

Implementation to platforms 

This model was integrated to the collaboratory and the Model Catalog in SP5. 

 

Publications 

G. Deco, M.L. Kringelbach, V.K. Jirsa, and P. Ritter (2017) "The dynamics of resting fluctuations 
in the brain: metastability and its dynamical cortical core" Sci. Reps. 7:3095. 

https://www.nature.com/articles/s41598-017-03073-5 

Achieved Impact 

The model has served as the basis to investigate several questions of neuroscientific relevance 
such as Parkinson disease and the organization of state-dependent functional networks: 

V.M. Saenger, J. Kahan, G. Deco, et al. (2017) "Uncovering the underlying mechanisms and whole-
brain dynamics of deep brain stimulation for Parkinson’s disease"  Sci. Reps. 7:9882 (2017). 

http://www.nature.com/articles/s41598-017-10003-y 

https://www.nature.com/articles/s41598-017-03073-5
http://www.nature.com/articles/s41598-017-10003-y
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M. Senden, N. Reuter, M.P. van den Heuvel, R. Goebel, G. Deco (2017) "Cortical rich club regions 
can organize state-dependent functional network formation by engaging in oscillatory behavior" 
NeuroImage 146, 561-574. 

https://www.sciencedirect.com/science/article/pii/S1053811916306000?via=ihub 

Conclusion & Outlook 

This model was able to uncover the class of local dynamics of brain regions leading to fluctuations 
of the whole-brain dynamics observed in empirical measurements of resting-state fMRI in humans. 
Previous models of whole-brain dynamics could reproduce the time-average functional 
connectivity observed empirically, but were unable to reproduce the temporal fluctuations. Fine 
tuning of the dynamical regime was possible due to the simplicity of the normal form of the Hopf 
bifurcation, often also known as teh Stuart-Landau model in the physics literature. Future 
developments overlap with the study of biologically realistic mean-field models by other partners 
in the HBP. The generic local dynamics identified by the present model will be crucial to evaluate 
the mean-field model selection towards building more realistic whole-brain network models. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A Dataset from Charité 
(Berlin) No Critical for validation 

 

2.4.3  Model of "dynamically realistic" network states (T4.4.1) 
Description of the model 

The UNIC partner has designed a spiking network model containing two main types of neurons in 
cerebral cortex: the "regular-spiking" (RS) neurons, mostly excitatory and characterized by spike-
frequency adaptation, and the "fast spiking" (FS) neurons, mostly inhibitory and who usually 
discharge at higher rates with negligible adaptation.  RS and FS cells were modeled by the Adaptive 
Exponential (AdEx) integrate and fire neuron model.  This model is similar model to a previous 
model described previously (Destexhe, 2009; see this paper for all details about the methods).   

The model was constrained from data obtained using Utah-array recordings in human and monkey 
collected and analyzed in the last years (Peyrache et al., 2012; Dehghani et al., 2016; Le van 
Quyen et al., 2016).  In particular, we aimed at reproducing the typical firing pattern seen in 
awake subjects, where neurons fire very irregularly and with low levels of synchrony, a state 
called "asynchronous-irregular" (AI).  Figure 48 illustrates AI in awake human and monkey 
recordings.  

https://www.sciencedirect.com/science/article/pii/S1053811916306000?via%3Dihub
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Figure 49 shows a network model of RS and FS cells displaying AI states. In this model, the firing 
pattern of RS and FS cells was consistent with experiments, with all cells displaying irregular 
activity with low levels of synchrony, and FS cells displaying higher rates than RS cells (Figure 
49B).  In addition, the model was constrained from conductance measurements in awake animals, 
which displayed stronger inhibitory conductances compared to excitatory conductances (Rudolph 
et al., 2007).  This pattern could be obtained in the model (see total conductance in Figure 49C).  
The intracellular activity of excitatory neurons (Figure 49C, top curves) is also consistent with the 
typical intracellular activities measured in vivo. 

 

Figure 48 Asynchronous-irregular (AI) states in human and monkey cortical recordings using 
Utah arrays.   
Excitatory (RS) cells are indicated in green, and inhibitory (FS) cells are shown in red.  The bottom curves show 
the pooled activities of the two populations (figure modified from Zerlaut and Destexhe, 2017). 
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Thus, this RS-FS network model is the first, to our knowledge, to successfully reproduce the 
properties of AI states as constrained from all available in vivo recordings. At the extracellular 
level, the model reproduces the firing pattern of RS and FS cells, their low level of synchrony, and 
the difference of firing rate between RS and FS cells. At the intracellular level, the model correctly 
accounts for the membrane potential activity and the conductance patterns measured 
intracellularly in awake animals. 

Components 

Component  “Model of "dynamically realistic" network states” (T4.4.1). 

Implementation to platforms 

This model was integrated to the collaboratory and the Model Catalog in SP5.  It will also be ported 
to the neuromorphic platform. 

References 

Destexhe, A.  Self-sustained asynchronous irregular states and Up/Down states in thalamic, 
cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J. Computational 
Neurosci. 27: 493-506, 2009.  

Peyrache, A., Dehghani, N., Eskandar, E.N., Madsen, J.R., Anderson, W.S., Donoghue, J.S., 
Hochberg, L.R., Halgren, E., Cash, S.S., and Destexhe, A.  Spatiotemporal dynamics of neocortical 
excitation and inhibition during human sleep. Proc. Natl. Acad. Sci. USA 109: 1731-1736, 2012. 

Rudolph, M., Pospischil, M., Timofeev, I. and Destexhe, A.  Inhibition determines membrane 
potential dynamics and controls action potential generation in awake and sleeping cat cortex.  J. 
Neurosci. 27: 5280-5290, 2007. 

Publications 

Analysis of human and monkey data, done during the Ramp-up phase, but published during 
SGA1: 

Figure 49 Network model of asynchronous-irregular activity states consistent with in vivo 
measurements.   
A.  Raster of the spiking activity of RS (green) and FS (red) cells during an AI state.  The rate of each population is 
shown at the bottom.  B.  Activities of 3 example RS cells, together with the conductance pattern seen on single 
RS cells.  The conductance values are consistent with in vivo measurements in awake cats.  Modified from Zerlaut 
et al., 2018. 
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Dehghani, N., Peyrache, A., Telenczuk, B., Le Van Quyen, M., Halgren, E., Cash, S.S., Hatsopoulos, 
N.G.  and Destexhe, A.  Dynamic balance of excitation and inhibition in human and monkey 
neocortex. Nature Sci. Reports 6: 23176, 2016. 

Le Van Quyen, M., Muller, L., Telenczuk, B., Cash, S.S., Halgren, E., Hatsopoulos, N.G., Dehghani, 
N. and Destexhe, A.  High-frequency oscillations in human and monkey neocortex during the wake-
sleep cycle.  Proc. Natl. Acad. Sci. USA 113: 9363-9368, 2016. 

Work done in SGA1: 

Zerlaut, Y. and Destexhe, A. (2017) Enhanced responsiveness and low-level awareness in stochastic 
network states. Neuron 92: 1002-1009. 

Zerlaut Y., Chemla, S., Chavane F. and Destexhe A. (2018) Modeling mesoscopic cortical dynamics 
using a mean-field model of conductance-based networks of adaptive exponential integrate-and-
fire models.  Journal of Computational Neuroscience (in press). 

bioRxiv preprint: https://www.biorxiv.org/content/early/2017/11/12/abs/168385   

Achieved Impact 

This model had a strong impact, as different variants of this model are now continued in different 
directions, including Up/Down states or mean-field models. 

Conclusion & Outlook 
This model successfully reproduces the firing patterns and conductance levels found  in vivo.  It is 
presently extended to study the generation of Up/Down states.  It is also used to investigate the 
responsiveness of networks to external inputs, and understand how information is propagated 
across successive layers.  These aspects will be continued in SGA2. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1554 

Mean-field models of 
AdEx networks, 
spontaneous activity and 
responsiveness 

Yes This component helps bridging scales 

 

2.4.4 Model of spontaneous activity in awake mouse primary auditory cortex based 
on large scale Ca2+ imaging data (T4.4.1) 

CNRS UNIC: The adult brain is characterized by a prominent ongoing activity underlying sensory 
responses and perception.  This activity is not only determined by external stimuli but also by 
intrinsic patterns generated endogenously, such as up and down states. Despite the fact that the 
endogenous cortical states were mainly reported and characterized for the slow wave sleep and 
anesthesia, there are growing evidences that spontaneous fluctuations in population activity exist 
also during quiet wakefulness. 

The project, carried out in a partnership between Prof. Alain Destexhe’s and Dr. Brice Bathellier’s 
labs (UNIC), aims at creating a computational model to disclose the mechanisms of intrinsic brain 
states generation in awake sensory cortices and eventually establishing their causal impact on 
perceptual behavior. To elucidate the network machinery that drives specifically primary auditory 
cortex endogenous dynamics, we use data obtained by chronic two-photon Ca2+ imaging of large 
populations of neurons (1x1 mm field of view) in superficial and deep layers (Figure 50 a, c) in 
awake head fixed mice.  

Experimental measurements 

https://www.biorxiv.org/content/early/2017/11/12/abs/168385
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We have collected experimental data to constrain the computational model. We characterized 
the spontaneous dynamics of primary auditory auditory cortex (A1) in the absence of auditory 
stimulation. We observed the occurrence of low frequency (0.05-0.1 Hz) large scale (spreading 
over the whole field of view, Figure 51 a, b) spontaneous synchronous events (duration up to 1s) 
(Figure 50 b, d). Their frequency was higher in deeper than in the superficial layers, as observed 
previously with multi-electrode recordings (Figure 50 b, d). Interestingly, the analysis of horizontal 
propagation of these synchronous events revealed that they rather correspond to large hotspots, 
instead of horizontally propagating waves with a clear front. (Figure 51 a for superficial and b for 
deep layers). The recordings were performed using Gad2tm2(cre) 1 mouse line, with labeled inhibitory 
neurons. The parallel tracking of eye pupil size and whiskers allows to reveal the correlation with 
arousal and exploring behavior (Figure 50 b, d).  

Model 

Based on these experimental data we are developing a computational model of 2D (25x25) 
neuronal networks of mouse superficial and deep layers (In PyNN simulator-independent 
language). The network is composed of two population of excitatory (“regular spiking” or RS) and 
inhibitory (“fast spiking” or FS) spiking neurons connected locally, in proportion according to 
experimental data derived from Gad2tm2(cre) mouse.  The model aims at simulating the 
mechanisms underlying the generation of spontaneous activity, as we measured in awake A1 
superficial and deep layers. 2-dimensional configuration of model networks allows simulation of 
horizontal propagation of these events. Once the model is able to reproduce spontaneous activity, 
we will introduce sensory inputs, to predict the mechanisms of how endogenous network states 
modulate evoked cortical response.  This model will be simulated in NEURON 2  and will be 
reported in SGA2. 

Components 

Component  Local-network model of spontaneous activity in cortex (T4.4.1). 

Implementation to platforms 

This model will be integrated in the Model Catalog in SP5. 

 

http://www.informatics.jax.org/allele/MGI:4418713
http://www.informatics.jax.org/allele/MGI:4418713
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Figure 50 Population activity in awake  
A1. Two-photon Ca2+ imaging of A1 neurons through cranial window in awake head fixed mouse, following the 
stereotaxic injection of an AAV-syn-GCAMP6s vector 3.  A. 560 neurons identified at the depth of 250 µm from the brain 
surface. Noisy Ca2+ signal was deconvoluted to identify Ca2+ spike using MLspike algorithm 4 . B. Firing rate and raster 
plot for the cells from A. Grey dashed line represents the threshold of stochastic coincidence above which the events 
are considered as synchronous not accidentally (color coded columns in the raster plot). 5 minutes soundless recordings 
of A1 (imaging rate 31.5 frames per second) were accompanied by simultaneous eye pupil (orange trace) and one 
whisker (blue trace) tracking. C. 890 neurons identified at the depth of 450 µm in the same mouse. D. Firing rate, 
raster plot, eye pupil radius and whisker movement during this deep layer recording. The sharp jumps in whisker and 
pupil traces correspond to the moments of eye closure. 
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Publications 

(in preparation) 

References 

1. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in 
cerebral cortex. Neuron 71, 995-1013, doi:10.1016/j.neuron.2011.07.026 (2011). 

2. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput 9, 1179-
1209 (1997). 

3. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 
295-300, doi:10.1038/nature12354 (2013). 

4. Deneux, T. et al. Accurate spike estimation from noisy calcium signals for ultrafast three-
dimensional imaging of large neuronal populations in vivo. Nat Commun 7, 12190, 
doi:10.1038/ncomms12190 (2016). 

Achieved Impact 

This model will be used predict how spontaneous activity interacts with evoked responses, and 
will be compared to other types of experimental data in mice and humans. 

Conclusion & Outlook 

The experimental data, obtained from large scale Ca2+ imaging in A1, provide a basis for 
construction of a novel realistic model of spontaneous activity generation and its impact on evoked 
sensory response in awake brain.  We hope to extract general principles applicable to other sensory 
modalities in the mouse, and perhaps help explaining how human sensory responses depend on 
the ongoing-activity state. 

Component Dependencies 

Summarized links to components this key result depends on. 

 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A Model of "dynamically 
realistic" network states Yes Investigates key aspect of brain function 

Figure 51 Horizontal propagation of “up-states” in awake A1.  
a.The example of horizontal propagation of population synchronous event (up-state) in the upper layer (250 µm). 
Left panel: spatial pattern, where cells are color coded according to their temporal involvement (red ones are 
involved at the origin of the event; the dark blue ones engaged at the end). Right panel: temporal pattern of 
event evolution, reflecting the number of cells consequently involved every 30 ms (imaging rate). b. The example 
of horizontal propagation of population synchronous event (up-state) in the deep layer (450 µm). 
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2.4.5  Spiking model of slow waves during anesthesia (T4.4.1)  
Please refer to Deliverable CDP1  -  for details of the model. 

Achieved Impact 

This model has been proved to be a good tool to further investigate brain state transitions, such 
as the sleep-awake transitions in humans.  

Conclusion & Outlook 

The model has proven to be useful to understand the mechanisms underlying the cortical 
transitions between brain states, specifically, between the different levels of anesthesia. 
Moreover, it has been applied to the two-photon data provided by our collaborators from SP1 
during SGA1, but will continue to be used with the wide-field data during SGA2. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A Model of "dynamically 
realistic" network states Yes Investigates key aspect of brain function 

656 
Analysis of meso-scale 
fluorescence functional 
data 

Yes Data collection to constrain the model (in the 
framework of T1.3.1) 

 

2.4.6  Model of retinal processing (T4.4.2)  
Description of the model 

UPMC: 

The subunit model is a two-layer model that predicts the response of a ganglion cell to the moving 
bar. Each layer performs a linear combination of its inputs followed by a non-linear 
transformation. The first layer is a collection of identical and translated Linear-Non-Linear (LN) 
units. The second layer is a unique LN unit taking the output of the first layer as an input. 

In the first layer, we tiled the space with 100 bipolar-like OFF subunits, and 100 ON subunits, on 
a one-dimensional lattice, with subunits equally spaced at 20 𝜇𝜇m interval. Each unit had a 
receptive field with a Gaussian spatial profile of the right polarity and a biphasic temporal profile, 
modeled by a sinusoid.  All units of a same polarity are identical up to a translation. The non-
linearity was a rectified square function, ℎ. The output of the ON subunit layer was therefore:  

 
where h is the rectified quadratic function (Deny et al, 2017).  

For the OFF subunit, the equation was the same as ON subunit, except that was multiplied by -1. 
The values of all the constants in these equations and below are reported in (Deny et al, 2017).  
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The stimulus movie s(x,t) was one-dimensional in space because the stimulus was a long bar, 
whose length can be considered infinite. We used a temporal binning of 17ms, corresponding to 
the refresh rate (60Hz) of the screen used to project the movie on the retina. 

The second layer consisted of a single Linear-Non-Linear Poisson unit. The unit pooled linearly its 
inputs from all the subunits of the first layer according to a kernel K, with an extension in time of 
0.5 seconds. To obtain the firing rate r(t) of the cell, the weighted sum was passed through a non-
linearity of the form f(x) = log(1+exp(x)). The spikes were then generated according to a Poisson 
process. The firing rate is therefore equal to:  

 
where 

 
This model was fitted to retinal recordings and allowed to predict the responses of ganglion cells 
(the retinal output) to dynamical stimuli in the center or the surround of their receptive field 
(Deny et al, 2017).  

We also added gain control to the ganglion cell model (Deny et al, 2017) to predict how neurons 
balance the respective influence of stimuli in their centers and their surrounds (Deny et al, 2017). 
This gain control mechanism was of the form:  

 
where R(t° is the output of the previous model, ie the response of the ganglion cell. The 
parameters of the model were also fitted to the data and reported in (Deny et al, 2017).  

Thanks to this model we could predict accurately how several types of ganglion cells, the retinal 
output, respond to complex stimuli in their centers and surrounds.  

Implementation to platforms 

This model was integrated to the collaboratory. 

Publications 

Deny S, Ferrari U, Mace E, Yger P, Caplette R, Picaud S, Tkacik G, Marre O (2017). Multiplexed 
computations in retinal ganglion cells of a single type. Nature Communications, 8: 1964. 

Achieved Impact 

This model is now continued in different directions to account for single cell variability and 
correlated variability (noise correlation) across cells. 

Conclusion & Outlook 

This model allow predicting the retinal activity in response to complex stimuli, and can be used 
to provide a realistic spiking input to cortical models. It shows that a simple filtering cannot 
account for the responses of retinal ganglion cells to complex stimuli.  

Network models that include different sources of noise, including noise correlations, will be 
included in future work.  

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 
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2.4.7 Model for high-level contributions to low level vision (T4.4.2) 
Description of the model 

WEIZMANN: In the model and algorithm, during feed-forward processing primary visual cortex 
extracts a large number of low-level features, including features coming from the object 
presented, together with clutter and noise. Using an object model stored in higher visual areas, 
top-down signals create what we call a 'full interpretation' of the object image: identifying all its 
parts, completing low-signal features, and eliminating clutter and noise (Ben-Yosef et al. 2017).  

 
Figure 52 Algorithm for using information from higher-level visual areas back to primary 
visual cortex.  
(a) Left: multiple features are detected by feed-forward (FF) processing in V1. For example, the V1 activation 
pattern includes multiple candidates for the horse’s eye (top image), head contour (second from top), etc. (a) 
Right: Top-down (TD) processing identifies the correct image features. The process distinguishes between correct 
object features and spurious ones produced by noise and clutter, and it also enhances relevant object features 
with weak activation due to low SNR.   (b) Results of the model applied to multiple images from two object 
categories (top: man’s torso, bottom: bicycles part). 

The model output correctly identifies the low-level features corresponding the object’s internal 
structure. This is obtained by including pairwise relations stored in the higher-level object 
representation.  Accuracy of identifying the correct object features was shown to be significantly 
higher than processing without the top-down contribution, and closer to humans’ behavioral 
performance in identifying the corresponding image features. The model also explains the large 
drop in recognition observed in the recognition of minimal imates (Ullman et al. 2016, PNAS 
113(10), 2744–2749).  

Publications 

Ben-Yosef G, Assif L, Ullman S.  Full interpretation of minimal images Cognition. 2017, 171:65-84.  

Ben-Yosef, G. Yachin, A. Ullman, S., A model for interpreting social interactions in local image 
regions. Proc. AAAI Spring Symposium Series, Science of Intelligence, Palo Alto, CA, 2017,  525-
528   
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Conclusion & Outlook 

The results of the model demonstrate the functional importance of high-level contributions to 
low-level visual areas such as primary visual cortex. Together with the retinal input model to 
primary visual cortex developed in task 4.4.2 (Olivier Marre), the models provide a more complete 
realistic characterization of the function of low-level visual areas. In the future, we plan to 
develop the model further during the next period in cooperation with work in SP2 on multi-scale 
processing in space, time and frequency, leading to a model of the integration of feed-forward 
and feed-back processing.    

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1066 
Plasticity models : SP4 
(theory) T 4.3.1 synaptic 
plasticity and learning 

No Added value 

 

2.4.8  Basal Ganglia systems level model (T4.4.3) 
KTH : A systems level model of the basal ganglia system consisting of 80000 point neurons, built 
earlier during SGA1 [1], is currently used for investigating several hypotheses on how basal ganglia 
process cortical inputs in health and disease. For instance, we formed hypotheses how oscillatory 
components, such as those seen during L-Dopa dyskinesias, can spread into the striatal networks 
from cortex. Here one prediction is that Fast Spiking interneurons are crucial [2]. Also, we are 
currently using the model in [1] to investigate what the role of the Arkypallidal neurons in the 
External Globus Pallidus nucleus (GPe) might be during stop tasks, signaled from cortex via the 
subthalamic nucleus (STN). An improved version of the systems level basal ganglia model is also 
underway (planned for SGA2). Furthermore, together with the Juelich collaborators, we have 
investigated how to estimate, in a more automatized manner, the unknown effective couplings 
strengths between basal ganglia nuclei [3].  

The resulting insights received, together with the successively improved versions of the model will 
be valuable as such for the external community. For internal use, we will be able to use the 
already published model as a framework for building hybrid basal ganglia models, consisting of 
point neuron models modules linked with detailed microcircuit model modules (the latter ones 
built in SP6). 

Publications: 

[1] Lindahl M, Hellgren Kotaleski J (2017) eNeuro. Jan 12;3(6). pii: ENEURO.0156-16.2016. doi: 
10.1523/ENEURO.0156-16.2016 

[2] Belić JJ, Kumar A, Hellgren Kotaleski J (2017) Interplay between periodic stimulation and 
GABAergic inhibition in striatal network oscillations, PLoS One, Apr 6;12(4):e0175135. doi: 
10.1371/journal.pone.0175135 

[3] Bahuguna J, Tetzlaff T, Kumar A, Hellgren Kotaleski J, Morrison A. (2017) Homologous Basal 
Ganglia Network Models in Physiological and Parkinsonian Conditions, Front Comput Neurosci. Aug 
22;11:79. doi: 10.3389/fncom.2017.00079. 

Achieved Impact 

The resulting insights received using the basal ganglia systems level model, together with the 
successively improved versions of the model will be valuable as such for the external community. 
For internal use, we will be able to use the already published model as a framework for building 
hybrid basal ganglia models, consisting of point neuron models modules linked with detailed 
microcircuit model modules (the latter ones built in SP6). 
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Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

209 NEST yes Simulate the model 

1836 

The integrated function 
of the basal ganglia and 
its control of downstream 
motor centres – structure 
and function of pallidal 
and subthalamic neurons 

yes 
Improve the striatal component of the model 

 

 

2.4.9 Modelling spatial navigation and memory (T4.4.4) 
Model of striatal and hippocampal memory systems 

We have implemented a simulation of hippocampal and striatal contributions to spatial navigation, 
following the identification of the relevant cognitive architecture (Chersi and Burgess, 2015; 
Figure 1). The model consists of a network of rate-coded neurons, with different learning rules 
governing the different brain areas. Specifically, the striatum learns ego-centric associations 
between sensory inputs and actions through a temporal difference algorithm relying on reward 
prediction errors. For example, it can learn the association between seeing a cue and turning 
right. The model hippocampus, by contrast, learns an allo-centric representation of the 
environment based on place cells. To test our model, we used it to solve an adaptation to the 
classic Morris Water Maze task (Pearce et al. 1998), where the goal is to find a hidden platform 
submerged under opaque water.  

