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This is an assemblage of models published by partners from SP4 during the RUP. 
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1. SP Leader’s Overview 

1.1 Key Personnel 
SubProject Leader: Alain DESTEXHE (CNRS, P10) 

SubProject Deputy Leader: Idan SEGEV (HUJI, P60), Viktor JIRSA (AMU, P78)  

SubProject Manager: Katherine FREGNAC (CNRS, P10) 

1.2 Progress 
As detailed in the annex, the different models developed in SP4 progressed in the first year of SGA1.  
Perhaps the largest change is that there is now a much more focused integration of the different models 
developed in SP4, with the rest of the HBP.  Many models directly contribute to the Platforms, and there 
is now a larger use of the experimental data collected in the HBP.  More specifically, WP4.1 has strong 
connections with SP6, but also SP9 and the experimental SPs (SP1,2,3).  WP4.2 and WP4.3 have strong 
connections with SP9, but also with SP6 and SP7.  The models developed in WP4.4 have connections with 
SP5, SP6, SP9 and SP10, and WP4.5 naturally has a strong connection with SP5, as well as new connections 
with SP8 for modelling brain pathologies, a theme that we expect to take more and more importance in 
the future.  A detailed comparison - and possibly a unification - of different mean-field models developed 
in SP4 would be necessary. 

It must also be noted that nearly all models developed in SP4 also have a strong connection with SP5, and 
in particular in the Neural Activity Resource, where model data will be posted in the future. 

There are also stronger connections within SP4, in particular the development of mean-field models is now 
better connected to the building of spiking networks in other tasks, and here again, we expect that mean-
field models will take an increasing importance, and form the basis of simulations of normal and 
pathological brain activity. 

In the present deliverable D4.7.1, we include a detailed report of all models developed in SP4 during the 
first year of SGA1.  We first list the different properties and Components related to each model.  In a 
second part (Annex), we provide the details for each model, with figures. 

1.3 Deviations  
The main deviation is that some of the tasks are slightly behind schedule because of the delayed funding 
of SGA1. However, the situation was worse at M6 (see 6-month report) and was partially compensated by 
an increased work in the second six-month period, so we expect to catch up with the planned activities in 
SGA1. 

There was no consequences for the other SPs. 

1.4 Impact of work done to date 
The impact is mostly through publications, SP4 has one of the highest international impact at this level. 

1.5 Priorities for the remainder of the phase 
The priority remains to catch up with the schedule and be able to produce all the work planned for SGA1. 
There are areas that are already ahead of schedule, so we are confident that this will be done as planned. 
Another priority is to participate to the Platforms, and here, the high SP4 participation to the CDPs should 
naturally satisfy this priority. Note that the newly planned Neural Activity Database in SP5 will increase 
the impact of SP4 to Platforms, since virtually all SP4 models will contribute.  
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2. WP 4.1 Bridging Scales 

2.1 Key Personnel 
Work Package Leader: Alain DESTEXHE (CNRS, P10) 

2.2 WP Leader’s Overview 
The work in WP4.1 has been very efficient and productive in the first year of SGA1, despite the problem 
of funding in the first few months. For this reason, we are a little bit behind schedule, but a lot of work 
has been produced in the last six months. A large number of publications were produced and the work is 
contributing to the Platforms. 

Major achievements: 

· Development of simplified models of neurons with dendrites (in progress), intended to be used in SP6 

· Development of simplified models of dendritic integration and correlation processing by active 
dendrites (work in progress), aimed at being implemented in neuromorphic systems (SP9) 

· Development of compact models for the input-output transfer function of dendritic neuron models for 
use in SP6 

· Development of different types of mean-field models to describe population dynamics in cerebral 
cortex (work in progress), these models can be used in SP4 and SP6, as well as to interpret experimental 
data on imaging (SP1, SP2, SP3) 

· Development of simplified models of brain signals (work in progress), aimed at being used in more 
complex models in SP4 and SP6 

2.3 Priorities for the remainder of the phase 
WP4.1 should continue the planned work and catch up with the planned activities in SGA1. 

 

3. WP 4.2 Generic Models of Brain Circuits  

3.1 Key Personnel 
Work Package Leader: Markus DIESMANN (JUELICH, P20) 

Other researchers: Marja-Leena LINNE (TUT, P103), Viktor JIRSA (AMU, P78), Sacha VAN ALBADA (Juelich, 
P20) 

3.2 WP Leader’s Overview 
The exchange of ideas and techniques at the EITN has been fruitful throughout the funding period. I 
perceive an increase in openness and a standardisation of tools that will bolster future collaborations and 
the success of the Project. 

On the down side, the administrative overhead consumed considerable resources, which detracted from 
the time available to do science.  

The curation and dissemination of the cortical microcircuit model has already led to three publications 
from other groups (Schwalger et al. ArXiv 2016; Lee et al., ArXiv 2016; Cain et al., PLoS CB 2016). The 
multi-area model approaches the boundaries of what can currently be simulated with the available 
software and hardware, and thereby gives guidance to the simulation technology development. 
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Major achievements: 

· Development of a first version of a multi-area model of macaque visual cortex with stable ground-state 
activity obtained with the help of a novel semi-analytical mean-field method (Schuecker et al., 2017). 
The model constitutes a supercomputing simulation test case for SP7. 

· Ported a cortical microcircuit model from NEST to the SpiNNaker neuromorphic hardware system (SP9). 
This achievement represents the first full-density cortical microcircuit simulation on neuromorphic 
hardware. 

