
  

 

 

 
D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 1 / 18 

 

Software upgrade for BrainScaleS-2 (D9.2.1 - SGA2) 

 
Figure 1: BrainScaleS-2 Data and Control Flow Diagram 
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1. Introduction 
Compared to spiking neuronal network simulators, the operation of large-scale, accelerated 
analogue neuromorphic hardware systems poses additional challenges. Typical neuronal simulators 
process a network description and create distributed hierarchical data structures which represent 
the user-defined topology. Libraries such as the Connection-Set Algebra (CSA) allow for efficient 
parallelized construction of such data structures. During experiment runtime, a message passing 
mechanism communicates spikes between the interconnected neurons within the distributed 
compute infrastructure. However, the underlying hardware infrastructure —processors and data 
exchange networks— are typically abstracted away. On the other hand, large-scale neuromorphic 
hardware has to handle such constraints as the neurons and synapses are emulated by physical 
entities. User-defined neurons and synapses have to be mapped to the neuromorphic hardware 
substrate, the parameters have to be translated from biological to the hardware domain. In addition 
to the initial configuration comprised of neurons, synapses and their parameters, the experiment 
protocol introduces experiment-runtime dependencies. For example, spike sources have to be 
enabled or disabled at specific times, and firing rates have to be modulated. In the BrainScaleS 
systems, this experiment “protocol” handling is performed by a real-time capable controller running 
on the FPGA or, in the case of the BrainScaleS-2 system, also by the embedded processor. 

In the following sections we describe the software parts which have been developed to support the 
BrainScaleS-2 ASIC. Additional software components have been developed which allow for linking 
the software stack to the hardware simulator. Hence, the ASIC’s behaviour can be tested and verified 
in software before the hardware is produced and commissioned. The cover image (Figure 1) shows 
the main components of the complete BrainScaleS-2 Software Stack; the high-level layers are shared 
with the BrainScaleS-1 system. 

2. BrainScaleS-2 Software Interface 
The BrainScaleS-2 (BSS-2) software ecosystem builds upon the existing BrainScaleS-1 (BSS-1) 
platform. As a result of the advances in the hardware architecture, software components have to be 
adapted to the new system. When comparing BSS-2 to BSS-1 from a user’s point of view, two new 
features stand out: programmable plasticity and structured neurons. From an algorithmic point of 
view, these also present the main challenges: user-defined structured neurons have to be mapped 
to the hardware substrate, and the description of local plasticity has to be translated into code for 
the embedded processors (Plasticity Processor Unit or PPU). However, for chip testing and 
behavioural verification in simulation and during the commissioning phase, the lower software layers 
are the highest priority. In particular, the chip configuration and experiment execution capabilities 
are essential. Hence, the initial BSS-2 software release focuses on the low-level software layers. It 
covers chip components, such as the configuration of neuron circuits, synapses, their parameters 
and the embedded processor, as well as the experiment execution protocol, i.e. the timed 
experiment control, as well as recording of input and output data streams, mostly spikes. 

2.1 Component Overview 
At the time of writing, the BSS-2 software stack already provides a complete hardware configuration 
interface and an experiment execution protocol abstraction layer for the earlier, small prototype 
chips. It has been successfully employed for peer-reviewed experiments- (currently awaiting 
publication; a pre-print can be found on arXiv: https://arxiv.org/abs/1811.03618). While the latest 
HICANN-X is not yet in the commissioning phase, it can already be accessed in simulation. 