An example result of these simulations is shown in Figure 53. Both the striatal model and the 
hippocampal model can learn relatively short paths to the goal. However, because the striatal 
learning is dependent on reward prediction errors, it shows ‘blocking’: it does not learn to respond 
to a second cue when a preceding cue is already fully predictive of reward. This model provides a 
framework for application to a series of spatial and non-spatial cognitive tasks. All simulations 
were run using Python.  

 
Figure 53 Model of hippocampal and striatal contributions to spatial navigation.  
Left panel: model architecture. Separate navigational strategies are computed in the hippocampus and striatum, 
and the prefrontal cortex compares the respective outputs. Right upper panel: example trajectories showing 
learning in the Morris Water Maze over trials. Right lower panel: performance on the maze as measured by the 
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time needed to find the platform. Red and green horizontal lines indicate the presence of two spatial cues. Agents 
using a hippocampal learning strategy (red line) show learning of the platform location over trials, unaffected by 
changes in the landmark. Those using a striatal learning strategy (green line) exhibit ‘blocking’ of learning from a 
second cue, as evidenced by the drop in performance upon the disappearance of Cue 1. 

Extending the model to episodic memory 

Based on previous work on human episodic memory (Byrne et al. 2008) we have built a model of 
how neural representations of egocentric spatial experiences in the parietal lobe interface with 
viewpoint-independent representations in medial temporal lobe to enable key aspects of spatial 
cognition. The model shows how populations of know types of spatial cells (place cells, head-
direction cells, boundary- and object-vector cells, grid cells, and parietal gain-field neurons) map 
onto higher cognitive function in a modular way. The interactions between these populations 
across multiple brain regions provide a mechanistic account of spatial memory, scene 
construction, novelty-detection, and mental navigation. In particular the model shows how so-
called object vector cells (OVCs) may allow memory for items to be incorporated into a contextual 
representation based on extended environmental boundaries (as expressed in the firing of 
boundary vector cells; or BVCs). The same cells provide the neural correlated of objects in context 
during recall/visuospatial imagery (Figure 54). Simulations have been implemented in MatLab 
(using rate coded neurons) and a manuscript has been submitted to eLife (currently in revision). 

Comparison to human episodic memory has been initiated in collaboration with SP3 Episense 
(Emrah Duzel): looking at human hippocampal involvement in pattern completion using 7T fMRI 
(Grande et al., 2017). Some aspects of the model are being shared with partners in SP3 Episense 
(Tony Prescott, Martin Pearson), who are developing a version of the spatial memory model for 
use on a robotic platform. 

 

 
Figure 54 Extension to expisodic memory.  
A) In the bottom-up mode of operation sensory inputs drive the model and items can be encoded into memory, 
when the agent encounters them in an environment (right panel, agent is a trinagle, the object a dot). Population 
snapshots of the model at the moment of encoding during an encounter with a single object in a familiar spatial 
context are shown. Left to right: PWb/o populations driven by sensory input form an egocentric representation of 
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the environment. These populations project to a head-direction-modulated transformation circuit (RSC/TR, 
hypothesised to be in retrosplenial cortex, details omitted for clarity); The transformation circuit projects to BVCs 
and OVCs which, together with perirhinal identity neurons constitute the main drive to place cell (PCs; coding for 
the agents location); perirhinal (PRb/o) neurons are driven externally, reflecting object recognition along the 
ventral visual stream. At the moment of encoding, reciprocal connections between PCs, OVCs, PRo neurons are 
learned. B) In the top-down mode of operation the model re-instates egocentric parietal representations (reflecting 
visuospatial imagery) reconstructed from memory. The agent has moved away from the object (current agent 
location: black triangle; right panel). Cueing the agent to remember the encounter with the object in (A), current 
is injected into the corresponding PRo neuron (right of panel). This drives firing of connected PCs (dashed orange 
connections, learned at encoding). PCs become the main drive to OVCs, BVCs and PRb neurons. BVC and OVC 
representations are transformed to their PW counterparts, thus reconstructing egocentric parietal representations 
(PWb/PWo) similar to those at the time of encoding (left of panel). Thus, the agent reconstructs the spatial scene 
of the encounter from the previous point of view (red triangle, in rightmost panel). Color code: heat maps show 
population firing rates frozen in time. Black: zero firing rate, white: maximal firing rate. 

Modelling the integration of environmental and self-motion information in neural 
representations of location. 

We have developed a model of grid cell firing in which grid cells combine path integration and 
environmentally anchored sensory information to generate an optimal estimation of the animal’s 
current location within an environment. In this framework, the firing of the grid cell propulation 
represents a probability distribution of self-location across space. Path integration is performed 
by translating this distribution in response to the agent’s self-motion, with associated noise. 
Environmental sensory information is provided by place cell inputs, whose weights are learned 
upon exposure to a novel environment. The localisation and learning features together constitute 
a neurally plausible system for simultaneous localization and mapping (SLAM; Durrant-White & 
Bailey, 2006). Weight stabilisation allows the model to account for place cell stabilisation in pre-
weanling pups (Meussig et al., 2015). Non-uniform place cell densities can re-create grid cell firing 
pattern distortions (Figure I; Stensola et al., 2015), and grid patterns rescale in response to 
environmental manipulations (Figure 3H; Barry et al., 2007). The modelled grid cell firing patterns 
can be compared with experiments designed to measure the relative influence of self-motion and 
environmental sensory inputs (Chen et al. (submitted); SP3 Episence, Cacucci lab). Simulations 
have been implemented in Matlab. 

 
  55 Integration of self motion and environmental information. 
A) The grid population firing rates represent a probability distribution over location in periodic grid space. The 
distribution is translated, reflecting path integration (PI) according to the animal’s movement. B) Weighted place 
cell firing rates generate an environmentally anchored sensory estimate of current location. C) The PI and sensory 
estimates are combined to produce a refined estimate of location. D) Learning between the place and grid cells 
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corrects errors between the PI and sensory estimates over time. E,F) Logarithmic and exponential transfer 
functions. G) Recurrent inhibition normalises the firing rates of the posterior distribution. H) The grid pattern 
rescales in response to environmental rescaling as observed experimentally. I) Nonuniform distributions of place 
cell firing fields (above, middle) causes a shearing of the grid pattern and an orientation offset from the wall of the 
environment which develops with increasing experience of the environment, as observed experimentally. 

 

Extension to spiking neurons for use with the SpiNNaker platform  

Modeling grid cell phase coding 

One aspect of grid and place cell firing requires use of a spiking neural network model (rather 
than the firing rate models, above): namely ‘theta phase precession’ in which spiking occurs at 
progressively earlier phases of the 5-11Hz local field potential (LFP) theta oscillation as each firing 
field is traversed. This supports a phase code for location in rodents. But a puzzle is presented by 
human data, in which LFP oscillations are much more variable in frequency. 

We have implemented a spiking neural network model that allows us to examine the putative 
function of rate and phase coding for multiplexing information about an animal’s trajectory 
through space. We show that these properties can be accounted for if the intrinsic firing frequency 
of grid cells varies relative to some baseline frequency according to movement velocity. We then 
show that it is possible to simultaneously decode multiple types of information from the 
population: location from firing rates; movement direction from firing phase; running speed from 
mean firing rates; and an arbitrary fourth variable, such as anxiety, from the baseline oscillation 
frequency. Importantly, this is possible even if the baseline oscillation has a highly variable 
frequency – such as that observed in recordings from depth electrodes in human hippocampus 
(Bush et al., 2017). Finally, we describe analytical methods that can identify phase coding in the 
absence of a constant frequency oscillation, as in single unit recordings from the bat or human 
brain (Bush and Burgess, in prep). Simulations have been implemented in Matlab. 

 

  
Figure 56 Grid cell firing patterns can encode multiplexed spatial information.  
A) Grid cell firing rate along a 1D track (red line) generated using a baseline oscillation with highly variable 
frequency (grey line) recorded from depth electrodes in human hippocampus. B,C) Grid cell spike train auto-
correlogram and power spectrum, which exhibit no clear rhythmicity. D) Grid cell firing phase relative to the 
baseline oscillation, which becomes progressively earlier as each firing field is traversed. E-G) Accurate decoding 
of multiplexed spatial information from grid cell population activity in each oscillatory cycle. Location on the track 
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can be recovered from population firing rates (E); running speed from the number of spikes in each cycle (F); and 
movement direction from population firing phase (G). 

Current work is exploring the use of spiking neurons in a grid cell based navigation model (inspired 
by Bush et al. 2015), implemented in Python to run on the SpiNNaker platform. 

Implementation to platforms 

The above models have been added to the Collaboratory 

References  (# indicates HBP funded) 

Barry C, Hayman R, Burgess N, Jeffery K (2007) Experience-dependent rescaling of entorhinal 
grids. Nature Neuroscience, 10:682 - 684. 

# Bicanski A, Burgess N (2018). A Model of Spatial Memory and Imagery - From 

2 Single Neurons to Cognition (in revision at eLife) 

# Bush D, Burgess N, Phase coding without rhythmicity (in prep) 

Bush D*, Bisby JA*, Bird CM*, Gollwitzer S, Rodionov R, Diehl B, McEvoy AW, Walker MC, Burgess N 
(2017) Human Hippocampal Theta Power Indicates Movement Onset and Distance Travelled. PNAS 
114: 12297-12302 

Bush D, Barry C, Manson D, Burgess N (2015) Using grid cells for navigation. Neuron. 87: 507-20. 

Byrne P, Becker S, Burgess N (2007). Remembering the past and imagining the future: a neural 
model of spatial memory and imagery. Psychological Review 114 340-375. 

# Chen G, King JA, Lu Y, Cacucci F, Burgess N (2018) Spatial cell firing during virtual navigation of 
open arenas by head-restrained mice. bioRxiv 
https://www.biorxiv.org/content/early/2018/01/11/246744 

# Chen G, Lu Y, King JA, Cacucci F, Burgess N, Differential influences of environment and self-
motion on place and grid cell firing patterns (in prep) 

# Chersi F, Burgess N (2015) The cognitive architecture of spatial navigation: Hippocampal and 
Striatal contributions. Neuron 88: 64-77. 

Durrant-Whyte H, Bailey T (2006). "Simultaneous localization and mapping: part I." IEEE robotics 
& automation magazine 13: 99-110. 

# Evans ST, Burgess N, Integration of environmental sensory and self-motion information by grid 
cells (in prep) 

# Grande X, Bisby JA, Berron D, Horner AJ, Duzel E, Burgess N (2017) Hippocampal Subfield 
Contributions to the Recollection of Multi-Element Events: Functional Evidence at 7 Tesla. Society 
for Neuroscience Abstract 167.04 / SS19  

Muessig L et al. (2015) A developmental switch in place cell accuracy coincides with grid cell 
maturation. Neuron 86: 1167-1173. 

Stensola, T, et al. (2015) Shearing-induced asymmetry in entorhinal grid cells. Nature 518: 207. 

Achieved Impact 

Our consideration of how environmental and self-motion information combine to drive grid cell 
firing patterns (Evans & Burgess, in prep) is being tested in experiments that we have helped to 
design, in collaboration with SP3 Episense (Cacucci lab), see joint publications by Chen et al 
(bioRxiv & in prep).  

Our consideration of episodic memory (Bicanski and Burgess, in prep) has helped to design an 
experiment on human hippocampal pattern completion, in collaboration with SP3 Episense (Duzel 
lab), see Grande et al (2017). 