· Development of a first version of a neuron-glia network model, (work in progress; the developed models 
and methods can be used both in SP4 and SP6). 

· Simplification of HH-type neuron reduced to a set of 4 variables using mass/charge constraints and 
approximations of gating dynamics and demonstrations of its capacity to reproduce a K+-elevation-
induced bursting (to be used in mean field models of SP4). 

3.3 Priorities for the remainder of the phase 
One of the priorities for the remainder of SGA1 is to further investigate local field potentials in the 4x4 
mm2 model of cortex based on the hybrid scheme for predicting LFP signals from spiking point-neuron 
networks developed in T4.1.4 (Einevoll). For the multi-area model of macaque visual cortex, a priority is 
to provide an internal release of the model specification. This will be a testbed for the mean-field theory 
that will continue to be developed in T4.1.3. A further priority is to submit a manuscript on the dynamics 
of the model. Further work concerns the completion of the study in which the full-scale cortical 
microcircuit model is made available for research on the neuromorphic hardware. For the neuro-glial model 
for bursting activity, the priority for the upcoming phase is to develop a mesoscopic population-level 
description able to provide further insight into the conditions underlying the emergence of epileptic 
activity and its spread to neighbouring areas. The main concern for the study of astrocyte-neuron 
interactions is to bring the model into closer agreement with experimental data and release the resulting 
validated model. 

 

4. WP 4.3 Learning and Memory  

4.1 Key Personnel 
Work Package Leader: Wulfram GERSTNER (EPFL, P1) 

Together with the groups of Walter SENN (Berne), Andre GRUENING (Surrey), and Misha TSODYKS 
(Weizmann)  

4.2 WP Leader’s Overview 
Everything is working nicely. 

Our impact is achieved via publications in good international journals. 

Major achievements: 

· obtainment of learning rules for neuron models with spatial structure. Important for link to brain 
simulation (SP6). 

· obtainment of abstract learning principles for supervised learning in neurons with dendrites.  Important 
for the link to neuromorphic computing (SP9). 
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· obtainment of new learning rule for learning under surprise as a modulator. Important for link to 
neuromorphic (SP9). 

· established pipeline for transfer of plasticity algorithms to standard simulators, such as NEST, very 
important for SP6 and SP7 

4.3 Priorities for the remainder of the phase 
The groups of Walter SENN (Berne), Andre Gruening (Surrey), and Misha Tsodyks (Weizmann) and Wulfram 
Gerstner (EPFL) will put high priority on pushing the recent scientific results achieved during the first year 
of SGA1 into publications in great international journals. The interaction with other partners in SP4, with 
CDP5, and, most importantly, with other SubProjects will also remain a high priority. Finally, the smooth 
transition from SGA1 to SGA2 needs not only administrative but also scientific preparation so that 
continuity of the research work is also a high priority. 

 

5. WP 4.4 Models of Cognitive Processes  

5.1 Key Personnel 
Work Package Leader: Gustavo DECO (UPF, P77) 

5.2 WP Leader’s Overview 
From a scientific point of view, the progress performed by all the Work Package partners is very 
satisfactory. The research plan is advancing in the directions desired and at the forefront of their 
respective topics. This is already a very important achievement considering the very difficult conditions in 
which the work had to be performed in the last 12 months, e.g., the delayed SGA1 grant signature, the 
sudden introduction of novel organisation procedures requesting every task to re-define their goals in terms 
of Components, and the need to prepare the SGA2 proposal in the same period. 

On the other hand, important efforts have been performed in the Work Package to build both internal 
(within SP4) and external (other SPs) collaborations. A particular problem we have identified is that, while 
all partners are aware of the need to make their models available for the Platforms, the mechanisms by 
which this will be carried out is not always clear, neither it is clear who will perform the integration of the 
models into the Platforms. This problem is aggravated by the fact that the work plan and work-flows for 
the Platforms in SGA1 were planned independently and thus, integrating our work into Platforms often 
involves an intromission to the working plan and objectives of the Platforms. During the planning of SGA2 
proposal, this has been significantly improved. 

Major achievements: 

· Development of a novel model of whole-brain resting-state brain activity capturing nonlinear brain 
region dynamics based on the normal form of the Hopf bifurcation. To be embedded into the 
neuroinformatics Platform (SP5) for automatised data/modelling workflows. 

· Investigation of a network model of regular-spiking and fast-spiking neurons, compatible with 
experimental data, as well as with neuromorphic hardware in SP9. 

· Obtainment of a nonlinear model of the retina which can accurately predict the responses of ganglion 
cells to multiple moving objects in the same scene. The model is of relevance to provide the 
neurorobotics Platform (SP10) with biologically plausible neural networks able to process visual stimuli. 

· Development of computational model of basal ganglia and the study of dopamine depletion-induced 
increase of AMPA efficacy in cortico-striatal synapses to medium spiny neurons (MSNs). The model will 
serve as the starting point for a detailed model of the basal ganglia planned in SP6. 
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· Extension of spatial navigation models to consider episodic memory and (general) non-spatial planning, 
for application on autonomous robotic devices developed in SP10. 

· Development of a deep convolutional auto-encoder network able to automatically learn a mapping 
from natural images to topological saliency distributions. The model is the starting point for the 
development of CDP4. 

5.3 Priorities for the remainder of the phase 
A priority for the remaining 12 months of SGA1 is to make sure that the scientific goals are achieved and 
meet the requirements to be continued during SGA2. Another priority is the consolidation of the 
connections that have been built. We need to make sure that in the following 12 months all WP4.4 partners 
have identified and contacted adequate partners in the Platforms and that their future working plans for 
SGA2 are being developed in coordination with those partners. 