The individual components, denoted by ‘single inverted commas’ in this section, are described in 
detail in a subsequent section. The simulated hardware components, FPGA as well as the digital 
components of the BSS-2 ASIC, are interfaced and linked to the software stack via the ‘hxcomm’ and 
‘flange’ layers. The chip configuration is described using a dedicated coordinate system, ‘halco’, 

https://arxiv.org/abs/1811.03618
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and associated configuration containers (in ‘haldls’ and ‘fisch’). Coordinates provide a type-safe 
addressing scheme for the hardware components (e.g. the 5th neuron circuit from the left on the 
lower chip hemisphere); containers describe individual hardware units, either configurable or 
readable (e.g. the on-chip memory of the embedded processors, the PLL-based clock configuration 
or neuron spike rate counters). The configuration is stored in so-called “playback programmes”; they 
comprise timed write and read instructions (e.g. write X to Y at time Z), as well as timed spike 
events. The playback programme data structures representing the chip configuration, as well as the 
experiment protocol, are translated into an efficient FPGA bitstream representation and sent to the 
FPGA. During playback, all gathered results and recorded spike outputs are stored into a dedicated 
“trace” memory. The memory is read by the software, parsed and sorted into individual data streams 
(e.g. spikes and read answers). In the case of the earlier prototype chips, a pre-existing USB-based 
interface is used for host-FPGA communication. With the latest BrainScaleS-2 ASIC, the same 
function can be assured by reusing the communication layer of the BSS-1 system and the required 
software component (‘sctrltp’) has been integrated into the BSS-2 software stack. 

2.2 Components 
The higher software layers are listed for the sake of completeness. As these components have already 
been developed for the BSS-1 system, the main BSS-2 development effort therefore focused on the 
lower software layers specific for the BSS-2 ASIC (everything below ‘marocco’). 

PyNN for BrainScaleS (‘pyhmf’): A PyNN API implementation for the BrainScaleS systems. It is an 
adapter between the upstream PyNN API and the C++ experiment representation layer. The PyNN 
API is currently being extended to support structured neurons and flexible, programmable and 
structural plasticity which constitutes a defining feature of the BSS-2 ASIC. 

Spiking Neural Network Topology and Experiment Protocol Description (‘euter’ + ‘ester’): A C++ 
representation of the user-defined neural network topology, consisting of neurons, synapses, spike 
sources and the experiment protocol. All entities are parametrised in biological model units (e.g. a 
neuron’s tau_mem in milliseconds). 

Map & Route (‘marocco’): A software layer containing algorithms to place neurons and synapses, 
route connections, and translate model parameters based on hardware constraints. It also provides 
an extensive API to parametrise the processes as well as individual algorithm behaviour. The result 
is a data structure comprised of neurons, synapses and routing information. All elements are 
parametrized in the hardware parameter domain. Subsequent software layers perform a 1-to-1 
translation of this data into a hardware configuration. 

Hardware Coordinates (‘halco’): This element provides abstract coordinates for the various 
hardware components. Many components are present in large numbers due to the parallel nature of 
neuromorphic hardware. The myriad components have varying dimensions and sizes. To ease 
software design, a type-safe indexing framework was developed for the BSS-1 system. This 
framework was reused to provide coordinates for the new BSS-2 systems. 

Hardware Logical Configuration Containers (‘lola’): A planned wrapper API for BSS-2-specific 
‘haldls’ configuration containers, to provide more abstract “logical” units, e.g. multiple neuron 
circuits are combined into structured neurons. The containers will be filled by the map & route 
layer. 

Hardware Configuration Containers (‘haldls’): This encapsulates the complete hardware 
configuration in abstract units, hereinafter called containers. Each container represents the 
configuration for each hardware component that can be accessed independently, e.g. synapses, 
analogue neuron parameters or memory words on the embedded processor. Containers also provide 
decode and encode functions to and from the low level bit configuration. These containers can then 
be written or read back at specific times, via a so called playback programme. This playback 
programme is a timed sequence of configuration write/read instructions and spike events, which are 
to be executed on the FPGA. The programme builder provided in ‘haldls’ is mainly a wrapper around 
the programme builder implemented in the ‘fisch’ layer. All configuration containers for the earlier 

