

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 1 / 18

Software upgrade for BrainScaleS-2 (D9.2.1 - SGA2)

Figure 1: BrainScaleS-2 Data and Control Flow Diagram

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 2 / 18

Project Number: 785907 Project Title: Human Brain Project SGA2

Document Title: Software upgrade for BrainScaleS-2

Document Filename: D9.2.1 (D58.1 D91) SGA2 M12 SUBMITTED 190325.docx

Deliverable Number: SGA2 D9.2.1 (D58.1, D91)

Deliverable Type: Report

Work Package(s): WP9.2

Dissemination Level: PU = Public

Planned Delivery Date: SGA2 M12 / 31 Mar 2019

Actual Delivery Date: SGA2 M12 / 25 Mar 2019; Accepted 23 Jul 2019

Authors: Eric MÜLLER, Christian MAUCH, Philipp SPILGER - all UHEI (P47)

Compiling Editors:

Contributors: UHEI (P47) group members

SciTechCoord Review: Yannick MOREL, TUM (P56)

Editorial Review: Guy WILLIS, EPFL (P1)

Description in GA:
Software upgrade for BrainScaleS-2: Initial software upgrade of the BrainScaleS-1
software to support the BrainScaleS-2 ASIC, thereby enabling hardware-software co-
simulation for the verification of the BrainScaleS-2 ASIC (Task T9.2.2)

Abstract:

The text describes the software components which have been developed to support
the BrainScaleS-2 ASIC. Additional software components have been developed which
allow the software stack to be linked to the hardware simulator. Hence, the ASIC’s
behaviour can be tested and verified in software before the hardware is produced
and commissioned.

Keywords: BrainScaleS-2, Neuromorphic Computing, Test and verification

Target Users/Readers: Computational Neuroscientists, Neuromorphic Computing Community, Platform
Users, Software developers

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 3 / 18

Table of Contents

1. Introduction ... 4
2. BrainScaleS-2 Software Interface .. 4

2.1 Component Overview ... 4
2.2 Components .. 5
2.3 Code Example for ‘haldls’ & ‘stadls’ .. 7
2.4 Development Process ... 9

2.4.1 Code-Review ... 9
2.4.2 Continuous Integration (CI) .. 12
2.4.3 Developer Software Environment .. 12

3. Conclusion and Outlook .. 12
4. References and Literature ... 17

Table of Tables

Table 1: Public Software Repositories for BrainScaleS .. 17
Table 2: Literature and References ... 18

Table of Figures

Figure 1: BrainScaleS-2 Data and Control Flow Diagram ... 1
Figure 2: Screenshot of BrainScaleS' software code review system (based on Gerrit) 10
Figure 3: Screenshot of BrainScaleS-2's nightly CI and deployment job .. 11
Figure 4: Web interface for an unsupervised learning experiment demonstrator running on the BrainScaleS-

2 version 2 prototype chip .. 13
Figure 5: Web interface for an unsupervised learning experiment demonstrator running on the BrainScaleS-

2 version 2 prototype chip .. 14
Figure 6: Web interface for a local learning experiment demonstrator; the experiment combines spiking

neural network operation on the BrainScaleS-2 version 2 prototype chip to a simulated environment
running on the embedded processor .. 15

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 4 / 18

1. Introduction
Compared to spiking neuronal network simulators, the operation of large-scale, accelerated
analogue neuromorphic hardware systems poses additional challenges. Typical neuronal simulators
process a network description and create distributed hierarchical data structures which represent
the user-defined topology. Libraries such as the Connection-Set Algebra (CSA) allow for efficient
parallelized construction of such data structures. During experiment runtime, a message passing
mechanism communicates spikes between the interconnected neurons within the distributed
compute infrastructure. However, the underlying hardware infrastructure —processors and data
exchange networks— are typically abstracted away. On the other hand, large-scale neuromorphic
hardware has to handle such constraints as the neurons and synapses are emulated by physical
entities. User-defined neurons and synapses have to be mapped to the neuromorphic hardware
substrate, the parameters have to be translated from biological to the hardware domain. In addition
to the initial configuration comprised of neurons, synapses and their parameters, the experiment
protocol introduces experiment-runtime dependencies. For example, spike sources have to be
enabled or disabled at specific times, and firing rates have to be modulated. In the BrainScaleS
systems, this experiment “protocol” handling is performed by a real-time capable controller running
on the FPGA or, in the case of the BrainScaleS-2 system, also by the embedded processor.