Our Code for the model for episodic memory has been shared with SP3 Episense (Pearson lab) for 
implementation on a mobile robot. 

https://www.biorxiv.org/content/early/2018/01/11/246744
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Conclusion & Outlook (UCL) 

The above models aim to bridge scales between populations of rate coded neurons to the 
behaviour of the animal, within the context of spatial cognition and memory. Providing links to 
behaviour remain the main way for understanding whether a simulated brain is working in the 
same way as the real brain, i.e. in terms of its ultimate output, and using spatial cognition allows 
us make use of neuronal population encoding schemes known to be present in the brain. The 
simulations of striatal versus hippocampal memory systems allowed us to examine the behavioural 
effects of different learning rules and compare them to the (pre-existing) experimental data in 
the Morris Water Maze. It also allowed us to look at how two brain regions interact to control 
behaviour. The episodic memory model allows this understanding to be extended to aspects of 
human episodic memory, enabling simulation of recollection of the spatial scene in which an 
object was encountered, and comparison with (pre-existing) experimental data. We also examined 
how self-motion and environmental information are integrated in forming these neural 
representations of location, and have contributed the design of experiments to invesitgate this 
(collaboration with SP3 Episense). These models are being shared with investigators in SP3 
(Pearson, Prescott) to aid their implementations of memory on robotic platforms. Spiking neuron 
models where used as didictated by the question which was investigated, e.g. when modeling 
phase coding, and will pave the way for implementation on SpiNNaker.  

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 

 

2.4.10 Large-scale model of visuo-motor integration (T4.4.5) 
Please refer to Deliverable CDP4 – 2.4 Large-scale of visuo-motor integration (T4.4.5) for details 
of the model. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A N/A N/A N/A 
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2.5 Linking Model Activity and Function to Experimental data (WP4.5) 
2.5.1 Comparison of experimental and simulated neural activity data (T4.5.1) 
The JUELICH partner continued to work on reproducible workflows [2] for the comparison between 
experimental and model data. The experimental data consist of recordings of neural spiking 
activity from macaque motor cortex [1, 6]. The spiking network simulations were performed by 
NEST [4] in collaboration with T4.2.1, T4.1.3 and T4.1.4. . Both, the experimental and the 
simulated data, are analysed with the same toolbox (Elephant, developed in T5.7.1) and the same 
analysis workflow [5]. The model validation is performed with software and frameworks 
collaboratively developed with T6.4.4 andT9.1.5. 

The experimental data are massively parallel recordings during resting state (no task or stimulus) 
and during a reach to grasp task from macaque monkey motor cortex [1, 6]. The data consist of 
simultaneous single unit spiking activities and LFPs recorded with a 100 electrode Utah array 
covering 4x4mm² of cortex. For the resting state we also have a video of the monkey’s behaviour 
available, while during the task the behavioural events were registered. Pre-processing involves 
the separation of the spiking activity into putative excitatory (E) and inhibitory (I) neurons, and 
the segmentation in behaviorally relevant epochs. We published a reproducible data analysis 
workflow where the spiking statistics (firing rate, coefficient of variation, correlation coefficient) 
during resting state have been analysed in the HBP Collaboratory (#2493). Ongoing work using 
principal component analysis of spike counts [3] show that inhibitory units modulate their firing 
rates more strongly than excitatory units with respect to behaviour. 

The simulated data are generated using the extension of the cortical microcircuit model [4] to a 
size of 4x4mm² including lateral distance-dependent connectivity. It is composed of 8 neuronal 
populations (E&I point neurons in 4 layers), and a subsampling routine to record the same number 
of neurons as measured experimentally (about 140). For a preliminary version of the extended 
mesocircuit see component 777.  

The workflow for comparison of electrophysiological and simulated data is developed together 
with T6.4.4 and T9.1.5. It is based on the NEST-Spinnaker workflow (provided in the Collaboratory 
#507) using the newly written Python module NetworkUnit and tools provided by task T5.7.1 
(Elephant). 

 
 

Figure 57 Schematic of the reproducible integrative loop workflow comprising the analysis 
steps for experimental and simulated data together.  
Collaborating tasks are given at each step and contents of components are grouped in red and green rectangles. 
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Achieved Impact 

Implementation to platforms 

We published a reproducible workflow for the analysis of experimental data in the HBP 
Collaboratory (#2493). Simulation of the cortical microcircuit model is also available through the 
Collaboratory (#507). 

Related Publications 

[1] Brochier et al. (2018). Massively parallel recordings in macaque motor cortex during an 
instructed delayed reach-to-grasp task. Data publication, Scientific Data, Data available at 
https://web.gin.g-node.org/INT/multielectrode_grasp 

[2] Denker & Grün (2016). Designing workflows for the reproducible analysis of electrophysiological 
data. in: Brain Inspired Computing, Amunts et al. (Eds.), Lecture notes in computer science, vol 
10087. pp. 58–72. doi:10.1007/978-3-319-50862-7_5.  

[3] Kass et al. (2018). Computational neuroscience: mathematical and statistical perspectives. 
Annual Review of Statistics and Its Application 5. doi:10.1146/annurev-statistics-041715-033733. 

[4] Potjans & Diesmann (2014). The cell-type specific cortical microcircuit: relating structure and 
activity in a full scale spiking network model. Cereb Cortex, vol 24(3), 785-806. 
doi:10.1093/cercor/bhs358. 

[5] Senk et al. (2016). A collaborative simulation-analysis workflow for computational 
neuroscience using HPC. in: Di Napoli et al. (Eds.), Lecture notes in computer science, vol 10164. 
doi:10.1007/978-3-319-53862-4_21. 

[6] Torre et al. (2016). Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-
Delay Reach-to-Grasp Task. J Neurosci, vol 36(32):8329-40. doi:10.1523/JNEUROSCI.4375-
15.2016. 

Conclusion & Outlook 

The Juelich partner identified an appropriate use-case for the comparison between experimental 
and simulated data, namely to compare massively parallel recordings from monkey motor cortex 
during resting state with a mesocircuit model. We obtained the necessary experimental data and 
we delivered this data as component 418 (project-lifecycle.herokuapp.com/component/418), as 
described in MS 4.5.1. 

We also published a Collaboratory (#2493) for the corresponding data analysis. The network model 
simulations (generic mesocircuit, component 777), as well as the subsequent validation framework 
for comparing different types of data (cf. Collaboratory #507) are ongoing projects. Both are 
strongly related to other HBP tasks and are therefore tackled together with other WPs and SPs 
(WP4.1, WP4.2, SP5, SP6, SP7, and SP9).  Future work will include a detailed analysis of the 
experimental data and its implementation in the Neural Activity Resource (T5.7.2) together with 
metadata and preprocessing results. The generic mesocircuit model will be implemented in HBP 
platforms and model parameters will be adapted to reproduce the observations in the monkey 
motor cortex. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

777  4x4 mm2 motor cortex 
model (model) Yes Generation of cortical mesocircuit model 

418 
Massively Parallel 
Electrophysiology data 
(data) 

Yes Analysis of experimental data 

https://web.gin.g-node.org/INT/multielectrode_grasp
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348 Component 115-3: 
Elephant (software) Yes Software used for analysis of neural activity data 

358 
Component 105-1c: 
Collaboratory Jupyter 
Notebook (service) 

Yes Notebooks used in the HBP Collaboratory 

721 
SP6-T6.4.4-SGA1-Model 
Validation Service 
(service) 

Yes Software for model validation 

209 NEST - The Neural 
Simulation Tool Yes Software for simulation of mesocircuit model 

330 HPC systems at JSC Yes HPC infrastructure used for simulation 

373 Collaboratory Storage 
Service Yes Data storage for experimental data used in 

reproducible analysis workflow 

324 

SGA1 - Federated data 
storage with flexible 
permission management 
and remote access 

Yes Data storage for experimental and simulated data 
to be used in validation workflow 

 

2.5.2 Models of mouse brain function from structure (T4.5.1 & T4.5.2) 
Description of the model 

The AMU partner has worked on a whole brain mouse models of spontaneous resting state activity, 
which were validated against mouse recordings. This work utilized the open source tracer dataset 
of the Allen Institute (Oh et al., 2014) that was implemented into The Virtual Brain (TVB) (Sanz et 
al. 2015), thus allowing detailed Structural Connectivity (SC) to be obtained (Melozzi et al 2017).  

Within the framework of CDP1, the whole brain mouse network models were further validated 
against empirical data recorded in SP1 using calcium imaging. The top-down models systematically 
exploits the effects of the SC constraints upon network dynamics, and was compared with 
empirical cortical activation maps in SP1, in healthy, stroke and rehabilitation. The structural 
impact of the stroke and of the recovery was systematically analyzed, and the best fit was 
obtained for parameters which were in agreement with the experimental results for the structural 
damage during the stroke and the recovery.  

Data analysis and modelling were performed for recordings of one hemisphere of one animal (SP1 
data), and further recordings from both hemispheres are expected from 4 more animals.  
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Figure 58  
A. Brain network model of the cortical activity in mice during healthy state and stroke. The stroke occurs in M1 
(primary motor cortex), and the dynamics of the areas visible in the calcium imaging experiment is modelled for 
different impacts of the stroke and the recovery B. Comparision for the functional connectivity between empirical 
data in first and in the fourth week after the stroke, and the model for one point in the parameters space. Generally 
better predictability is observed for higher damage and lower rebound at week1 than at week4, which is line with 
the experimental data for the structural damage and recovery. 

Resting state stimulated and propagation patterns due to connectivity have been analyzed in line 
with the experimental data from voltage-sensitive dyes imaging. The propagation of activation 
patterns was systematically studied, thus helping to describe the excitability of different cortical 
areas of the mouse brain and to mathematically and computationally investigate the non-
stationary properties and capacity of the models to propagate activations through the network. 

 
Figure 59 Specific focal stimulations activate similar networks.  
Panel A is the similarity matrix of stimulation with the clusters 1 and 2. Panels B and C show the responsive 
networks (isocortex) of cluster 1 and of cluster 2. 

Implementation to platforms 

Component 998, “Allen Mouse Atlas (AMA) based brain network” (T4.5.2) 

Component 1574, “Structural and functional connectivity at different scales” (T4.5.1) 

Implementation to platforms 

This model was integrated to the collaboratory. 

Publications 

Melozzi F, Bergmann E, Kahn I, Jirsa VK, Bernard C. Individual predictability and comparison 
between different structural connectivities (in preparation)   

Petkoski S, Allegra L, Pavone F, Jirsa V. Brain network model for mouse stroke and recovery  (in 
preparation)   
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Spiegler A, Mohajerani M, Jirsa V. Network dynamics after focal stimulation in a connectome-
based network model of the mouse brain (in preparation)   

Achieved impact 

This model will be continued to include networks of spiking neurons and mean-field models. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

998 
Allen Mouse Atlas (AMA) 
based brain network 
(T4.5.2) 

Yes Build the structure connectivity of the healthy, 
stroke and rehabilitation in mice 

1574 
Structural and functional 
connectivity at different 
scales (T4.5.1) 

Yes Explore the impact of structural lesions to the 
functions  

2303 

Sub-cortical recording 
and manipulation of 
neuronal activity in 
awake mice C1.3.4.2 

Yes 
Helped obtaining the level of the damage and the 
recovery (rewiring) due to stroke, which is used in 
the model 

552 
Fluorescence imaging of 
cortical activity after 
stroke 

Yes Validate the model with imaging data in stroke 
and recovery in mice. 

 

2.5.3  Comparison of models with mouse and human brains (T4.5.1) 
Description of the model 
AMU partner has reconstructed epileptic patients’ brain networks, using their specific anatomical 
properties and used the Epileptor, a neural mass model capturing the temporal evolution of a 
seizure including on- and offset. Based on clinical hypothesis of EZ, we reproduced seizure 
propagation in silico as observed empirically with SEEG electrodes implanted in the patient. These 
propagation patterns cannot be captured by functional connectivity due to their inherent non-
stationarity. We made the following steps: 1) Proix et al (2016) built the processing chain of all 
structural images (dMRI, MRI) required to build a virtual brain. 2) Jirsa et al (2017) demonstrated 
the methodology and proof of concept of how to create personalized models and fit them against 
empirical neuroimaging data. 3) Proix et al (2017) performed a pilot study (N=15), where we 
computed a score estimating the difference between the EZ identified by the brain model, and 
that identified by the clinicians during pre-surgical evaluation. This study demonstrated the 
favourable correlation between model prediction and surgery outcome. In other words: negative 
surgery outcome correlates with surgery not performed in line with model predictions. 
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AMU partner has also been involved in introducing a new neural field model that unifies and 
explains the previously observed diversity in spatiotemporal dynamics of seizure initiation, 
propagation and termination and their multiple time scales. The model demonstrated how the 
interplay between temporal and spatial scales leads to: (i) slow propagation of an ictal wavefront 
whose speed is hampered by fast oscillations, (ii) fast propagation of SWDs through coupled-
oscillator dynamics, (iii) the formation of ictal clusters via stagewise recruitment with synchronous 
and asynchronous seizure termination. The model’s predictions that SWD propagation and 
connection strength correlate with the type of spatial patterns of seizure recruitment and 
termination was confirmed in SEEG and tractography data recorded from patients with epilepsy. 