https://github.com/electronicvisions/pyhmf
https://github.com/electronicvisions/euter
https://github.com/electronicvisions/ester
https://github.com/electronicvisions/marocco
https://github.com/electronicvisions/halco
https://github.com/electronicvisions/haldls/tree/master/include/haldls
https://github.com/electronicvisions/haldls/blob/master/include/haldls/v2/synapse.h
https://github.com/electronicvisions/haldls/blob/master/include/haldls/v2/playback.h
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BSS-2 prototype chips have been completed (see Section 2.3 for a code example). At the time of 
writing, not all containers for the latest ASIC (HICANN-X) have been completed. However, using the 
chip simulator-software interface described below, we project a significant increase in implemented 
containers between now and the end of SGA2 Year 1; a proof-of-principle API proposal has been 
developed for describing structured neurons: 

neuron = MCNeuron() 

soma = neuron.add_node(1, "soma") 

ca = neuron.add_node(1, "ca") 

# NOTE: Mapping this node to a wire segment 

#       is not supported in this example 

dummy = neuron.add_node(1, "dummy") 

distal1 = neuron.add_node(1, "d1") 

distal2 = neuron.add_node(1, "d2") 

proximal1 = neuron.add_node(1, "p1") 

proximal2 = neuron.add_node(1, "p2") 

neuron.add_resistor(soma, ca) 

neuron.add_resistor(ca, dummy) 

neuron.add_resistor(dummy, distal1) 

neuron.add_resistor(dummy, distal2) 

neuron.add_resistor(soma, proximal1) 

neuron.add_resistor(soma, proximal2) 

Hardware Experiment Control (‘stadls’): This layer provides run-time control for an experiment 
that runs on a BSS-2 prototype setup. It transfers a filled playback programme to the FPGA, triggers 
execution and reads back results after the hardware run. For the existing prototype setups, there 
are two different modes, local and “quiggeldy”. The first mode is intended for use when the setup 
is directly connected to the host on which the user code is executed. The “quiggeldy” mode uses 
the SLURM resource manager to dispatch only the hardware execution part to a remote shared host, 
which allows for denser hardware utilisation in multi-user environments. 

FPGA Instruction Set Architecture Abstraction (‘fisch’): This provides a stable virtual FPGA 
instruction set architecture interface to the higher software layer, ‘haldls’. It consists of an 
abstraction of the implemented FPGA instruction set, an in-software compensation for yet-to-be-
implemented FPGA features and a playback programme builder pattern. Each instruction is 
represented by a container which stores instruction properties. An instruction can offer read and/or 
write access to container properties. A container’s associated location is specified by a ‘halco’ 
coordinate. The playback programme builder pattern allows pre-compilation of a linear sequence of 
to-be-executed instructions. Instructions generating data responses, called “read instructions” offer 
access to (yet-to-be) acquired data via tickets, providing an interface similar to std::future. 
Response data is not guaranteed to stay in the original order across different origins. The playback 
programme is supposed to provide in-order response data access transparently for the individual 
origins, e.g. spike data or read responses. 

FPGA (HICANN-X) Communication (‘hxcomm’): This provides encoding of abstract FPGA instructions 
to FPGA-specific messages. A message is a variably-sized object storing the message type, called 
“header”, and corresponding data, called “payload”. An ensemble of instruction types is called a 
“dictionary”. Different instruction dictionaries for host-to-FPGA and FPGA-to-host communication 
allow different data types to be communicated, depending on the orientation. The supported 
message instruction set can be extended by altering the corresponding dictionary, which makes it 
possible to support new FPGA features. In addition, ‘hxcomm’ handles the formatting of a FPGA 

https://github.com/electronicvisions/haldls/blob/master/doc/multicompartment_api.py
https://github.com/electronicvisions/haldls/tree/master/include/stadls
https://github.com/electronicvisions/haldls/blob/master/include/stadls/v2/quick_queue.h
https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/hxcomm
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message stream for fixed-width, transport-layer communication via HostARQ to hardware or similarly 
to a simulation backend. A control flow for each backend provides an “add”, “commit” and “receive” 
interface. Messages are added to a to-be-sent queue. Queue content is committed to the backend, 
i.e. hardware or simulation via “commit” and messages are received via “receive”. Interchangeable 
control flow interfaces allow simultaneous verification on hardware and in simulation. 