In the following sections we describe the software parts which have been developed to support the
BrainScaleS-2 ASIC. Additional software components have been developed which allow for linking
the software stack to the hardware simulator. Hence, the ASIC’s behaviour can be tested and verified
in software before the hardware is produced and commissioned. The cover image (Figure 1) shows
the main components of the complete BrainScaleS-2 Software Stack; the high-level layers are shared
with the BrainScaleS-1 system.

2. BrainScaleS-2 Software Interface
The BrainScaleS-2 (BSS-2) software ecosystem builds upon the existing BrainScaleS-1 (BSS-1)
platform. As a result of the advances in the hardware architecture, software components have to be
adapted to the new system. When comparing BSS-2 to BSS-1 from a user’s point of view, two new
features stand out: programmable plasticity and structured neurons. From an algorithmic point of
view, these also present the main challenges: user-defined structured neurons have to be mapped
to the hardware substrate, and the description of local plasticity has to be translated into code for
the embedded processors (Plasticity Processor Unit or PPU). However, for chip testing and
behavioural verification in simulation and during the commissioning phase, the lower software layers
are the highest priority. In particular, the chip configuration and experiment execution capabilities
are essential. Hence, the initial BSS-2 software release focuses on the low-level software layers. It
covers chip components, such as the configuration of neuron circuits, synapses, their parameters
and the embedded processor, as well as the experiment execution protocol, i.e. the timed
experiment control, as well as recording of input and output data streams, mostly spikes.

2.1 Component Overview
At the time of writing, the BSS-2 software stack already provides a complete hardware configuration
interface and an experiment execution protocol abstraction layer for the earlier, small prototype
chips. It has been successfully employed for peer-reviewed experiments- (currently awaiting
publication; a pre-print can be found on arXiv: https://arxiv.org/abs/1811.03618). While the latest
HICANN-X is not yet in the commissioning phase, it can already be accessed in simulation.

The individual components, denoted by ‘single inverted commas’ in this section, are described in
detail in a subsequent section. The simulated hardware components, FPGA as well as the digital
components of the BSS-2 ASIC, are interfaced and linked to the software stack via the ‘hxcomm’ and
‘flange’ layers. The chip configuration is described using a dedicated coordinate system, ‘halco’,

https://arxiv.org/abs/1811.03618

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 5 / 18

and associated configuration containers (in ‘haldls’ and ‘fisch’). Coordinates provide a type-safe
addressing scheme for the hardware components (e.g. the 5th neuron circuit from the left on the
lower chip hemisphere); containers describe individual hardware units, either configurable or
readable (e.g. the on-chip memory of the embedded processors, the PLL-based clock configuration
or neuron spike rate counters). The configuration is stored in so-called “playback programmes”; they
comprise timed write and read instructions (e.g. write X to Y at time Z), as well as timed spike
events. The playback programme data structures representing the chip configuration, as well as the
experiment protocol, are translated into an efficient FPGA bitstream representation and sent to the
FPGA. During playback, all gathered results and recorded spike outputs are stored into a dedicated
“trace” memory. The memory is read by the software, parsed and sorted into individual data streams
(e.g. spikes and read answers). In the case of the earlier prototype chips, a pre-existing USB-based
interface is used for host-FPGA communication. With the latest BrainScaleS-2 ASIC, the same
function can be assured by reusing the communication layer of the BSS-1 system and the required
software component (‘sctrltp’) has been integrated into the BSS-2 software stack.

2.2 Components
The higher software layers are listed for the sake of completeness. As these components have already
been developed for the BSS-1 system, the main BSS-2 development effort therefore focused on the
lower software layers specific for the BSS-2 ASIC (everything below ‘marocco’).

PyNN for BrainScaleS (‘pyhmf’): A PyNN API implementation for the BrainScaleS systems. It is an
adapter between the upstream PyNN API and the C++ experiment representation layer. The PyNN
API is currently being extended to support structured neurons and flexible, programmable and
structural plasticity which constitutes a defining feature of the BSS-2 ASIC.

Spiking Neural Network Topology and Experiment Protocol Description (‘euter’ + ‘ester’): A C++
representation of the user-defined neural network topology, consisting of neurons, synapses, spike
sources and the experiment protocol. All entities are parametrised in biological model units (e.g. a
neuron’s tau_mem in milliseconds).