Figure 61 The Epileptor field model reproduces multiscale features of spatiotemporal 

seizure dynamics.  
(a) Schematics for the Epileptor field model. At each spatial location of the neural field, an Epileptor site (oval) 
includes two neural populations and a slow permittivity variable (inner circles). Epileptors are connected to their 
neighbors via local homogeneous coupling, which decays exponentially with pairwise distances. Epileptors also 
connect to Epileptors in other fields through heterogeneous coupling. (b) Simulation of a model including two 
distant Epileptor fields (middle plot). The top field includes the seizure onset area, while the bottom field 

Figure 60 Components of 
personalized large-scale 
brain model network.  
(Upper row from left to right) 
Connectivity derived from dMRI, 
large-scale network model, 
cortical and subcortical surfaces. 
(Bottom row, from left to right) 
Brain areas in model with 
increased epileptogenicity 
delineating the Epileptogenic 
Zone and Propagation Zone.  (a), 
exemplary simulated time series 
of symptomatic/asymptomatic 
seizure (b). 
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represents a more distal brain area. Spatial values for excitability parameter (u0) and simulated spatiotemporal 
activity are shown on the left and right, respectively. The curved arrow indicates heterogeneous connections 
between the two fields. The connection kernels (black lines) were centered at the indicated locations. The seizure 
started in the top Epileptor field, slowly propagated throughout the field, then eventually recruited the bottom 
Epileptor field, where it slowly propagated as well. The horizontal colorbar indicates the activity level for the 
middle and lower plots. Time series at four spatial locations in the two fields (indicated by colored bars in the 
middle plot) are shown in the top plot. The two bottom plots show a zoomed in view of the spatiotemporal activity 
at seizure onset (left) and offset (right). Red dots mark the source location of the propagating SWDs at seizure 
onset and offset. As the seizure evolved, the source of SWDs changed along with the slow ictal wavefront across 
each field. 

 

Achieved impact 

This model will be continued in SGA2 to network models based on personalized DTI-derived 
connectome data for better identification of the epileptogenic zone and propagation patterns of 
epilepsy patients. 

Implementation to platforms 

Component 1574, “Structural and functional connectivity at different scales” (T4.5.1) 

Implementation to platforms 

This model was integrated to the collaboratory through TVB. 

Publications 

Proix T, Bartolomei F, Guye M, Jirsa V. Individual brain structure and modelling predict seizure 
propagation. Brain 140, 641–654 (2017). 

Proix T, Jirsa V, , Bartolomei F, Guye M, Trucollo W. Predicting the spatiotemporal diversity of 
seizure propagation and termination in human focal epilepsy. Nature Neuroscience (in press) 
(2018). 

arXiv preprint: https://arxiv.org/pdf/1707.00772 

Achieved Impact (AMU) 

This model will continue in SGA2 with two tasks for identifying epileptogenic zones in epileptic 
patients and for studying the propagation zones. 

Conclusion & Outlook (AMU) 

AMU: The human epilepsy model alows validating empirical data of propagation of epileptic 
seizures with whole brain network models derived from human connectome data using neural mass 
models. The model will be continued in the next period in order to improve the identification of 
the epileptogenic zones and propagation patterns in the epileptic patients. 

The mouse connectome model has demonstrated the constarins of the structure to the function, 
as observed in the mouse experimental data. The model will be continued in SGA2 and it will be 
validated against high-dimensional neuronal network models, enabling parameter space 
explorations to guide high performance computations (SP7).  

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1574 
Structural and functional 
connectivity at different 
scales (T4.5.1) 

Yes 

Validate the model predictions on seizure 
propagation and patient-specific surgery outcome 
against empirical intracranial and clinical data 
from epileptic patients 

https://arxiv.org/pdf/1707.00772
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263 UNICORE (software)  Yes Software to access HPC from within HBP 
Collaboratory 

361 Component 115-3b: Neo 
(software) Yes Python packqage for data representation of 

experimental and simulated data 

360 odML (software) Yes Meta data format for experimental and simulated 
data 

362 Collaboratory Task 
Service (service) Yes Collaboratory task service for HPC tasks 

821 

Workflow for comparison 
of electrophysiological 
and simulated data 
(service) 

Yes 
Workflow to compare macaque motor cortex data 
with mesocircuit simulation (component owned by 
T4.5.1) 

 

2.6 The European Institute for Theoretical Neuroscience (WP4.6) 
We report here all the models developed by the EITN postdocs, which  
describe collaborations between two HBP partners, within SP4, or  
between SP4 and another SP. EITN cosupervised post-docs activity details can be found in D4.6.2. 

 

2.6.1  Comparison of Up and Down state oscillations in mouse and human 
This work started in collaboration between UNIC (Alain Destexhe, Thierry Bal) and SP2 (Huib 
Mansvelder) to compare slow oscillations in brain slices, consisting of Up and Down states.  The 
slow oscillations were obtained experimentally in mice, and we would like to apply the same 
experimental protocol to human slices. 

The data will serve to constrain computational models of spiking network (AdEx neurons), and 
determine the connectivity requirements to account for differences between mouse and human 
oscillations. 

This work just started and will be reported in SGA2. 

 

2.6.2 Towards Third-Factor learning rules on SpiNNaker (T4.6.2) 
Please refer to Deliverable CDP5 – 3.5 Plasticity rules in neuromorphic hardware for details of the 
model. 

Anna Bulanova (EITN/SP4), Oliver Rhodes (UMAN/SP9), Steve Furber(UMAN/SP9), André 
Grüning (SURREY/SP4); collaboration between SP9 (U Manchester) and SP4 (U Surrey, EITN 
Paris) 

Implementation to platforms 

375     SP9: SpiNNaker software stack (software) 

468     SP9: Principles for brain-like computation (model) 

1066   SP4: Plasticity - Synaptic plasticity and learning (model) 

1341   CDP5: Concept showcases in big-systems (model) 

1342   CDP5: Guiding platform design on functional plasticity (model) 

Implementation to platforms 
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The changes to SpiNNaker software are in Fusi_plasticity branch of the official SpiNNaker github 
repository. Eventually this branch will be merged into master branch, and installed on the HBP 
portal. 

https://github.com/SpiNNakerManchester/sPyNNaker/tree/Fusi_plasticity 

https://github.com/SpiNNakerManchester/sPyNNaker8/tree/Fusi_plasticity 

Publications 

Paper in preparation: working title: “Neuron-state dependent learning rules on Spinnaker” 

Achieved Impact 

During this project SpiNNaker software infrastructure was changed to facilitate usage of internal 
neuron variables in plasticity updates. This will make future implementation of all learning rules 
that require access to any neuron variables easier. 

Conclusion & Outlook 

As the first stepping stone of evolving SpiNNaker neuromorphic platform to support Third-Factor 
learning rules, we have implemented the Brader-Senn-Fusi rule (Brader et al., Neural Computation 
2007). This rule expands the set of plasticity rules offered by SpiNNaker: in the past only spike 
timing dependent plasticity rules were available, and not those depending on internal states of 
the neuron like the Brader-Senn-Fusi rule. In addition to providing users with the learning rule we 
implemented, this will make future development of any rules that require access to the neuron 
state more straightforward. 

Our short term plan is reproducing the classification experiments from the original paper (Brader 
et al., Neural Computation 2007). Long term, our work will be used as a stepping stone for 
SpiNNaker implementations of more complex learning rules that require multicompartmental 
neuron models. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

375 SpiNNaker software stack 
(SP9) Yes Use of spinnaker for simulations and co-

development of SpiNNaker code 

468 
Principles for brain-like 
computation (model, 
SP9) 

Yes Basis for part of application of rules considered 
for SpiNNaker 

1066 
Plasticity.- synaptic 
plasticity and learning 
(model)  

Yes Basis for learning rules consider for SpiNNaker 

1341 Concept showcases in big-
systems (model, CDP5) Yes Contribute small scale test-bed systems 

1342 
Guiding platform design 
on functional plasticity 
(model) 

Yes Co-development and guidance of software 
development for SpiNNaker re plasticity 

 

2.6.3 Theoretical Mean-field Model for COBA networks of AdEx Neurons displaying 
alternation between Up and Downs (T4.6.2) 

Description of the model 

https://github.com/SpiNNakerManchester/sPyNNaker/tree/Fusi_plasticity
https://github.com/SpiNNakerManchester/sPyNNaker8/tree/Fusi_plasticity
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In collaboration with Maurizio Mattia (SP3) and Alain Destexhe (SP4), we apply a fully theoretical 
approach to work out a mean-field model of neuronal population activity, for conductance based 
(COBA) networks of Adaptive Exponential (AdEx) integrate and fire neurons. The network is based 
on two different cell types, excitatory (E), also known as “regular spiking” (RS), and inhibitory (I) 
or “fast spiking” (FS) neurons (Figure 62A).  The mean-field model of RS-FS networks was based 
on a Master Equation Formalism proposed previously (El Boustani- Destexhe 2009), while the 
method to evaluate the transfer function is inspired from (Brunel 2000). The dynamics of the 
system can be described by the following equations 

 

 

 

 

 

where E(t) and I(t) are the excitatory and inhibitory population activities, and W(t) the level of 
adaptation, whose dynamics is defined by parameters a and b.  

 

  

One of the major challenges of such model is to evaluate the transfer function for neurons provided 
of COBA integration of signals, that generates a complicated and bidirectional interaction between 
the statistics of the input and the statistics of the membrane potential. The mean-field model 
obtained was tested against numerical simulations of the network and, as shown in Figure 62B, 
the average firing rate of the population is well predicted by the theoretical transfer function. 
One possible application of the model is to explore a specific dynamical regime of the network 
that is the alternation between Up and Down states, also referred to as Slow Oscillations (SO). 
Here we report a preliminar result of the mean-field model, succesfully describing the oscillating 
activity of a RS-FS networks (Figure 63A), as observed in the spiking network. It is also possible to 
use standard metods for dynamical system to study the model as nullcllines representation (Figure 
63B). In Figure 63B is also showed how the average membrane potential changes across the 
dynamics (colorcoded in the background), that is a major point in COBA models. 

 

 

 

Figure 62 Theoretical Mean 
Field for RS-FS network:  
A. Sketch of the structure of RS-FS 
network. RS is also affected by 
adaptation W. B. Comparison between 
firing rate evaluated through spiking 
simulations (circles) and transfer 
function prediction (lines) as a function 
of the input firing rates. On x axis 
excitatory firing rate, while different 
colors represent different inhibitory 
firing rates. 



 

 

 

 

 

D4.7.2 (D25.2 D33) SGA1 M24 ACCEPTED 180907.docx PU = Public 07-Sep-2018 Page 95 of 111 
 

Figure 63 Mean-field model of slow Up-Down states oscillations.   
A. Sample of RS-FS dynamics, respectively in green and red. In orange the adaptation dynamics is represented.  B. 
Representation of nullclines (region where the derivative for the ODE are null) for RS population firing rate E and 
adaptation variable W (respectively blue and red lines). The green lines represent the dynamics of the system in 
such plane. On the background, colorcoded, is represented the average of the membrane potential as a function 
of the position in this plane. 

 

Implementation to platforms 

This model will be integrated in the Collaboratory and in the Model Catalog in SP5. 

Publications 

Capone et al., Mean field for Slow Oscillation for COBA network of AdEx neuron. 2018. (in 
preparation). 