 

6. WP 4.5 Linking Model Activity and Function to Experimental data  

6.1 Key Personnel 
Work Package Leader: Sonja GRÜN (JUELICH, P20), Viktor JIRSA (AMU, P78) 

Task leader T4.5.1: Sonja GRÜN (JUELICH, P20) 

Postdoc in T4.5.1: Michael VON PAPEN (JUELICH, P20) (from 6. 3. 2017). Contributions also from Dr Nicole 
VOGES (JUELICH, P20) 

Task leader T4.5.2: Viktor JIRSA (AMU, P78) 

Postdocs in T4.5.1 / T4.5.2: Dr. Spase PETKOSKI and Dr. Andreas SPIEGLER (from 1.4.2016). Contributions 
also from PhD student Francesca MELOZZI (AMU, P78). 

6.2 WP Leader’s Overview 
What went particularly well? 

· Resting state 100-electrode array electrophysiological recordings from non-human primate provided by 
external experimental partners. 

· Performed statistical characterisation of resting state data: Single unit activities separated into 
excitatory and inhibitory neurons, estimation of firing statistics of these classes and characterization 
of network interactions. 

· The integration of structural data (connectivity, region mapping) of different origins (DTI, Allen Brain 
Atlas) in whole mouse brain network models and the initial modelling of spontaneous resting state.  

· Whole brain network models derived from human connectome data of epileptic patients using 
Epileptor, a neural mass model capturing the temporal evolution of a seizure including on- and offset, 
were validated against empirical data. 

What didn’t go according to plan? 

· Validation of the reduced top-down models against high- dimensional neuronal network models, 
enabling parameter space explorations to guide high performance computations (SP7). For this we rely 
on the input from our partners (upstream Components) working on mean-field models and this will be 
looked after in the next phase. 

· Hiring of postdoc for T4.5.1 was only possible in March 2017. 
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· Impact of work done 

· Electrophysiological resting state data and its characterization provide base line data for the 
comparison with balanced random network simulations.  

· The integration of the Allen Brain Atlas for the mouse brain network models, and the results from the 
initial modelling of the resting state is an important step that will allow further validation of the 
empirical data (calcium imaging) for behavioural functions and pathologies. Here we have provided 
proof of concept for the predictive value of individual connectome (DTI data), as well as superiority of 
the tracer data compared to DTI.   

· The validation of the human connectome for modelling temporal dynamics of the epileptic patients 
will have a big impact on further work into individualised predictive modelling for epileptic patients, 
and should be of great importance to clinicians. 

Major achievements: 

· preparation of a workflow to integrate model data into the Neural Activity Resource in SP5 (collective 
work in SP4) 

· implementation of a data analysis workflow (available as collab.humanbrainproject.eu/#/collab/2493) 
as one branch of the integrative loop implementation for comparison and validation of the layered 
cortex model (from SP4 and CDP4) on experimental data (to be delivered by NAR of SP5) 

· Construction and simulation of mean field network model derived from Allen Mouse Connectome and 
computational demonstration of biologically realistic resting state functional connectivity validated 
against empirical fMRI mouse data, to be used in SP1 and verify results from SP6 (CDP1) 

· Reconstruction of epileptic patients' brain networks (N=15) and demonstration of simulations of 
biologically realistic seizure propagation patterns validated against empirical patient SEEG data (to be 
used in SP8) 

6.3 Priorities for the remainder of the phase 
T4.5.1 will focus on the Use Case of comparison of the NEST 4x4mm² microcircuit model with resting state 
data from premotor cortex of non-human primate in collaboration with T4.2.1. Therefore, distance 
dependent neuronal weights will be included into the 4x4mm² microcircuit model. The analysis workflow 
of the resting state data and its comparison to the modelled data will be integrated into the HBP 
collaboratory as a collab and made available to HBP members. The further analysis we will include to 
extract higher order correlations from both simulation and experiment and work towards the formulation 
of strategies for the model parametrization to obtain compatible correlation structures as obtained in the 
experimental data. This will include a parameter study of the model and successive validation with model.  

Further validation of the whole brain mouse network models against empirical data recorded in SP1 using 
calcium imaging before and after stroke will be in the next step. This should help constraining the 
structure-function relationship and will form the basis for later extensions towards behavioural functions 
and pathologies (SP8). Further work is also expected in comparison of different modalities of structural 
data (tracer vs. DTI) and their predictive value for the functional connectivity. 

Regarding human data, further exploration of the predictive value of the connectome is expected, where 
again the validation will be against the empirical data from epileptic patients. Here we will compare the 
effects that different lesioning strategies have on the propagation of the instabilities in the dynamics. 

 

7. WP 4.6 EITN 
Please refer to Deliverable D4.6.1 for SGA1 M1-M12 activity. 
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Major achievements: 

· organisation of very successful workshops at the EITN, with a strong participation from the community 
outside HBP. 

 

8. WP 4.7 Scientific coordination 

8.1 Key Personnel 
Work Package Leader: Alain DESTEXHE (CNRS, P10) 

8.2 WP Leader’s Overview 
The coordination of SP4 has been working very well, with regular meetings (videoconferences and physical 
meetings), in which the WP leaders are all actively participating. All partners contribute to the modelling 
work in a very collegial way that works well for SP4. 