Map & Route (‘marocco’): A software layer containing algorithms to place neurons and synapses,
route connections, and translate model parameters based on hardware constraints. It also provides
an extensive API to parametrise the processes as well as individual algorithm behaviour. The result
is a data structure comprised of neurons, synapses and routing information. All elements are
parametrized in the hardware parameter domain. Subsequent software layers perform a 1-to-1
translation of this data into a hardware configuration.

Hardware Coordinates (‘halco’): This element provides abstract coordinates for the various
hardware components. Many components are present in large numbers due to the parallel nature of
neuromorphic hardware. The myriad components have varying dimensions and sizes. To ease
software design, a type-safe indexing framework was developed for the BSS-1 system. This
framework was reused to provide coordinates for the new BSS-2 systems.

Hardware Logical Configuration Containers (‘lola’): A planned wrapper API for BSS-2-specific
‘haldls’ configuration containers, to provide more abstract “logical” units, e.g. multiple neuron
circuits are combined into structured neurons. The containers will be filled by the map & route
layer.

Hardware Configuration Containers (‘haldls’): This encapsulates the complete hardware
configuration in abstract units, hereinafter called containers. Each container represents the
configuration for each hardware component that can be accessed independently, e.g. synapses,
analogue neuron parameters or memory words on the embedded processor. Containers also provide
decode and encode functions to and from the low level bit configuration. These containers can then
be written or read back at specific times, via a so called playback programme. This playback
programme is a timed sequence of configuration write/read instructions and spike events, which are
to be executed on the FPGA. The programme builder provided in ‘haldls’ is mainly a wrapper around
the programme builder implemented in the ‘fisch’ layer. All configuration containers for the earlier

https://github.com/electronicvisions/pyhmf
https://github.com/electronicvisions/euter
https://github.com/electronicvisions/ester
https://github.com/electronicvisions/marocco
https://github.com/electronicvisions/halco
https://github.com/electronicvisions/haldls/tree/master/include/haldls
https://github.com/electronicvisions/haldls/blob/master/include/haldls/v2/synapse.h
https://github.com/electronicvisions/haldls/blob/master/include/haldls/v2/playback.h

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 6 / 18

BSS-2 prototype chips have been completed (see Section 2.3 for a code example). At the time of
writing, not all containers for the latest ASIC (HICANN-X) have been completed. However, using the
chip simulator-software interface described below, we project a significant increase in implemented
containers between now and the end of SGA2 Year 1; a proof-of-principle API proposal has been
developed for describing structured neurons:

neuron = MCNeuron()

soma = neuron.add_node(1, "soma")

ca = neuron.add_node(1, "ca")

NOTE: Mapping this node to a wire segment

is not supported in this example

dummy = neuron.add_node(1, "dummy")

distal1 = neuron.add_node(1, "d1")

distal2 = neuron.add_node(1, "d2")

proximal1 = neuron.add_node(1, "p1")

proximal2 = neuron.add_node(1, "p2")

neuron.add_resistor(soma, ca)

neuron.add_resistor(ca, dummy)

neuron.add_resistor(dummy, distal1)

neuron.add_resistor(dummy, distal2)

neuron.add_resistor(soma, proximal1)

neuron.add_resistor(soma, proximal2)

Hardware Experiment Control (‘stadls’): This layer provides run-time control for an experiment
that runs on a BSS-2 prototype setup. It transfers a filled playback programme to the FPGA, triggers
execution and reads back results after the hardware run. For the existing prototype setups, there
are two different modes, local and “quiggeldy”. The first mode is intended for use when the setup
is directly connected to the host on which the user code is executed. The “quiggeldy” mode uses
the SLURM resource manager to dispatch only the hardware execution part to a remote shared host,
which allows for denser hardware utilisation in multi-user environments.