References 

[1] El Boustani S, Destexhe A (2009) A master equation formalism for macroscopic modeling of 
asynchronous irregular activity states. Neural computation 21: 46–100.  

[2] Brunel, N. J Comput Neurosci (2000) 8: 183. https://doi.org/10.1023/A:1008925309027 

[3] Capone C, Mattia M. (2017) Speed hysteresis and noise shaping of traveling fronts in neural 
fields: role of local circuitry and nonlocal connectivity. Sci Rep. 7:39611.  

[4] C Capone, B Rebollo, A Muñoz, X Illa, P Del Giudice, MV Sanchez-Vives, M Mattia.  (2017) Slow 
Waves in Cortical Slices: How Spontaneous Activity is Shaped by Laminar Structure, Cerebral 
Cortex, https://doi.org/10.1093/cercor/bhx326 

Achieved Impact 

This model can be soon extend to explore other dynamical regimes, and to describe more 
complicated systems as the thalamo-cortical loop, and the peculiar dynamics that it generates. 

Concusion & Outlook 

One of the main objective of the model is to provide a description of slow oscillatry dynamics 
experimentally observed in the cortex in specific conditions (such as deep sleep and anesthesia), 
to understand its mechanisms and wich is the effect of specific aspects on SO dynamics (e.g. COBA 
integration). This model is an extension of previous model developed by members of SP3 (Capone 
and Mattia, 2017) where the effect of COBA integrations was not considered. Also the model aims 
to brige microscopic scale (spiking neurons) to the macroscopic one (average population activity) 
that is one of the objectives of theoretical neuroscience in HBP. The model will be further 
developed to describe spatially extended regions of the brain and the thalamo-cortical system. 

Component Dependencies 

Summarized links to components this key result depends on. 
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Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A Brunel 2000 No Evaluate transfer function 

N/A El Boustani 2009 No Master equation formalism 

 

2.6.4 Macroscopic model of brain function (T4.6.2) 
Description of the model 

This model, cosupervised by Destexhe, Jirsa, and Kherif groups, aims at obtaining a concise “top-
down” description of brain activity, based on constraints from macroscopic recordings.  In a second 
step, we will integrate a typical “bottom-up” approach, a mean-field model of cortical populations 
derived from spiking neurons.  We will then attempt to bridge the two approaches in a common 
formalism to describe different brain states, normal and pathological. 

 
Figure 64 Different oscillatory modes of brain activity recorded from 
magnetoencephalography (MEG) can be used to define state variables, and particular 
relations between them.  
Representative time courses of the magnetic field measured for each human subject, in each brain state, from 
each sensor, and epoch. (c-d) Corresponding power spectra of example signals shown in a-b. Dashed lines indicate 
local maxima at various frequencies (f) for which the corresponding energy (uf) is obtained. 

Compared to resting or unconscious states, neural electromagnetic signals associated with high 
levels of cognitive vigilance is smaller in magnitude but higher in dimensionality. The first goal of 
this work was to investigate mechanisms underlying brain-state dependent changes in neural 
activity to achieve a formal description of macroscopic neural signals in health and disease. First, 
Magnetoencephalography (MEG) data from healthy human subjects in resting (Figure 64a) and 
active (Figure 64b) states were analysed using Welch windowing to generate power spectra (Figure 
64c,d) in which resonances (local maxima) were identified.  

To quantify the spectral organization of brain activity for each subject with respect to brain state, 
the following macroscopic variables were introduced: 
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where uf is the average power of resonances and P(f) is the probability of modes at each frequency 
generated from a vector of f values.    

While the effective energy (eq.1) and effective entropy (eq.2) display considerable inter-subject 
variability (Figure 65; top right inset), examining the relationship between the macroscopic state 
variables, a robust linear relationship is apparent (Figure 65).  To test the possibility that 
definitions posed in eq.1 and eq.2 could be tautological, the effective entropy was modified 
followed by a test of the energy and vice versa (Figure 65, bottom left inset). These experiments 
showed that the definitions of effective entropy and effective energy are not intrinsically related. 

 

Figure 65 State variables in data from resting and active subjects.  
Top right inset, considerable inter-subject variability in state variables when plotting the effective entropy and 
effective energy (upper and lower panels of top right inset). In the main regression, the effective entropy (x-axis) 
for each subject is strongly related to the effective energy (y-axis) for each subject in both resting state (grey) and 
active (black) recordings. A shift in both the intercept and slope of the line is observable between states. Pearson 
correlation, Rest; r2=0.94, p < 0.001. Active; r2=0.93, p < 0.001. The bottom left inset shows effective entropy 
of resonances in human data artificially modified with no resulting change in effective energy and the energy 
changed with no effect on entropy. 

Next steps for this model are to first implement the mean field approximation describing 
interconnected populations of excitatory and inhibitory networks (El Boustani and Destexhe, 2009; 
Zerlaut et al., 2018) as nodes in The Virtual Brain (Sanz Leon et al., 2013) to generate a whole-
brain simulation. This simulation will be compared to others generated by Wilson and Cowan and 
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Wang-Wong based mean field models for their ability to recapitulate the dynamics associated with 
epilepsy in collaboration with SP8. Because neural signals in epilepsy show a markedly reduced 
dimensionality (Babloyantz and Destexhe, 1986), the definitions proposed in the current model 
could account for the changes in magnitude and complexity of signals observed in epileptic 
patients recorded by Viktor Jirsa and colleagues.  The current work will next investigate these 
aspects (in SGA2). 

Implementation to platforms 

This model will be integrated to the collaboratory and the Model Catalog in SP5. 

Publications 

Lina J.M., di Volo M., Capone C., Nguyn T.A., Evans A.C., Destexhe A., and Goldman J.S. Analogues 
of energy and entropy in the spectral structure of human brain activity.  In preparation. 

Goldman J.S., Evans A.C., Destexhe A.C., Lina J.M. State-dependent spectral organization of 
human brain resonances. In preparation. 

Achieved Impact 

This model has been generated based on non-invasive MEG recordings of human brain and is now 
continued in the analysis of data at various scales spanning single neuronal spikes to local field 
potentials (LFP) and electroencephalogram (EEG) from epileptic patients in collaboration with the 
lab of Viktor Jirsa (SP4) and Ferath Kherif (SP8). 

Conclusion & Outlook 

Simulations produced with The Virtual Brain will be examined using the model here described for 
mechanistic insight regarding the findings of this model. Mean field-models of neuronal networks 
incorporated in The Virtual Brain will generate scale integrated insight into the transitions from 
healthy brain states to epilepsy. Successful simulations will allow the prediction of patterns of 
activity capable of preventing or arresting seizures, to pursue therapeutic interventions based on 
these findings.  

This study will also combine “top-down” and “bottom-up” approaches, therefore contributing to 
bridge these different aspects of modelling brain function present in HBP. 

Component Dependencies 

Summarized links to components this key result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

N/A The Virtual Brain (TVB) Yes Key aspect of brain function 
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1. Introduction  
In this addendum, we detail the different outcomes of the SP4 models (see the main deliverable 
D4.7.2 for details about each model). We also list the implementation towards other SPs, in 
particular the HBP platforms.  

This must be viewed as a summary of outputs from SP4 that are implementable in the IT sub-
projects. The main deliverable should be consulted for more details about the models summarised 
here. 

2. WP 4.1 Bridging Scales 

2.1 T4.1.1 Simplified dendritic model  

Simplified models of neurons  

Possible outcomes and implementation towards other SPs 

Detailed models of cortical neurons, both of rodents and presently of human pyramidal cells that 
we developed are key ingredient for large-scale realistic brain simulations. The models that we 
have built for a variety of cortical neuron types, and the methods underlying it (multiple objective 
optimization, morpho-electrical cell-type classification etc.) are now widely used in SP6 for 
developing models for other types of neurons in different brain regions (e.g. hippocampus). Our 
models also serve as reference for VLSI-based models under SP9. In coming months, we plan to 
release our new (Neron_reduce) method to analytically reduce the detailed cell models into 
simplified multi-polar cabe models. These models capture faithfully both passive and active 
(including dendritic nonlinearity) of the full models and run 200-times faster than the respective 
full models. They will be used in SP6, SP9 and SP3 (memory/cognitive processes) and most likely 
also in SP10 (neuro-robotics), as well as within SP4 (e.g., Deco, Diesmann) for investigating brain 
dynamics at different brain states. In particular, we envision that in SG3 phase our models of 
human neurons (both detailed and reduced) will serve for constructing, for the first time ever, 
realistic models of human cortex. 

Simplified model of dendritic integration under in vivo conditions  

Possible outcomes and implementation towards other SPs 

The simplified models with excitable dendrites were conceived using the AdEx formalism, which 
is precisely the formalism implemented in the new generation of BrainScales hardware. They will 
therefore serve as a “first user” of this new prototype hardware.  In SGA1, we have conceived the 
model, and studied this model numerically. In SGA2, the model will be implemented in 
neuromorphic hardware in SP9. We will test the computational properties of networks endowed 
with excitable dendrites. 

Discrete model of dendritic spike propagation in dendrites  

Possible outcomes and implementation towards other SPs  

The two models developed in 2.1.3 and 2.1.6 are a prelude to mean-fields model of network of 
neurons with 2d generalised integrate and fire neurons with dendritic compartments which will 
be achieved in SGA2. This will help understanding how the microscopic neuron dynamics 
(bursting...) affect the network (global) dynamics. The discrete model of dendrite will be the 
basis of a new model of *ball and stick* neuron which will be embedded in a network and a mean 
field analysis will be performed. We plan to compare our prediction to the detailed models of SP6 
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when this one is released. We also plan to collaborate with SP9 to implement our model in a 
neuromorphic platform. 

2.2 T4.1.2 Input-output transfer functions of 
morphologically detailed neuronal models 

Information encoding in Reconstructed Human Neurons  

Possible outcomes and implementation towards other SPs 

A major outcome of combining SP1 and SP4, by integrating the results obtained in T4.1.2 with 
those of T1.2.2, 2.2.2 and 2.2.6, is the collaboration between M. Giugliano (SP4) and H. 
Mansvelder (SP1) and their manuscript currently submitted for publication. Active bidirectional 
flow of information occurred between partners: SP1’s digital reconstructions of cortical human 
neurons were provided to Giugliano (SP4), who in return offered Mansvelder (SP1) with spiking 
neuronal models based on those morphologies, together with in silico predictions of in vitro 
experimental properties of those neurons. 

Another outcome, demonstrating the integration of the results of other SPs, is the collaboration 
between M. Giugliano (SP4) and M. Migliore (SP6) and their Brain Simulation Platform, represented 
by a contributed online “Collab”. Active bidirectional flow of information occurred between 
partners: SP6’s Jupyter-based platform implementation details were provided to Giugliano (SP4), 
who in return offered an actual implementation of integrate-and-fire as well as conductance-
based modelling, demonstrating interactive simulation. 

2.3 T4.1.3 Mean-field and population models 

Mean-field Models of GIM networks  

Possible outcomes and implementation towards other SPs  

We have derived mean-field and population models from point neuron models and studied the 
influence of network connectivity and of correlations in the noise and the network heterogeneity.  
The planned comparison of mean-field and spiking models was done, where the mean-field model 
was shown to reproduce both the level of spontaneous activity and the response of the network. 
The comparison of such models to the detailed models of SP6 will be done in SGA2, once the 
mouse cortical column model will be released (end of SGA1). In order to explore possible hardware 
acceleration of multi-dimensional population density techniques we have started experimenting 
with GPUs. 

Long range dependence in Integrate and Fire models  

Possible outcomes and implementation towards other SPs  

This model aims at understanding deeply the nature of noise in individual neurons and the effect 
on the associated mean-field network. We also plan to compare the data acquired from SP3 to our 
statistical tests. Indeed, it will help to understand if the long-time correlation is mostly due to 
memory of the neuronal noise or to the time evolution of the network, that is plasticity. In 
addition, after validation with the data, the new non Markovian models ($\alpha \neq 0.5\$) will 
be added in SP6. Understanding the best noise model at each scale of brain area is a big challenge. 