Alain Destexhe participated to the DPIT team, who proposed a restructuration of SP5, as required by the 
E.C. officers.  The main contribution of SP4 was to suggest and support the creation of the "Neural Activity 
Resource" (NAR) in SP5, which will naturally have strong links with SP4, as the models developed emphasise 
the modelling of the activity of the brain at multiple levels. 

8.3 Priorities for the remainder of the phase 
Priorities are to eEnsure SP4 has good communication between all partners in this SubProject as well as 
that the SP reaches its SGA1 goals as best as possible. Continue on disseminating the work being done, 
within the consortium as well as outside of the HBP. 
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8.4 Milestones  
Table 1: Milestones for WP No. & Name 

MS No. Milestone 
Name 

Lead 
Partner 

Task(s) 
involve

d 

Expected 
Month 

Achieved 
Month Comments 

MS4.5.
1 

Overview of 
available 
brain 
activity 
data and 
model 
pairings, 
including 
the type of 
data, and 
identified 
first use 
cases for 
the 
comparison 
of activity 
data and 
model 
simulations. 

20 T4.5.1 M12 M12 

Milestone has been achieved (see 
Deliverable 4.7.1 for details): For Project 
1, a first Use Case was identified, namely 
to compare activity data from the 
motor/premotor cortex of an awake non-
human primate with the neural network 
model from Potjans and Diesmann (2014). 
The experimental data are available for 
an ongoing 'resting state' as well as during 
an active 'reach-to-grasp' task. Workflows 
towards the comparison between activity 
data and models have been designed and 
a preliminary version is available in the 
HBP collaboratory. For project 2, 
experimental data from epileptic patients 
was used to construct virtual epileptic 
patients (Jirsa et al., 2016). In a first Use 
Case Proix et al. (2017) showed the 
favourable application of this model to 
predict surgical outcome. Workflows 
towards the comparison between activity 
data and models have been designed or 
already made available in the HBP 
collaboratory 
https://collab.humanbrainproject.eu/#/
collab/2493 

MS4.5.
2 

Implementa
tion of Allen 
Mouse Atlas 
as a large-
scale brain 
model and 
simulation 
of resting 
state 
networks. 

20 T4.5.2 M12 M12 

 
Milestone has been achieved (see 
Deliverable 4.7.2 for details): The Allen 
Mouse Atlas has been used to create the 
structural connectivity (SC) as required 
for large-scale brainwork models (Melozzi 
et al., 2017). This procedure was then 
used to build the large-scale brain 
network models, which were in turn used 
to simulate resting state functional 
connectivity (FC). These results were used 
to analyse the predictive value of brain 
structure for brain function (Melozzi et 
al., in preparation; see also 
https://collab.humanbrainproject.eu/#/
collab/1609/nav/14240 ). 

MS4.7.
1 

SP4 
Roadmap 
for SGA2 

10 T4.7.1 M13 M13 Started in M8 
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9. T4.1.1 - Simplified dendritic neuron Models 

9.1 Key Personnel 
Task Leader: Idan SEGEV (HUJI, P60) 

Other Researcher: Alain DESTEXHE (CNRS, P10) 

9.2 SGA1 DoA Goals  
1) To reduce model complexity, in both morphological (simpler cable structures) and 

physiological (minimal membrane ion channels) domains and compare these reduced 
neuron models (e.g. of L2/3 pyramidal cells) among various species. 

2) Theoretical analysis of dendritic computations, in particular on the role of dendritic 
excitability (Na+, Ca2+ and NMDA spikes), and consideration of how nonlinear dendrites 
integrate synaptic inputs under in vivo conditions with intense background synaptic 
activity. 

9.3 Component Progress 
PLA Components: 

951. complex to simplified models - owner: Guy EYAL, type: model (DoA Goal 1) 

62. Simplified neuron models – owner: Idan SEGEV, type: model (DoA Goal 1) 

60. Model of dendritic integration with excitable dendrites - owner: Alain DESTEXHE, type: 
model (DoA Goal 2) 

1031. Mean-field models of interacting spiking neurons with dendritic compartment –owner: 
Romain VELTZ, type: model (DoA Goal 2) reported in T4.1.3 

CDP Contributions:  

· CDP2 - Mouse-Based Cellular Cortical and Subcortical Microcircuit Models  

Component 62 Simplified neuron models  is part of CDP2-UC-002 - Multi-scale validation) 

9.3.1 complex to simplified models  
Description of Component (from PLA): an algorithm that takes detailed 3D reconstructed 
neuron morphology + electrical properties and then generates a simplified conductance-
based model of it. 

CDP to which Component contributes (if relevant): N/A 

Progress on Component: Having developed the reduction scheme we already tested it on L5 
and L2/3 pyramids, as well as for cortical Martinotti and Basket cells interneurons. In all 
case the performance of the reduced model ad compared to the full model is excellent, and 
the computational time saved ranged between 50-120 folds.   