FPGA Instruction Set Architecture Abstraction (‘fisch’): This provides a stable virtual FPGA
instruction set architecture interface to the higher software layer, ‘haldls’. It consists of an
abstraction of the implemented FPGA instruction set, an in-software compensation for yet-to-be-
implemented FPGA features and a playback programme builder pattern. Each instruction is
represented by a container which stores instruction properties. An instruction can offer read and/or
write access to container properties. A container’s associated location is specified by a ‘halco’
coordinate. The playback programme builder pattern allows pre-compilation of a linear sequence of
to-be-executed instructions. Instructions generating data responses, called “read instructions” offer
access to (yet-to-be) acquired data via tickets, providing an interface similar to std::future.
Response data is not guaranteed to stay in the original order across different origins. The playback
programme is supposed to provide in-order response data access transparently for the individual
origins, e.g. spike data or read responses.

FPGA (HICANN-X) Communication (‘hxcomm’): This provides encoding of abstract FPGA instructions
to FPGA-specific messages. A message is a variably-sized object storing the message type, called
“header”, and corresponding data, called “payload”. An ensemble of instruction types is called a
“dictionary”. Different instruction dictionaries for host-to-FPGA and FPGA-to-host communication
allow different data types to be communicated, depending on the orientation. The supported
message instruction set can be extended by altering the corresponding dictionary, which makes it
possible to support new FPGA features. In addition, ‘hxcomm’ handles the formatting of a FPGA

https://github.com/electronicvisions/haldls/blob/master/doc/multicompartment_api.py
https://github.com/electronicvisions/haldls/tree/master/include/stadls
https://github.com/electronicvisions/haldls/blob/master/include/stadls/v2/quick_queue.h
https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/hxcomm

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 7 / 18

message stream for fixed-width, transport-layer communication via HostARQ to hardware or similarly
to a simulation backend. A control flow for each backend provides an “add”, “commit” and “receive”
interface. Messages are added to a to-be-sent queue. Queue content is committed to the backend,
i.e. hardware or simulation via “commit” and messages are received via “receive”. Interchangeable
control flow interfaces allow simultaneous verification on hardware and in simulation.

Transport Layer (‘rw_api/vmodule’): A USB-based communication layer for block-based data
exchange with FPGAs on early BSS-2 prototype setups.

Transport Layer (‘sctrltp’): An Ethernet-based custom transport protocol, similar to TCP. Originally
developed for pre-BSS-1 systems, this was considerably modified and enhanced for the BSS-1 system.
It has now been reused for the latest BSS-2 Ethernet-based setups. The protocol provides a reliable
communication channel between the host computer and the FPGA. It implements a simple and FPGA-
resource-efficient packet-based sliding-window protocol.

Hardware Simulator to Software Interface (‘flange’): This implements a remote procedure, call-
based interface (based on the RCF C++ library) to the simulator, with tight coupling using
SystemVerilog’s DPI mechanism. Every simulator clock cycle, data can be exchanged with the
‘flange’ software: instructions or spike data can be sent to the simulated FPGA/chip, or answers can
be received from the FPGA. A concurrently running thread buffers input and output data in queues
and manages the data exchange with the ‘hxcomm’ layer.

Hardware Top Level Simulation: The hardware simulator provides a cycle-accurate simulation of
the digital FPGA as well as chip components. The main communication partner of the software stack
is a streaming processor which builds upon the work discussed in [7]. It is used on the FPGA of the
latest BSS-2 setup to send pre-buffered data to the BSS-2 ASIC with timed release. An improvement
over the previous solution (employed in previous BSS-2 prototype setups) is the introduction of a
parameterisable tokeniser that is also used on the latest BSS-2 ASIC (HICANN-X). It allows the
definition of an instruction set that is independent from the underlying encoding, which greatly
simplifies development. Event- and configuration data received from HICANN-X are annotated with
timestamps and automatically encoded into a bitstream that is then processed by the host.
Preliminary studies indicate a sustained event rate of up to 250MHz real time (250kHz bio) full-
duplex to the HICANN-X.

PPU Software Environment: Programs written in C or C++ are cross-compiled for the PPU’s
PowerPC™ architecture by an extended gcc —‘gcc-nux’— with support for the custom vector unit [1]
and [4]. Recent test-driving of gcc 8.2 enables new C++17 features. The C++ standard library,
libstdc++, is available via ‘newlib’ as libc. While some parts of C++'s STL work well, usage of
advanced libstdc++ features is mainly constrained by the limited 16kB code size on the first prototype
chips (HICANN-X allows for FPGA-backed DRAM access which relaxes this limitation). Partial
interactive remote debugging using the GNU debugger has been implemented in [1] and [2]. Time-
critical programme sections, e.g. the inner loop of a plasticity algorithm, are written in inline
assembler. Currently, a limited number of helper functions and classes geared towards real-time
application and plasticity algorithms are available, e.g., an earliest-deadline-first scheduler,
stochastic synaptic weight container, getter and setter for spike-rate counters or per-synapse
execution masking. For seamless migration from host to PPU code, future developments aim for
direct cross-compilation of the ‘haldls’ container-based hardware abstraction layer. For larger
plasticity experiments, code generation will become an essential part of the software. The first
steps have been made: parametrised plasticity code templates have been developed and can be
mapped to hardware.