Development of the MIIND simulator  

Possible outcomes and implementation towards other SPs  
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ULEEDS has developed novel methods for simulating neural populations, implemented them and 
made the implementations available, first as Open Source, and now through installation on the 
HPC platform, the JURON machines. Within SP4, it has created an interface for The Virtual Brain 
(TVB), so that TVB now effective can run MIIND simulations on whatever platform that supports it 
–currently UNIX/LINUX clusters and GPGPUs- thereby opening up the possibility to instantiate 
simulations that combine cortical connectivity parameters with an increasingly realistic modelling 
of neural dynamics, which is something we will explore in SGA2. The Pallier lab has adopted the 
MIIND simulator, which already led to a model, which has been published as a PhD thesis (Martin 
Perez-Guevara, Paris Descartes) and is currently drafted as a publication.  Pallier lab was part of 
SP3 during the ramp up phase. It is unfortunate that they are no longer with the project, but it 
goes to show that the time between the first contacts, where experimentalists and modellers have 
to learn to communicate in a common language, and the write up, can be three years. It is 
unfortunate that after having worked hard to establish these contacts within HBP (SP4/SP3), they 
now have to be continued outside.  It has taken SGA to produce robust software and documentation 
that can be handed to novel users. We will push its use in SGA2 and SGA3. 

Mean-field Models of AdEx networks  

Possible outcomes and implementation towards other SPs  

In SGA1, we generated a mean-field model of conductance-based spiking networks, and which is 
applicable to conductance-based synaptic interactions, and to networks were there are different 
intrinsic firing properties, modelled by the AdEx model. This mean-field model is among the most 
“realistic” mean-field models ever done, and is able to predict the activity of networks of spiking 
neurons. In SGA2, it will be integrated in the Virtual Brain, and used to study the dynamics of very 
large networks, up to the whole brain. 

2.4 T4.1.4 Models of brain signals  

Models of Voltage-Sensitive-Dye imaging (VSDi), Simplified model of local field 
potential (LFP) and models of local magnetic fields  

Possible outcomes and implementation towards other SPs  

The models of LFP and LMF developed in SGA1 will be implemented in the brain simulation 
platform in SP6. We will first consider models of LFPs (unitary fields and full LFP) in the 
hippocampus using the detailed hippocampal model developed in SP6. We will compare the 
simulations with data from, hippocampal slices. We will next simulate LFPs in the mouse cortical 
column developed in SP6. Here, the results will be compared to multi-electrode array recordings 
where we could relate LFP with single unit activity (Telenczuk et al., Sci Reports 2017). This work 
will be done in SGA2.  

Similarly, we will use the models of local magnetic fields (LMF) developed in SGA1 (Barbieri et al., 
Sci Reports 2016). We will calculate the LMF of hippocampal slices, using the SP6 model. This 
model will guide further experiments on measuring magnetic fields from hippocampal slices. 
Magnetic fields will also be calculated from the cortical column of SP6.  Such simulations will serve 
as the basis of a detailed model of cortical magnetic signals. This work will be done in SGA2. 

Finally, a model of VSD signals was developed in SGA1 and was compared to VSD recordings in 
monkey V1 (Zerlaut et al., J Computational Neurosci. 2018). In SGA2, this model will be compared 
to the detailed VSD model developed in SP6. In particular, we will consider the case of propagating 
waves of activity as recorded in V1 of the awake monkey. 
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Improved LFP model with quasi-active conductances  

Possible outcomes and implementation towards other SPs  

Our work in this component concerned the effect of active conductances on the Local Field 
Potential (LFP). The work resulted in two publications, and for both of these projects we have 
implemented interactive examples in Jupyter Notebook on the Collaboratory that allows HBP 
members to use our models to recreate our main results. This allows for easy adoption of our 
models by HBP members, since these examples demonstrate how to implement and use our models 
on the Collaboratory. 

    The results and models from this component are highly relevant for the HBP, and especially for 
SP6 which are performing large-scale brain simulations with calculation of LFPs. For example, 
based on the cortical microcircuit model that was developed by the Blue Brain Project, and is 
currently further developed by the HBP, the role of active conductances on the LFP was estimated 
(Reimann et al., 2013, Neuron 79). We expect that our results and models will help guide future 
extensions of this work. Our results also indicate that active conductances might have important 
effects on electroencephalography (EEG) and magnetoencephalography (MEG) signals recorded 
non-invasively from humans. To look for the signature of active conductances here, our framework 
could be used in combination with the large brain simulations from SP6, with concurrent 
calculation of LFP, EEG and MEG signals. 

Collabs which demonstrate our models and results: 

https://collab.humanbrainproject.eu/#/collab/5170/nav/40008 

https://collab.humanbrainproject.eu/#/collab/8555/nav/64785 

Simplified EEG models  

To connect large-scale brain simulations to experimental data is vitally important for the HBP, 
and in this component we have developed a framework which greatly simplifies the process of 
calculating electroencephalography (EEG) signals from simulated neural activity. This component 
is relevant for the HBP since it can help tie large-scale brain simulations from SP6 to experiments. 
For biophysically detailed simulations implemented in the NEURON simulator, the implementation 
of our framework for EEG calculation should be straightforward.  

Our framework also offers the possibility of obtaining EEG proxies from point-neuron simulations, 
analog to what has been done for LFP signals in the component “SGA1-T6.3.6 - Tool for LFP 
recording in NEST simulations”, where we contributed. An example of this can be seen in the 
"NEST Instrumentation App" (SGA1-T6.3.6) at the Collaboratory, where LFP predictions can be 
made directly from the large-scale Potjans-Diesmann model implemented in NEST.  

3. WP 4.2 Generic models of brain circuits 

3.1 T4.2.1 Simplified network models of different 
cortical areas 

Simplified network models of different cortical areas  

Possible outcomes and implementation towards other SPs 

In this task, the JUELICH partner is developing two models of cortical circuits using leaky integrate-
and-fire (LIF) neurons: a model of a 1 mm2 cortical microcircuit with the full density of neurons 
and synapses (Potjans and Diesmann, 2014), and a model of all vision-related areas of one 
hemisphere of macaque cortex where each of 32 areas is represented by 1 mm2 (Schmidt et al., 

https://collab.humanbrainproject.eu/#/collab/5170/nav/40008
https://collab.humanbrainproject.eu/#/collab/8555/nav/64785
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2018; Schmidt et al., accepted). The former model has about 80,000 neurons connected via 300 
million synapses; the latter has about 4 million neurons connected via 24 billion synapses. In SGA1, 
we have finished and described the porting of the microcircuit model to the Collaboratory (Senk 
et al., 2017), SpiNNaker (van Albada et al., 2018), and Open Source Brain (Gleeson et al., 2018). 
The porting to SpiNNaker was done in collaboration with SP7 and SP9. The microcircuit model has 
further served as a test case for the tools and workflows available via the Collaboratory, thus 
establishing a link to SP5. The implementation of the model in a Collab and the workflow including 
the use of high-performance computing resources, statistical analysis with Elephant (SP5) and 
visualization were described by Senk et al. (2017). The multi-area model of macaque cortex is 
currently the only neuroscientific model in NEST requiring supercomputing resources, and is 
thereby essential as a use case for SP7. The complete code for the model and its analysis and 
visualization has now been published at https://github.com/INM-6/multi-area-model. This model 
can serve as a new test case for SpiNNaker in SP9. 

3.2 T4.2.2 Network models including neuron-glia 
interactions 

Model for neuron-glia interactions and dimensionality reduction  

Possible outcomes and implementation towards other SPs 

T4.2.2. will develop new collaboration with SP1 (Javier DeFelipe) on astrocyte morphology and 
connectivity in the cerebral cortex. The existing data on neuron and astrocyte morphologies will 
be analysed in terms of the number of astrocytes reaching closeby synapses and, on the other 
hand, the number of synapses covered by astrocytes. This data will be used to develop the network 
model with glial influences in the SGA2. Another collaboration is set up jointly with SP4/Markus 
Diesmann and SP9/Steve Furber to make an extension of Potjans-Diesmann model with glia 
influence. The model will be implemented first using the Nest simulator and several hypotheses 
on glial contributions, including the hypothesis on network synchronization, will be tested. 
Implementation on Nest promotes further implementation on neuromorphic hardware, specifically 
on the SpiNNaker. 

4. WP 4.3 Learning and memory 

4.1 T4.3.1 Plasticity algorithms 

STDP for structural Plasticity (WP4.3) 

Possible outcomes and implementation towards other SPs  

The model has been implemented in NEST and has already been transferred to the simulation SP 
(NEST - the neural simulation tool, component 209, linked to SP6). The model is also formulated 
in a way that would make an implementation in neuromorphic hardware possible. A possible 
transfer has been discussed at a CDP5 meeting. 
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4.2 T4.3.2 Learning in networks of neurons 

Somato-dendritic prediction error learning under imperfect conditions 

Component Dependencies 

Summarized links to components this Key Result depends on. 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1032  

Plasticity: Dendritic 
predictive plasticity that 
reproduces STDP data 
(Algo STDP predictive)  

Yes This component built the basis for the model 
considered here 

2419 Plasticity - Algorithms for 
multicompartment 
models 

Yes This component delivered input for the 
stabilisation of dendritic learning under imperfect 
conditions 

468 Principles for brain-like 
computation (model) 

Yes This component can profit from the described 
research (via CDP5) 

2551 Methods for deep 
learning that can be 
implemented in 
neuromorphic hardware 

Yes This component will also integrate the current 
findings. 

Natural gradient learning for spiking neurons, sequence leaning by shaping hidden 
activity and Error-backpropagation across cortical areas 

Possible outcomes and implementation towards other SPs  

To ensure the transfer of the research in WP4.3 (Learning and plasticity) to the simulation 
Platforms (mainly SP9 - Neuromorphic Computing, but also SP10 - Neurorobotics), most of the 
UBern HBP research funded via SP4 takes place in the collaborative framework of CDP5. In fact, 
Mihai Petrovici, theory group leader at UHeidelberg, principal investigator in SP9 for SGA2 and 
CDP5 leader from SGA2 onwards, joined the research team at UBern in the course of SGA1. Based 
on this collaboration, many research questions at UBern on have been adopted to be integrated 
in the Neuromorphic Computing Platform of SP9. Sections 2.3.3/4/5 of the D4.7.2 highlight some 
of this collaborative research that is described in the CDP M24 Deliverables. Publications are in 
preparation. A recent collaborative work, initiated by UHeidelberg, is   "Spiking neurons with 
short-term synaptic plasticity form superior generative networks” by luziwei leng, Roman Martel, 
Oliver Breitwieser, Ilja Bytschok, Walter Senn, Johannes Schemmel, Karlheinz Meier, and Mihai 
Petrovici, accepted in Scientific Reports, 2018. 

Synaptic correlated of working memory and its capacity and Phenomenological model 
of information recall from long-term memory  

Possible outcomes and implementation towards other SPs  

In terms of integration of my results by other SPs, I could propose two possibilities. First, my model 
of working memory is based on neural network simulations with either rate neurons or point 
integrate and fire neurons with short-term synaptic plasticity in connections between pyramidal 
neurons. This mechanism fits organically into SP6 much more realistic simulations where network 
plasticity is a major focus (in particular, the project of Giuseppe Chindemi). I will discuss with 
him the possibility to implement my working memory model on his platform. 

Second, my model of memory recall seems to be quite relevant for the SP3.3 project on episodic 
memory. In particular, my model is based on the assumption that recall of memory items from a 
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presented list is controlled by overlaps between distributed memory representations. This 
provides direct predictions that could be tested by imaging of neuronal activity upon presentation 
of the items, either using high-resolution fMRI or PET-fMRI as performed by SP3.3. I will establish 
the collaboration with SP3.3 in order to experimentally test the predictions from my model, by 
imaging the brain of human subjects performing recall experiments. 