Quality Control: 

· Upstream - Fitting Generalised Integrate-and-FIre models 

· Upstream - SP6-T6.2.1-SGA1-Models of human dendritic spines 

· Upstream - SP2 - Morphological cortical connectivity profiles of neocortical pyramidal 
neurons 

· Upstream - SP2 - Morphological data of human neocortical pyramidal neurons  

· Upstream - SP6-T6.2.1-SGA1-Detailed passive models of human neurons 

https://project-lifecycle.herokuapp.com/component/951
https://project-lifecycle.herokuapp.com/component/62
https://project-lifecycle.herokuapp.com/component/60
https://project-lifecycle.herokuapp.com/component/1031
https://project-lifecycle.herokuapp.com/component/62
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· Upstream - Morphological and physiological data from the same neurons in adult 
mouse 

· Upstream - Morphological and physiological data from the same neurons in adult 
human 

· Upstream - Template of morphing rules to translate pyramidal neuron function from 
rodent brain to microcircuits in the human brain 

· Downstream - SP2 - Multilevel maps of quantitative cell distributions and 
morphologies 

· Downstream - SP2 - Maps of different human neuronal circuits 

9.3.2 Simplified neuron models  
Description of Component (from PLA): Reduced neuronal models that preserve the cable 
properties of the full detailed ones. 

This work continues in SGA-1 with the “Systematic methods for reducing single neuron model 
complexity” (“Neuron_Reduce”). This is an algorithm that takes detailed 3D reconstructed 
neuron morphology + electrical properties and then generates a simplified conductance-
based model of it. 

CDP to which Component contributes: CDP2 « Mouse-Based Cellular Cortical and Subcortical 
Microcircuit Models » - UC-002 - Multi-scale validation 

Progress: Neuron_Reduce is a general- purpose software to reduce neuron model complexity. 
As such it will serve mean field models in SP4 as well as models for dendritic plasticity, as it 
preserves some level of morphological complexity of dendritic neurons as well as nonlinear 
dendritic properties.  

We completed the first version of the reduction scheme (Neuron_Reduce). It  provides an 
analytic scheme for taking a complex conductance-based neuron model as an input and 
automatically generate simplified, yet accurate reduced model. For L5 pyramidal cell the 
reduced model rums 100 times faster than the full model. We now examine this reduction 
scheme on variety of neuron types.  

Links:  

Eyal et al.  Neuron_Reduce: An analytical method to efficiently reduce neuron model 
complexity (in preparation). 

Quality Control: 

· Upstream - SP2 - Morphological cortical connectivity profiles of neocortical pyramidal 
neurons 

· Upstream - SP2 - Morphological data of human neocortical pyramidal neurons  

· Upstream - Template of morphing rules to translate pyramidal neuron function from 
rodent brain to microcircuits in the human brain 

· Upstream - Morphological and physiological data from the same neurons in adult human 

· Upstream - 3D reconstructions of 200 cells in human neocortex (temporal, cingulate and 
frontal) 

· Upstream - SP6-T6.2.1-SGA1-models of nonlinear human neurons 

· Upstream - SP6-T6.2.1-SGA1-Modelling synaptic inputs to human dendritic spines 

· Downstream - Single-compartmental models of cortical cells, including non-linear IF 
models and GLM 
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9.3.3 Model of dendritic integration with excitable dendrites 
Description of Component (from PLA): This is a simplified model of excitable dendrites using 
the AdEx model, compatible with neuromorphic hardware. 

This model, started in the Ramp-Up Phase, continues in SGA-1. 

This models simulates signal propagation of sodium, calcium and NMDA spikes in an active 
linear dendrite which consists of nc dendritic compartments, each of AdEx type. 

CDP to which Component contributes (if relevant): N/A 

Progress on Component: A first model is now submitted for publication. 

Quality Control: 

· Upstream - T3.2.4 (4) Prediction of photostimulation effects through simulation and 
closed-loop feedback  

· Upstream - Plasticity: STDP for a multi-compartment model with NMDA spikes (Algo 
STDPbackprop)  

· Upstream - Plasticity: Dendritic predictive plasticity that reproduces STDP data (Algo 
STDPpredictive)  

· Downstream - Plasticity: STDP algo that predicts stimuli ahead in time (Algo 
STDPprospective) 

 

10. T4.1.2 - Input-output transfer functions of 
morphologically detailed neuronal models 

10.1 Key Personnel 
Task Leader: Michele GIUGLIANO (UA, P81 - leader) 

Other Researcher: Idan SEGEV (HUJI, P60) 

Other Researcher: Christophe VERBIST (UA, P81), Mario NEGRELLO (UA, P81) 

10.2 DoA Goal(s) 
We study the mapping into an output spike train of the inputs received by a neuron, under 
a periodic sinusoidal regime. This mapping is known as dynamical transfer function and 
quantifies the bandwidth of information processing associated to intrinsic neuronal excitable 
properties. 

Changes to DoA Goal(s): No change has been foreseen for the moment. 

10.3 Components Progress 
A delay of 4M in the progress of T4.1.2 has being experienced. This resulted from (a) late 
recruitment of personnel at UA following the delayed SGA1 contract signature. In addition, 
(b) the part-time postdoctoral fellow recruited on the Project (Dr. M. Negrello) unexpectedly 
dropped-out on 31/7/2016. Immediate contingency actions were taken, recruiting a PhD 
researcher (C. Verbist) on 1/10/2016. Additional contingency measures included in-kind 
contributions (4MM undergrad researcher, 3MM IT manager, 1.5MM of M. GIUGLIANO’s own 
time) to boost the start of the (unexperienced) PhD. 