2.3 Code Example for ‘haldls’ & ‘stadls’
cf. https://github.com/electronicvisions/haldls/blob/master/tests/hw/stadls/v2/test-hello-
world.cpp

// configure off-chip parameters (reference currents, etc.)

Board board;

https://github.com/electronicvisions/vmodule
https://github.com/electronicvisions/sctrltp
https://github.com/electronicvisions/hxcomm/tree/master/include/flange
https://github.com/electronicvisions/gcc
https://github.com/electronicvisions/libnux
https://github.com/electronicvisions/haldls/blob/master/tests/hw/stadls/v2/test-hello-world.cpp
https://github.com/electronicvisions/haldls/blob/master/tests/hw/stadls/v2/test-hello-world.cpp

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 8 / 18

board.set_parameter(Board::Parameter::capmem_i_ref, DAC::Value(3906)); // ...

// configure 17th neuron and its synapse in the 3rd row on BSS-2

Chip chip;

auto& capmem = chip.get_capmem();

NeuronOnDLS const neuron{17};

capmem.set(neuron, NeuronParameter::v_leak, CapMemCell::Value(400));

SynapseDriverOnDLS const synapse_driver(3);

auto& syndrv_config = chip.get_synapse_drivers();

syndrv_config.set_mode(synapse_driver, SynapseDriverBlock::Mode::excitatory);

SynapseOnDLS const synapse(neuron.toSynapseColumnOnDLS(),

 synapse_driver.toSynapseRowOnDLS());

auto& synapse_config = chip.get_synapse(synapse);

// max weight, some listening address

synapse_config.set_weight(63);

synapse_config.set_address(42);

// enable neuron's spike output

auto& neuron_config = chip.get_neuron_digital_config(neuron);

neuron_config.set_fire_out_mode(NeuronDigitalConfig::FireOutMode::enabled);

// create experiment protocol (→ regular spike train input)

PlaybackProgramBuilder builder;

size_t const offset = 1000, isi = 2000;

for (size_t ii = 0; ii < num_spikes; ++ii) {

 builder.wait_until(offset + ii * isi);

 builder.fire(synapse_driver, address);

}

builder.wait_for(offset);

builder.halt();

auto program = builder.done();

// acquire access to hardware, run experiment and read back spike data

ExperimentControl ctrl;

ctrl.run_experiment(board, chip, program);

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 9 / 18

auto const& spikes = program->get_spikes();

2.4 Development Process

2.4.1 Code-Review

Software development for the BrainScaleS systems started the transition to a changeset-based
review process in 2012 and major parts of software development switched to the system in 2015.
Over the past 7 years, all software repositories, as well as the repositories containing code for the
FPGAs and the digital part of the latest BSS-2 ASIC, have migrated to the Gerrit 1-based system. The
review process requires at least one other expert to review each change and, after potentially
iterating over multiple request/patch, a final approval of the other expert. In addition to the code
review, a vote from the continuous integration Jenkins 2-based system provides build and test results
on a changeset-patchlevel basis. All software developments for the BSS-2 software stack have been
using this code-review system. Local platform users and software designers met on a regular basis
to ensure a sustainable software design.

1 https://www.gerritcodereview.com/
2 https://jenkins.io/

https://www.gerritcodereview.com/
https://jenkins.io/

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 10 / 18

Figure 2: Screenshot of BrainScaleS' software code review system (based on Gerrit)

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 11 / 18

Figure 3: Screenshot of BrainScaleS-2's nightly CI and deployment job

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 12 / 18

2.4.2 Continuous Integration (CI)

Automated testing is essential to manage changes to a complex software code base. The BrainScaleS
developers use Jenkins for test automation in a multitude of projects, including software for the
BSS-2 system, as well as hardware-related repositories. A sample screenshot of a Jenkins dashboard
can be seen in Figure 3 above.