Transport Layer (‘rw_api/vmodule’): A USB-based communication layer for block-based data 
exchange with FPGAs on early BSS-2 prototype setups. 

Transport Layer (‘sctrltp’): An Ethernet-based custom transport protocol, similar to TCP. Originally 
developed for pre-BSS-1 systems, this was considerably modified and enhanced for the BSS-1 system. 
It has now been reused for the latest BSS-2 Ethernet-based setups. The protocol provides a reliable 
communication channel between the host computer and the FPGA. It implements a simple and FPGA-
resource-efficient packet-based sliding-window protocol. 

Hardware Simulator to Software Interface (‘flange’): This implements a remote procedure, call-
based interface (based on the RCF C++ library) to the simulator, with tight coupling using 
SystemVerilog’s DPI mechanism. Every simulator clock cycle, data can be exchanged with the 
‘flange’ software: instructions or spike data can be sent to the simulated FPGA/chip, or answers can 
be received from the FPGA. A concurrently running thread buffers input and output data in queues 
and manages the data exchange with the ‘hxcomm’ layer. 

Hardware Top Level Simulation: The hardware simulator provides a cycle-accurate simulation of 
the digital FPGA as well as chip components. The main communication partner of the software stack 
is a streaming processor which builds upon the work discussed in [7]. It is used on the FPGA of the 
latest BSS-2 setup to send pre-buffered data to the BSS-2 ASIC with timed release. An improvement 
over the previous solution (employed in previous BSS-2 prototype setups) is the introduction of a 
parameterisable tokeniser that is also used on the latest BSS-2 ASIC (HICANN-X). It allows the 
definition of an instruction set that is independent from the underlying encoding, which greatly 
simplifies development. Event- and configuration data received from HICANN-X are annotated with 
timestamps and automatically encoded into a bitstream that is then processed by the host. 
Preliminary studies indicate a sustained event rate of up to 250MHz real time (250kHz bio) full-
duplex to the HICANN-X. 

PPU Software Environment: Programs written in C or C++ are cross-compiled for the PPU’s 
PowerPC™ architecture by an extended gcc —‘gcc-nux’— with support for the custom vector unit [1] 
and [4]. Recent test-driving of gcc 8.2 enables new C++17 features. The C++ standard library, 
libstdc++, is available via ‘newlib’ as libc. While some parts of C++'s STL work well, usage of 
advanced libstdc++ features is mainly constrained by the limited 16kB code size on the first prototype 
chips (HICANN-X allows for FPGA-backed DRAM access which relaxes this limitation). Partial 
interactive remote debugging using the GNU debugger has been implemented in [1] and [2]. Time-
critical programme sections, e.g. the inner loop of a plasticity algorithm, are written in inline 
assembler. Currently, a limited number of helper functions and classes geared towards real-time 
application and plasticity algorithms are available, e.g., an earliest-deadline-first scheduler, 
stochastic synaptic weight container, getter and setter for spike-rate counters or per-synapse 
execution masking. For seamless migration from host to PPU code, future developments aim for 
direct cross-compilation of the ‘haldls’ container-based hardware abstraction layer. For larger 
plasticity experiments, code generation will become an essential part of the software. The first 
steps have been made: parametrised plasticity code templates have been developed and can be 
mapped to hardware. 

2.3 Code Example for ‘haldls’ & ‘stadls’ 
cf. https://github.com/electronicvisions/haldls/blob/master/tests/hw/stadls/v2/test-hello-
world.cpp 

// configure off-chip parameters (reference currents, etc.) 