PLA Components: 

1007. Single-compartmental models of cortical cells, including non-linear IF models and GLM 
– owner: Michele GIUGLIANO, type: model  

https://project-lifecycle.herokuapp.com/component/1007/
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1008. Multi compartmental reconstructed cortical cells: their input-output transfer 
properties - owner: Michele GIUGLIANO, type: model  

CDP Contributions: CDP2 - Mouse-Based Cellular Cortical and Sub-Cortical Microcircuit 
Models 

Component 1008 contributes to CDP2-UC-001-single cell modelling 

10.3.1 Multi compartmental reconstructed cortical cells: their input-
output transfer properties (from PLA) 

Description of Component (from PLA): The dynamical input-output response properties of 
detailed models of neurons, across human and rodent cortical cell types are analysed and 
related to published experimental data and theoretical frameworks. Specific relationships 
of (linear) system theory and Fourier analysis of firing rates are obtained while injecting 
somatic current- and conductance-inputs and then generalised to realistic distributed 
synaptic activation. Consequences of dendritic impedance “loads”, AP initiation, and 
response non-linearity are contrasted against published experiments. These results constrain 
single-compartmental models using non-parametric filtering and ad hoc and spike-initiation 
mechanisms as in non-linear IF models and GLM. Such characterizations of detailed and 
simplified models will facilitate interpretation of SP6 large-scale simulations, and their 
examination in collaborations with SP2 and SP6 will benefit neuromorphic designs (SP9). 

CDP to which Component contributes (if relevant): CDP2, Mouse-Based Cellular Cortical and 
Sub-Cortical Microcircuit Models, UseCase: UC-001-single cell modelling. 

Quality Control: 

· Upstream - SP2 - Morphological cortical connectivity profiles of neocortical pyramidal 
neurons 

· Upstream - SP2 - Morphological data of human neocortical pyramidal neurons  

· Upstream - Fitting Generalised Integrate-and-FIre models 

· Upstream - 3D reconstructions of cortical neurons from cortical tissues of human brain 
obtained from brain surgery in hospitals 

· Upstream - 3D reconstructions of cortical neurons from brain slices 

· Upstream - SP6-T6.2.4-SGA1-Models of rat hippocampal neurons 

· Downstream - T3.1.4 Information Theoretic Network Model of Layer 5 Pyramidal Cells 

· Downstream - Single-compartmental models of cortical cells, including non-linear IF 
models and GLM 

· Downstream - SP6-T6.2.7-SGA1-Simplified brain models 

· Downstream - Modelling and analysis of a cortical slice with spontaneous and perturbed 
slow-wave activity 

· Downstream - Command-line tools 

· Downstream - SP9 model: Emergence of Computational Capabilities through Learning 

· Downstream - SP9 BrainScaleS standalone next generation single chip physical model 
system 

10.3.2 Single-compartmental models of cortical cells, including non-linear 
IF models and GLM 

Description of Component (from PLA): This Component is based on the results from "Multi 
compartmental reconstructed cortical cells: their input-output transfer properties" to 
constrain single-compartmental models using non-parametric filtering and ad hoc and spike-

https://project-lifecycle.herokuapp.com/component/1008/
https://project-lifecycle.herokuapp.com/component/1008/
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initiation mechanisms as in non-linear IF models and GLM. Such characterizations of detailed 
and simplified models facilitate interpretation of SP6 large-scale simulations, and their 
examination in collaborations with SP2 and SP6 will benefit neuromorphic designs (SP9). 

10.3.3 Fitting Generalised Integrate-and-FIre models 

Description of Component (from PLA): Neuron models from data: algorithmic pipeline to 
extract parameters from measurements. The methodology has been verified, written up in 
a paper that appeared in PLOS Computational Biology 2015 and will be used in the future 
“routinely in the Allan Institute” for large-scale data collection. 

It can also be used as a tool to extract simplified neuron models from detailed biophysical 
neuron models. 

The paper is available as: 

Automated high-throughput characterization of single neurons by means of simplified spiking 
neuron models C. Pozzorini, S. Mensi, O. Hagens, R. Naud, C. Koch and W. Gerstner 
PLOS Computational Biology 2015 

the code for automatic parameter extraction available at: 
https://github.com/pozzorin/GIFFittingToolbox/wiki/Automated-high-throughput-single-
neuron-characterization 

 

11. T4.1.3 - Mean-field and population models 

11.1 Key Personnel 
Task Leader: Olivier FAUGERAS (INRIA, P33) 

Other Researcher: Etienne TANRÉ (INRIA, P33), Romain VELTZ (INRIA, P33) 

Other Researcher: Marc DE KAMPS (ULEEDS, P104), Yi ming LAI (ULEEDS, P104) 

Other Researcher: Alain DESTEXHE (CNRS, P10),  

11.2 DoA Goal(s): 
· To derive mean-field and population density descriptions from point neuron models. 

· To study the influence of network connectivity and noise correlations on the models' 
computational properties. 

· To model in vivo conditions (high-conductance states). 

· To compare this approach with the one followed in SP6 and the one in Task 4.4.1, where 
simulations of “brain states” will be performed with integrate and fire neurons. 

· To explore whether the SpiNNaker architecture may provide hardware acceleration to 
multi-dimensional population density techniques 

Changes to DoA Goal(s): None 

11.3 Component progress 
PLA Components: 

1030. Mean-field models of interacting populations of rate and spiking neurons – owner: 
Olivier FAUGERAS, type: model (DoA Goal 1, 2) 

1031. Mean-field models of interacting spiking neurons with dendritic compartment - owner: 
Romain VELTZ, type: model (DoA Goal 1,3) 

https://project-lifecycle.herokuapp.com/component/1030
https://project-lifecycle.herokuapp.com/component/1031/
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1034. Population density techniques for the simulation of populations and neural circuits - 
owner: Marc DE KAMPS, type: model  (DoA Goal 1,5) 

1554. Mean-field model of AdEx networks, spontaneous activity and responsiveness - owner: 
Alain DESTEXHE, type: model  (DoA Goal 4) 

1054. Population activity equations: Finite-N mean-field model for interacting populations 
(with adaptation)- owner: Wulfram GERSTNER, type: model (DoA Goal x) 

CDP Contributions: CDP1 - Development of Whole Mouse Brain Model and Related Mouse 
Brain Atlas 

Components 1030, 1034 & 1054 contributes to CDP1-P3: A virtual imaging lab app and CDP1-
P4: A virtual behaviour lab app.  