After building and testing individual changesets in both software and hardware, the CI system
deploys pre-built packages of all software elements to a distributed filesystem; the release strategy
is a rolling release based on stable HEADs. These packages are identified by deployment timestamps
and provided to local as well as HBP platform users. All software repository HEADs are replicated to
public read-only clones on GitHub (https://github.com/electronicvisions).

2.4.3 Developer Software Environment

The Neuromorphic Platform within the HBP Collaboratory provides a means to execute experiments
without requiring any additional software installation on the experimenter or user side. However,
when developing the software components, a substantial software environment has to be deployed.
A robust and simple solution can be provided using containerised software installations. The
BrainScaleS developers track all external software dependencies in a state-of-the-art build-from-
source-based package manager (https://github.com/spack/spack). Neuromorphic Platform-specific
meta packages describe all individual dependencies, including possible version constraints (e.g.
boost C++ library version at least 1.69.0). All BrainScaleS meta packages are installed into a container
image and deployed to a central location which is also provided to external expert users. The process
uses the same Continuous Response (CR) and CI mechanisms as all other BrainScaleS software
components. Developers can upload changesets that will be test-built upon request, tested using the
BrainScaleS software stack and, after successful verification, deployed as new latest container
image.

3. Conclusion and Outlook
The BSS-2 software stack has been already successfully utilised in published and unpublished
experiments [1], [3], [5], [6]. The Neuromorphic Platform provides access to a set of BSS-2 prototype
setups via the usual REST API (Python library: https://github.com/HumanBrainProject/hbp-
neuromorphic-client) which is also used for the BrainScaleS-1 and SpiNNaker architectures.
Interactive, web UI-based demonstrators have been implemented; for example, an experiment
demonstrating reinforcement learning on the second version of the BSS-2 prototype systems has been
recorded: https://www.youtube.com/watch?v=LW0Y5SSIQU4.

https://github.com/electronicvisions
https://github.com/spack/spack
https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://www.youtube.com/watch?v=LW0Y5SSIQU4

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 13 / 18

Figure 4: Web interface for an unsupervised learning experiment demonstrator running on the BrainScaleS-2 version 2 prototype chip

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 14 / 18

Figure 5: Web interface for an unsupervised learning experiment demonstrator running on the BrainScaleS-2 version 2 prototype chip

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 15 / 18

Figure 6: Web interface for a local learning experiment demonstrator; the experiment combines spiking neural network operation on the

BrainScaleS-2 version 2 prototype chip to a simulated environment running on the embedded processor

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 16 / 18

As the experiments suggest, the software stack provides a complete hardware configuration
interface and an experiment execution protocol abstraction layer for the prototypes of the BSS-2
system. For the latest BSS-2 ASIC (HICANN-X), a bridge between the FPGA/chip simulation and the
software stack has been developed. It enables early verification of the ASIC using the same software
stack as in real operation.

The next major software development efforts will focus the higher software layers. The link between
hardware configuration and the more abstract map & route layer will be established. This requires
major changes to the ‘marocco’ package itself: chip-specific assumptions will be replaced by a
generic approach which tracks constraints for different hardware backends (i.e. BrainScaleS-1 and
BrainScaleS-2 architectures). Additionally, new features require new resource requirement
calculations as, for example, structured neurons and programmable plasticity allow interesting new
experiments, but also introduce constraints on the placement of neurons. The embedded processor,
and programmable plasticity in particular, also require mechanisms for code generation, as every
analogue chip is different and the placement will have to cope with blacklisted components,
placement differences, as well as non-homogeneous parametrisation. The first steps towards code
generation have been made by providing parametrised plasticity code templates. Further steps will
be aligned to the PyNN API development.