Board board; 

https://github.com/electronicvisions/vmodule
https://github.com/electronicvisions/sctrltp
https://github.com/electronicvisions/hxcomm/tree/master/include/flange
https://github.com/electronicvisions/gcc
https://github.com/electronicvisions/libnux
https://github.com/electronicvisions/haldls/blob/master/tests/hw/stadls/v2/test-hello-world.cpp
https://github.com/electronicvisions/haldls/blob/master/tests/hw/stadls/v2/test-hello-world.cpp
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board.set_parameter(Board::Parameter::capmem_i_ref, DAC::Value(3906)); // ... 

 

// configure 17th neuron and its synapse in the 3rd row on BSS-2 

Chip chip; 

auto& capmem = chip.get_capmem(); 

NeuronOnDLS const neuron{17}; 

capmem.set(neuron, NeuronParameter::v_leak, CapMemCell::Value(400)); 

 

SynapseDriverOnDLS const synapse_driver(3); 

auto& syndrv_config = chip.get_synapse_drivers(); 

syndrv_config.set_mode(synapse_driver, SynapseDriverBlock::Mode::excitatory); 

 

SynapseOnDLS const synapse(neuron.toSynapseColumnOnDLS(),  

                           synapse_driver.toSynapseRowOnDLS()); 

auto& synapse_config = chip.get_synapse(synapse); 

 

// max weight, some listening address 

synapse_config.set_weight(63); 

synapse_config.set_address(42); 

 

// enable neuron's spike output 

auto& neuron_config = chip.get_neuron_digital_config(neuron); 

neuron_config.set_fire_out_mode(NeuronDigitalConfig::FireOutMode::enabled); 

 

// create experiment protocol (→ regular spike train input) 

PlaybackProgramBuilder builder; 

size_t const offset = 1000, isi = 2000; 

for (size_t ii = 0; ii < num_spikes; ++ii) { 

 builder.wait_until(offset + ii * isi); 

 builder.fire(synapse_driver, address); 

} 

builder.wait_for(offset); 

builder.halt(); 

auto program = builder.done(); 

 

// acquire access to hardware, run experiment and read back spike data 

ExperimentControl ctrl; 

ctrl.run_experiment(board, chip, program); 
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auto const& spikes = program->get_spikes();  

2.4 Development Process 

2.4.1 Code-Review 

Software development for the BrainScaleS systems started the transition to a changeset-based 
review process in 2012 and major parts of software development switched to the system in 2015. 
Over the past 7 years, all software repositories, as well as the repositories containing code for the 
FPGAs and the digital part of the latest BSS-2 ASIC, have migrated to the Gerrit 1-based system. The 
review process requires at least one other expert to review each change and, after potentially 
iterating over multiple request/patch, a final approval of the other expert. In addition to the code 
review, a vote from the continuous integration Jenkins 2-based system provides build and test results 
on a changeset-patchlevel basis. All software developments for the BSS-2 software stack have been 
using this code-review system. Local platform users and software designers met on a regular basis 
to ensure a sustainable software design. 

 

                                            

1 https://www.gerritcodereview.com/  
2 https://jenkins.io/  

https://www.gerritcodereview.com/
https://jenkins.io/
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Figure 2: Screenshot of BrainScaleS' software code review system (based on Gerrit) 
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Figure 3: Screenshot of BrainScaleS-2's nightly CI and deployment job 
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2.4.2 Continuous Integration (CI) 

Automated testing is essential to manage changes to a complex software code base. The BrainScaleS 
developers use Jenkins for test automation in a multitude of projects, including software for the 
BSS-2 system, as well as hardware-related repositories. A sample screenshot of a Jenkins dashboard 
can be seen in Figure 3 above. 

After building and testing individual changesets in both software and hardware, the CI system 
deploys pre-built packages of all software elements to a distributed filesystem; the release strategy 
is a rolling release based on stable HEADs. These packages are identified by deployment timestamps 
and provided to local as well as HBP platform users. All software repository HEADs are replicated to 
public read-only clones on GitHub (https://github.com/electronicvisions). 