11.3.1 Mean-field models of interacting populations of rate and spiking 
neurons  

Description of Component (from PLA): We develop mathematical models of the 
thermodynamic limit of networks of rate and spiking neurons. 

Progress on Component: We developed a systematic cumulant expansion for neuronal 
networks on the level of individual units. The theory allows the calculation of first and 
second cumulants of the finite-size fluctuations present in networks of binary units in the 
strong coupling regime and beyond thermodynamic equilibrium. The work was released with 
the publication Dahmen et al. 2016, Phys Rev X. The theory goes beyond the often employed 
level of description on the level of homogeneous populations. In particular, it shows that 
finite-size effects exist that may break the homogeneity between cells. Therefore, it is 
complimentary to population-density approaches followed within this work package. 

The spontaneous activity of the cortical microcircuit is often dominated by collective 
oscillations. We have finished the work on the identification of the anatomical origin of 
these oscillations in the gamma range. The work has been released as Bos et al. 2016, PloS 
CB. The method, based on a mean-field reduction of LIF model neurons, finds an analytical 
measure for the contribution of individual connections to cortical oscillations. It identifies a 
sub-circuit of layers 2/3 and 4 as the potential origin of gamma oscillations, as well as layer 
5 as the origin of slow fluctuations. Moreover, it allows the targeted model construction with 
desired oscillatory and stability properties. 

We developed an analytical approach to treat feed-forward networks of rate units with 
correlation-sensitive synaptic plasticity in a mean-field approximation. The work was 
released as Grytskyy et al. 2016. The formalism reveals a transition at a critical coupling 
strength at which soliton solutions on long time-scales emerge. 

Task-related references 

David Dahmen, Hannah Bos, and Moritz Helias (2016) Correlated Fluctuations in Strongly 
Coupled Binary Networks Beyond Equilibrium. Phys. Rev. X 6, 031024 

Bos H, Diesmann M, Helias M (2016) Identifying Anatomical Origins of Coexisting Oscillations 
in the Cortical Microcircuit. PLoS Comput Biol 12(10): e1005132. 
doi:10.1371/journal.pcbi.1005132 

Dmytro Grytskyy, Markus Diesmann, and Moritz Helias (2016) Reaction-diffusion-like 
formalism for plastic neural networks reveals dissipative solitons at criticality. Phys. Rev. E 
93, 062303 https://doi.org/10.1103/PhysRevE.93.062303 

11.3.2 Mean-field models of interacting spiking neurons with dendritic 
compartment  

Description of Component (from PLA): It is an algorithm for an efficient computation of 
dendritic signals propagation.  

https://project-lifecycle.herokuapp.com/component/1034
https://project-lifecycle.herokuapp.com/component/1554/
https://project-lifecycle.herokuapp.com/component/1054
https://project-lifecycle.herokuapp.com/component/1054
https://doi.org/10.1103/PhysRevE.93.062303
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CDP to which Component contributes (if relevant): N/A 

11.3.3 Population density techniques for the simulation of populations 
and neural circuits  

Description of Component (from PLA): It is a set of mathematical techniques that reduce the 
simulation group of spiking neurons to that of a single population. We apply the resulting 
simulator to a model of language production. 

Quality Control: 

· Upstream - T3.3.3 Decoded spike patterns of neural ensembles in cortex and 
hippocampus during multimodal scene representation  

· Upstream - Mean-field model of AdEx networks, spontaneous activity and responsiveness 

· Upstream - population activity equations: Finite-N mean-field model for interacting 
populations (with adaptation) 

· Upstream - Single-compartmental models of cortical cells, including non-linear IF models 
and GLM: We discussed the possibility to use population density techniques to model a 
two-compartmental neuron where one of the compartments receives a current injection 
with noise superimposed. Compartmental simulations suggest effects of the spike rise 
which translates in a shape change of the f-I curve. We are studying whether this can be 
captured by PDTs. Also Michele made a suggestion for a synaptic plasticity rule that could 
be captured by our techniques and we're exploring that atm.  

· Downstream - Simplified EEG models: We have delivered our PDTs and simulator to 
Mikkel Lepperod, one of Gaute's students. They are using this to model populations of 
stellate cells in entorhinal cortex. We are currently investigating resonance spectra of 
individual populations and circuits. Direct LFP modelling will come later. 

11.3.4 Mean-field model of AdEx networks, spontaneous activity and 
responsiveness  

Description of Component (from PLA): Design of mean-field models of populations of 
excitatory and inhibitory neurons, including adaptation, in order to capture the population 
dynamics during spontaneous activity, as well as the dynamics of evoked responses. 
The model should predict the correct spontaneous activity states for given parameters of 
connectivity and synaptic weights. It should also predict the correct time course of the 
network response to external input. 

Progress on Component: A mean-field model has been derived, and is now submitted for 
publication. We are now refining this model so that it captures the network responses to 
external input.  