Balancing new against old information: the role of puzzlement surprise in learning 

Possible outcomes and implementation towards other SPs  

The model is potentially relevant for a collaboration with the cognitive neuroscience subproject 
SP3 as well as for neurorobotics SP10. A collaboration with Michael Herzog has been initiated and 
will continue in SGA2. 

4.3 T4.3.3 Functional plasticity for multi-
compartment neurons 

Learning rules that can be implemented on the neuromorphic platforms and evolving 
the SpiNNaker neuromorphic platform to support Three-Factor learning rules  

Possible outcomes and implementation towards other SPs  

Activities of T433 have were only briefly reported in the SP4 part of the deliverable, because of 
their better thematic fit under CDP5, where they have been reported in a detailed way in Section 
2.3.5.  

In particular, we like to highlight the following outcomes/integration of results T433 wrt SP9: The 
supervised INST/FILT rule we developed utilises gradient descent on the likelihood of target spike 
frames and has only modest requirements for neuromorphic hardware compared to more 
biologically faithful approaches. More specifically, this rule only requires access to standard STDP 
traces, which, as of HICANN-DLS v2, are the only analogue hardware quantities that are accessible 
to the local plasticity processing unit (PPU). The implementation work on the HICANN-DLS v2 
prototype has begun in SGA1 and will be carried over to SGA2 68) in a collaboration with U 
Heidelberg (WP9.2). 

During SGA1, it became apparent that a more systematic approach to implementation of learning 
rules on neuromorphic platforms was needed, and we therefore set up a cross-SP4-SP9 working 
group within CDP5 to facilitate the extension of the SpiNNaker API and underlying code 
infrastructure such that various custom third-factor plasticity rules can easily be implemented by 
third parties on SpiNNaker. Within this work group we prioritised existing plasticity rules with 
respect to their estimated implementation complexity within SpiNNaker, and are using in this 
sense simpler rules as stepping stones to progress to more complex rules. These rules are: 

• the Brader-Fusi-Senn Rule (Brader et al., Neural Computation 2007),  

• the Urbanczik-Senn Rule, in progress (see KR1.1-1.3). 

• the INST/FILT rule, planned for SGA2 

The Brader-Fusi-Senn Rule has been integrated into the SpiNNaker platform, currently in 
“Fusi_plasticity” branch of the official SpiNNaker software repository, and as such is available 
within and outside the HBP. Eventually this branch will be merged into “master” branch in WP9.3 
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5. WP 4.4 Models of cognitive processes 

5.1 T4.4.1Models of spontaneous activity 

Topological similarity to estimate functional connectivity  

Possible outcomes and implementation towards other SPs  

The present model was developed to provide an answer to a theoretical question, as a proof of 
concept. In principle, the model was not intended to serve as a comprehensive simulation of the 
brain activity. However, due to its computational efficiency, it can serve as a first proxy of 
expected functional connectivity from tractography data. In this sense, the model could easily be 
integrated within the workflows of tractography data retrieval from the Human Brain Atlas (SP5), 
to allow users for a quick estimation of functional connectivities. The model can be used either 
with human, mouse or macaque structural connectivities. Also, the model could be used to infer 
the impact of structural damage (e.g. stroke lesions) on the expected recurrent network flows. In 
this sense, it could serve as a first indicator in lesion research as performed in SP1 and SP3. 

Macroscopic model of spontaneous human brain activity   

Possible outcomes and implementation towards other SPs  

The model captures realistic whole brain resting-state dynamics and contains both a global 
coupling parameter and a tunable parameter representing the working point of each brain region. 
The model is thus useful to characterise and investigate brain dynamics at different brain states 
(awake/sleep, anaesthesia, conscious/unconscious) which is an intense line of research of SP3, in 
relation with medical applications for SP8. Also, a runnable version of the model could be 
implemented in the HBP Platforms (probably via the Collab, involving SP6 maybe) that would allow 
external users to explore the behaviour of the model. Furthermore, if properly linked to the 
Human Brain Atlas, external users could choose structural and resting-state fMRI BOLD signals from 
the catalogue in the atlas and run the model after fitting the global and local parameters according 
to the dataset chosen. 

Model of spontaneous activity in awake mouse primary auditory cortex based on 
large scale Ca2+ imaging data  

Possible outcomes and implementation towards other SPs 

Spiking network models of spontaneous activity were developed in SGA1, for different network 
states, from Up/Down state activity seen during sleep and anaesthesia, to asynchronous states 
typical of the awake brain (Zerlaut and Destexhe, Neuron 2017).  These models were developed 
using data from HBP, and they were written in a formalism compatible with neuromorphic 
hardware (SP9). In SGA2, we plan to study the responsiveness and computational properties of 
such models, and this work will be done conjointly with hardware implementations in SP9.  We 
also plan to use these models to study how “normal” network states develop into pathological 
states, such as epilepsy.  Possible links with SP8 will be developed. 
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5.2 T4.4.2 Models of low-level vision 

Model of retinal processing  

Possible outcomes and implementation towards other SPs 

The model described here can be used as a realistic input for any modelling of the thalamus or 
visual cortex. This is relevant for other tasks of SP4 like the 4.4.1 where thalamus models are 
considered. For other SPs, it is relevant for SP10 where visuomotor tasks will be explored. We 
have contacted several people in SP10 who are interested in using such a model. In particular, in 
the case of motion tracking, the model may give predictions that are quite different from a naïve 
linear model of the retina. Future work will be aimed at designing a version of our model that can 
be implemented in the framework used by SP10. 

Model for high-level contributions to low level vision  

Possible outcomes and implementation towards other SPs 

A functional model showing the benefits of the contribution of high-level visual areas to lower 
level areas, with applications to Neurorobotics in SP10 for in silico models of behaviour, cognition 
and motor control, has been published. It shows that the combined bottom-up top-down model 
detects critical image features that are not detected by the purely feed-forward model, and 
performs successfully the task of producing full interpretation, by identifying all the internal parts 
within minimal images.  

5.3 T4.4.3 Models of motor control 

Basal Ganglia systems level model  

Possible outcomes and implementation towards other SPs 

KTH (Task 4.4.3): The basal ganglia system level model in Lindahl et al. [1] below is planned to 
be used as a framework for building hybrid basal ganglia models together with SP6, consisting of 
point neuron models modules linked with detailed microcircuit model modules of the striatum 
(the latter microcircuit model is being built in SP6 currently). Also through the use of this systems 
level model we have generated hypotheses regarding how oscillatory components (as seen in 
various basal ganglia disturbances) can spread throughout the basal ganglia system. These 
hypotheses will be verified in detailed models in SP6 during SGA2. Finally, we also have planned 
to link our SP4 system level model to a spinal cord neurorobotics model in SP10, also during SGA2. 

5.4 T4.4.4 Models of spatial navigation 

Modelling spatial navigation and memory   

Possible outcomes and implementation towards other SPs  

Our consideration of how environmental and self-motion information combine to drive grid cell 
firing patterns (Evans & Burgess, in prep; see Collaboratory) has been subject to a first test in 
experiments that we helped to design, in collaboration with SP3 Episense (Cacucci lab). This 
experiment has been submitted for publication, and a paper on the apparatus we designed to 
investigate this issue has been accepted for publication (Chen et al. 2018, eLife 7:e34789).  

Furthermore, Evans and Bicanski are drafting a review article on the notion of simultaneous 
localization and mapping (SLAM) and how it relates to spatial cell firing as reported in rodent 
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electrophysiology experiments. The article will involve substantial interactions with SP3 Episense 
(Pearson lab, see below) and their expertise in SLAM.   

Work on the comprehensive model of spatial and episodic memory (Bicanski and Burgess, in 2nd 
revision at eLife) connects our theoretical work to both experimental and robotic pillars of the 
HBP. First, it has led to fruitful exchange with SP3 Episense (Duzel lab), and has helped to design 
an experiment on human hippocampal pattern completion, see Grande et al. (2017). Second, at 
the same time Bicanski has provided documention for the model of spatial and episodic memory 
to SP3 Episense (Pearson lab), with a special focus on relating SLAM (a classical problem in 
robotics) to spatial cell firing in the hippocampal formation. This documentation was primarily 
intented outline possible parallels between the spatial and episodic memory model and SLAM 
systems employed in robotics. It also serves as a basis for the upcoming review article with Evans 
(see above). Third, in addition, code for the model of spatial and episodic memory was shared 
with SP3 Episense (Pearson lab). The codebase can serve as a basis for an implementation of 
egocentric to allocentric transformations of sensory inputs on a robot, paving the way for a 
possible implementation of the complete spatial and episodic memory model on a mobile robotic 
platform.  

Chen G, King JA, Lu Y, Cacucci F, Burgess N. Spatial cell firing during virtual navigation of open 
arenas by head-restrained mice. eLife. 2018 Jun 18;7:e34789. 

Grande X, Bisby JA, Berron D, Horner AJ, Duzel E, Burgess N (2017) Hippocampal Subfield 
Contributions to the Recollection of Multi-Element Events: Functional Evidence at 7 Tesla. Society 
for Neuroscience Abstract 167.04 / SS19 

5.5 T4.4.5 Development of a large-scale, mean field 
model on sensorimotor integration 

Large-scale model of visuo-motor integration 

Possible outcomes and implementation towards other SPs 

The model is an integral part of CDP4, which is born with the aim of integrating the models into 
virtual experiments run at the Neurorobotics Platform, SP10. 

6. WP 4.5 Linking model activity and function to 
experimental data 

6.1 T4.5.1 Comparing models with mouse and human 
brains 

Comparison of experimental and simulated neural activity data 

Possible outcomes and implementation towards other SPs 

Component 418: 'Massively Parallel Electrophysiology data' uses tools developed in SP5 (Elephant, 
T5.7.1) and SP9 (Model simplification and validation, T9.1.5) and provides a statistical model to 
SP6 (Validation Framework, T6.4.4 [SGA1]). The results of component 418 are made available in 
the HBP Collaboratory using tools from SP7 (NEST, T7.5.5, and UNICORE, T7.5.6).  

Component 1864: 'SP4 -SGA2 - Integrative Loop for Comparison of Experimental and Simulated 
Data using the Validation Framework (software)' uses tools developed in SP5 (Elephant, T5.7.1), 
SP9 (Model simplification and validation, T9.1.5) and SP6 (Validation Framework, T6.4.4 [SGA1]) 
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to validate a model that is co-developed with T4.2.1. The experimental data are to be 
implemented in the Neural Activity Resource (SP5, T5.7.2). The results of component 1864 are 
made available in the HBP Collaboratory using tools from SP7 (NEST, T7.5.5, and UNICORE, T7.5.6).  

Component 812: 'Workflow for comparison of electrophysiological and simulated data (service)' 
applies an example workflow using tools for quantitative comparison of neural network statistics 
in SP5 (Elephant, T5.7.1), SP9 (Model simplification and validation, T9.1.5) and SP6 (Validation 
Framework, T6.4.4 [SGA1]) to validate a model that is co-developed with T4.2.1. The workflow is 
made available in the HBP Collaboratory using tools from SP7 (NEST, T7.5.5, and UNICORE, T7.5.6). 

6.2 T4.5.2 Mouse brain function from structure 

Models of mouse brain function from (T4.5.1 & T4.5.2) 

Possible outcomes and implementation towards other SPs 

This model was integrated to the Neuroinformatics Platform through the model catalog with two 
separate models: “Mouse stroke Brain network model” and “The Virtual Mouse Brain". Both are 
linked towards the scripts in TVB for The Virtual Mouse Brain based on the Allen Connectome, 
which allow modelling brain resting state activity of the mouse, as well as stroke (work in progress, 
hence it is a private model). The model is done in a close collaboration with SP1 as part of CDP1. 
SP1 provides the empirical stroke data that is used for comparison and they are also responsible 
for the alignment of the experimental data with the Allen atlas. This cooperation will be continued 
in SGA2. For the future, the model is planned to be continued towards other platforms such as 
NEST, as well as towards the other platforms through the future integration of TVB in CDP8. 
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