2.4.3 Developer Software Environment 

The Neuromorphic Platform within the HBP Collaboratory provides a means to execute experiments 
without requiring any additional software installation on the experimenter or user side. However, 
when developing the software components, a substantial software environment has to be deployed. 
A robust and simple solution can be provided using containerised software installations. The 
BrainScaleS developers track all external software dependencies in a state-of-the-art build-from-
source-based package manager (https://github.com/spack/spack). Neuromorphic Platform-specific 
meta packages describe all individual dependencies, including possible version constraints (e.g. 
boost C++ library version at least 1.69.0). All BrainScaleS meta packages are installed into a container 
image and deployed to a central location which is also provided to external expert users. The process 
uses the same Continuous Response (CR) and CI mechanisms as all other BrainScaleS software 
components. Developers can upload changesets that will be test-built upon request, tested using the 
BrainScaleS software stack and, after successful verification, deployed as new latest container 
image. 

3. Conclusion and Outlook 
The BSS-2 software stack has been already successfully utilised in published and unpublished 
experiments [1], [3], [5], [6]. The Neuromorphic Platform provides access to a set of BSS-2 prototype 
setups via the usual REST API (Python library: https://github.com/HumanBrainProject/hbp-
neuromorphic-client) which is also used for the BrainScaleS-1 and SpiNNaker architectures. 
Interactive, web UI-based demonstrators have been implemented; for example, an experiment 
demonstrating reinforcement learning on the second version of the BSS-2 prototype systems has been 
recorded: https://www.youtube.com/watch?v=LW0Y5SSIQU4. 

 

https://github.com/electronicvisions
https://github.com/spack/spack
https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://www.youtube.com/watch?v=LW0Y5SSIQU4
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Figure 4: Web interface for an unsupervised learning experiment demonstrator running on the BrainScaleS-2 version 2 prototype chip 
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Figure 5: Web interface for an unsupervised learning experiment demonstrator running on the BrainScaleS-2 version 2 prototype chip 
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Figure 6: Web interface for a local learning experiment demonstrator; the experiment combines spiking neural network operation on the 

BrainScaleS-2 version 2 prototype chip to a simulated environment running on the embedded processor 
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As the experiments suggest, the software stack provides a complete hardware configuration 
interface and an experiment execution protocol abstraction layer for the prototypes of the BSS-2 
system. For the latest BSS-2 ASIC (HICANN-X), a bridge between the FPGA/chip simulation and the 
software stack has been developed. It enables early verification of the ASIC using the same software 
stack as in real operation. 

The next major software development efforts will focus the higher software layers. The link between 
hardware configuration and the more abstract map & route layer will be established. This requires 
major changes to the ‘marocco’ package itself: chip-specific assumptions will be replaced by a 
generic approach which tracks constraints for different hardware backends (i.e. BrainScaleS-1 and 
BrainScaleS-2 architectures). Additionally, new features require new resource requirement 
calculations as, for example, structured neurons and programmable plasticity allow interesting new 
experiments, but also introduce constraints on the placement of neurons. The embedded processor, 
and programmable plasticity in particular, also require mechanisms for code generation, as every 
analogue chip is different and the placement will have to cope with blacklisted components, 
placement differences, as well as non-homogeneous parametrisation. The first steps towards code 
generation have been made by providing parametrised plasticity code templates. Further steps will 
be aligned to the PyNN API development. 
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4. References and Literature 
Table 1: Public Software Repositories for BrainScaleS 

Repository URL Short Description 

‘pyhmf’ https://github.com/electronicvisions/pyhmf  PyNN implementation for BrainScaleS 

‘euter’ https://github.com/electronicvisions/euter  
C++ library for handling user-defined 
neural network topologies and 
experiment protocols 