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 17 / 18

4. References and Literature
Table 1: Public Software Repositories for BrainScaleS

Repository URL Short Description

‘pyhmf’ https://github.com/electronicvisions/pyhmf PyNN implementation for BrainScaleS

‘euter’ https://github.com/electronicvisions/euter
C++ library for handling user-defined
neural network topologies and
experiment protocols

‘marocco’ https://github.com/electronicvisions/marocco
Routing and mapping of biological
network description to hardware
constraints

‘haldls’ https://github.com/electronicvisions/haldls Low-level abstraction layer for HICANN-
DLS-based chips

‘stadls’
(stored in
‘haldls’ repo)

https://github.com/electronicvisions/haldls Experiment control flow

‘fisch’ https://github.com/electronicvisions/fisch FPGA instruction interface API

‘hxcomm’ https://github.com/electronicvisions/hxcomm FPGA instruction bit formatting

‘flange’
(stored in
‘hxcomm’ repo)

https://github.com/electronicvisions/hxcomm Interface between ‘hxcomm’ and FPGA
simulation

‘sctrltp’ https://github.com/electronicvisions/sctrltp
Ethernet-based reliable transport layer
for communication between host and
FPGA

‘vmodule’ https://github.com/electronicvisions/vmodule USB-based library for data exchange
between host and FPGA

‘gcc-nux’ https://github.com/electronicvisions/gcc Compiler and linker for PPU programs

‘libnux’ https://github.com/electronicvisions/libnux Helpers library for PPU programs

‘binutils-gdb’ https://github.com/electronicvisions/binutils-
gdb

Binary utility programs of the PPU
toolchain

‘newlib’ https://github.com/electronicvisions/newlib Libc for PPU programs

Software
dependencies https://github.com/electronicvisions/spack Tracks all external software

dependencies of the BSS software stack

Container
Images https://openproject.bioai.eu/containers

Pre-built container images (for
singularity) providing all external
software dependencies of the BSS
software environments

https://github.com/electronicvisions/pyhmf
https://github.com/electronicvisions/euter
https://github.com/electronicvisions/marocco
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/hxcomm
https://github.com/electronicvisions/hxcomm
https://github.com/electronicvisions/sctrltp
https://github.com/electronicvisions/vmodule
https://github.com/electronicvisions/gcc
https://github.com/electronicvisions/libnux
https://github.com/electronicvisions/binutils-gdb
https://github.com/electronicvisions/binutils-gdb
https://github.com/electronicvisions/newlib
https://github.com/electronicvisions/spack
https://openproject.bioai.eu/containers

D9.2.1 (D58.1 D91) SGA2 M12 ACCEPTED 190723.docx PU = Public 9-Mar-2020 Page 18 / 18

Table 2: Literature and References

URL Short Description

[1]
http://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?
id=3838

Philipp Spilger, Bachelor thesis, Spike-based
Expectation Maximization on the HICANN-DLSv2
Neuromorphic Chip, 2018.

[2]
https://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?
id=3854

Timo Wunderlich, Master thesis, Demonstrating
advantages of neuromorphic computation, 2019.

[3] https://arxiv.org/abs/1811.03618

Timo Wunderlich et al., Demonstrating Advantages
of Neuromorphic Computation: A Pilot Study,
Frontiers in Neuroscience (Neuromorphic
Engineering), 2019 (to be published).

[4]
http://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?
id=3448

Arthur Heimbrecht, Bachelor thesis, Compiler
Support for the BrainScaleS Plasticity Processor,
2017.

[5] https://online.tugraz.at/tug_online/wbAbs.sho
wThesis?pThesisNr=63900&pOrgNr=2369

Thomas Bohnstingl, Master thesis, Development of
an agent for solving Markov Decision Processes
embedded in Spiking Neural Networks, 2018.

[6] https://online.tugraz.at/tug_online/wbAbs.sho
wThesis?pThesisNr=63901&pOrgNr=2369

Franz Scherr, Master thesis, Spike-Based Agents for
Multi-Armed Bandits, 2018.

[7]
https://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?
id=2952

Simon Friedmann, PhD thesis, A new approach to
learning in neuromorphic hardware, 2013.

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3838
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3838
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3838
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3854
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3854
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3854
https://arxiv.org/abs/1811.03618
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3448
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3448
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3448
https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=63900&pOrgNr=2369
https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=63900&pOrgNr=2369
https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=63901&pOrgNr=2369
https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=63901&pOrgNr=2369
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2952
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2952
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2952

	1. Introduction
	2. BrainScaleS-2 Software Interface
	2.1 Component Overview
	2.2 Components
	2.3 Code Example for ‘haldls’ & ‘stadls’
	2.4 Development Process
	2.4.1 Code-Review
	2.4.2 Continuous Integration (CI)
	2.4.3 Developer Software Environment

	3. Conclusion and Outlook
	4. References and Literature