‘marocco’ https://github.com/electronicvisions/marocco  
Routing and mapping of biological 
network description to hardware 
constraints 

‘haldls’ https://github.com/electronicvisions/haldls  Low-level abstraction layer for HICANN-
DLS-based chips 

‘stadls’ 
(stored in 
‘haldls’ repo) 

https://github.com/electronicvisions/haldls  Experiment control flow 

‘fisch’ https://github.com/electronicvisions/fisch  FPGA instruction interface API 

‘hxcomm’  https://github.com/electronicvisions/hxcomm  FPGA instruction bit formatting 

‘flange’ 
(stored in 
‘hxcomm’ repo) 

https://github.com/electronicvisions/hxcomm  Interface between ‘hxcomm’ and FPGA 
simulation 

‘sctrltp’ https://github.com/electronicvisions/sctrltp  
Ethernet-based reliable transport layer 
for communication between host and 
FPGA 

‘vmodule’ https://github.com/electronicvisions/vmodule  USB-based library for data exchange 
between host and FPGA 

‘gcc-nux’ https://github.com/electronicvisions/gcc  Compiler and linker for PPU programs 

‘libnux’ https://github.com/electronicvisions/libnux  Helpers library for PPU programs 

‘binutils-gdb’ https://github.com/electronicvisions/binutils-
gdb  

Binary utility programs of the PPU 
toolchain 

‘newlib’ https://github.com/electronicvisions/newlib  Libc for PPU programs 

Software 
dependencies https://github.com/electronicvisions/spack  Tracks all external software 

dependencies of the BSS software stack 

Container 
Images https://openproject.bioai.eu/containers  

Pre-built container images (for 
singularity) providing all external 
software dependencies of the BSS 
software environments 

 

  

https://github.com/electronicvisions/pyhmf
https://github.com/electronicvisions/euter
https://github.com/electronicvisions/marocco
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/hxcomm
https://github.com/electronicvisions/hxcomm
https://github.com/electronicvisions/sctrltp
https://github.com/electronicvisions/vmodule
https://github.com/electronicvisions/gcc
https://github.com/electronicvisions/libnux
https://github.com/electronicvisions/binutils-gdb
https://github.com/electronicvisions/binutils-gdb
https://github.com/electronicvisions/newlib
https://github.com/electronicvisions/spack
https://openproject.bioai.eu/containers
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Table 2: Literature and References 

# URL Short Description 

[1] 
http://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?
id=3838  

Philipp Spilger, Bachelor thesis, Spike-based 
Expectation Maximization on the HICANN-DLSv2 
Neuromorphic Chip, 2018. 

[2] 
https://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?
id=3854  

Timo Wunderlich, Master thesis, Demonstrating 
advantages of neuromorphic computation, 2019. 

[3] https://arxiv.org/abs/1811.03618  

Timo Wunderlich et al., Demonstrating Advantages 
of Neuromorphic Computation: A Pilot Study, 
Frontiers in Neuroscience (Neuromorphic 
Engineering), 2019 (to be published). 

[4] 
http://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?
id=3448  

Arthur Heimbrecht, Bachelor thesis, Compiler 
Support for the BrainScaleS Plasticity Processor, 
2017. 

[5] https://online.tugraz.at/tug_online/wbAbs.sho
wThesis?pThesisNr=63900&pOrgNr=2369  

Thomas Bohnstingl, Master thesis, Development of 
an agent for solving Markov Decision Processes 
embedded in Spiking Neural Networks, 2018. 

[6] https://online.tugraz.at/tug_online/wbAbs.sho
wThesis?pThesisNr=63901&pOrgNr=2369  

Franz Scherr, Master thesis, Spike-Based Agents for 
Multi-Armed Bandits, 2018. 

[7] 
https://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?
id=2952  

Simon Friedmann, PhD thesis, A new approach to 
learning in neuromorphic hardware, 2013. 
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