Quality Control: 

· Downstream - Population density techniques for the simulation of populations and neural 
circuits 

11.3.5 Population activity equations: Finite-N mean-field model for 
interacting populations (with adaptation) 

Description of Component (from PLA): The finite-N mean-field model uses groups 
(populations) of generalised integrate-and-fire models with parameters extracted from 
data that are connected to each other in a wiring diagram consistent with cortical 
microcircuits. From a theoretical perspective it makes the transition from a description by 
single neurons (spikes, voltage) to the level of population activity (level of mean-field 
models, population models, Wilson-Cowan models, field equations). In contrast to the 
Wilson-Cowan model, the equations for population activity are: 

i. derived from underlying generalised integrate-and-fire models;  
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ii. take into account neuronal adaptation and 

iii. are valid not just for N to infinity but also for fairly small groups. 

The functionalities are: 

A. theoretical analysis 

B. speed-up for large-scale brain simulations 

C. Can be used with microcircuit structures such as those of the Potjans-Diesmann 
model 

D. could be used as a basis for cortical wave simulations or simplified EEG models 

CDP to which Component contributes: N/A 

Progress: EPFL-LCN (Gerstner lab) made excellent progress on this Component.  An arXive 
version has been published. A final paper has been submitted and is currently in the second 
round of review. See ANNEX to Deliverable for details. 

Links: https://arxiv.org/abs/1611.00294 

Archive publication: T. Schwalger, M. Deger and W. Gerstner (2016) 
Towards a theory of cortical columns: From spiking neurons to interacting neural populations 
of finite sizearXiv:1611.00294 

Quality Control: 

· Upstream - 944: Full density model of cortical microcircuit , Van Albada (Diesmann lab).  
The upstream Component is published, we have received it and it was used in our 
Component, and we gave positive feedback., 

· Upstream - 61:  Fitting Generalized Integrate-and-FIre models., Gerstner (EPFL), The 
upstream Component is published, we have received the Component, and it was used in 
our Component, and we gave positive feedback. 

· Downstream - Simplified EEG models (Einevoll) [added value] we have not officially 
delivered, but we have discussed with Gaute Einevoll at a preliminary state. 

· Downstream - Mean-field models of interacting populations of rate and spiking neurons 
[essential] (Faugeras). Olivier Faugeras told us that he is very interested and he has 
received the preprint version of our model 

· Downstream - Population density techniques for the simulation of populations and neural 
circuits [important] (De Kamps) we have not officially delivered, but Mark de Kamps is 
aware of our  model and told us that he is interested. 

 

12. T4.1.4 - Models of brain signals 

12.1 Key Personnel 
Task Leader: Alain DESTEXHE (CNRS, P10) 

Other Researcher: Bartosz TELENCZUK (CNRS, P10) 

Other Researcher: Gaute EINEVOLL (NMBU, P44), Torbjørn V NESS (NMBU, P44) 

12.2 DoA Goals: 
1. to obtain methods to generate LFP signals from both detailed models (as developed 

in SP6), and simplified models (see Task 4.1.1). 

https://arxiv.org/abs/1611.00294
https://project-lifecycle.herokuapp.com/component/944/
https://project-lifecycle.herokuapp.com/component/61/
https://project-lifecycle.herokuapp.com/component/902/
https://project-lifecycle.herokuapp.com/component/1030/
https://project-lifecycle.herokuapp.com/component/1034/
https://project-lifecycle.herokuapp.com/component/1034/


 

Co-funded by  
the European Union 

 

 

 

 

D4.7.1 (D25.1 D31) SUBMITTED (SGA1 M12) PUBLIC PU = Public 29-Aug-2017 Page 22 of 66 
 

2. to extend this to the calculation of more global signals, such as the surface EEG 
(electrocorticogram or ECoG), voltage-sensitive dye (VSD) signals, as well as the local 
magnetic field (LMF) generated by neuronal populations. 

Changes to DoA Goals:   None 

12.3 Components Progress 
PLA Components: 

1234. Model of calcium imaging signals – owner: Alain DESTEXHE, type: model(Goal 2 & 
CDP1): Biophysically based model of calcium imaging signals (this Component is part of CDP1) 

63. Simplified model of local field potentials – owner: Alain DESTEXHE, type: model (DoA 
Goal 1): Simple model of LFPs based on unit-LFP relations from extracellular recordings 

902. Simplified EEG models – owner: Gaute EINEVOLL, type: model (DoA Goal 2): We will 
provide a simplified and memory efficient formalism for calculating EEG signals from neural 
simulations in NEURON and NEST. This will help relating large scale brain simulations to 
experimentally measurable quantities like the EEG, and also greatly simplify analysis, by 
simplifying the link between the EEG signal and the underlying neural sources. 

896.Improved LFP model with quasi-active conductances – owner: Gaute EINEVOLL, type: 
model (DoA Goal 1) 

CDP Contribution: CDP1 - Development of Whole Mouse Brain Model and Related Mouse 
Brain Atlas 

Component 1234, 902 & 896 contribute to CDP1-P3: A virtual imaging lab app. 

CDP2 - Mouse-Based Cellular Cortical and Sub-Cortical Microcircuit Models 

Component 63. Simplified model of local field potentials (model, Destexhe) contributes to 
CDP2-UC-002 - Multi-scale validation 

12.3.1 Model of calcium imaging signals (from PLA) 
Description of Component (from PLA): Biophysically based model of calcium imaging signals 
(this Component is part of CDP1) 

CDP to which Component contributes: CDP1 Development of Whole Mouse Brain Model and 
Related Mouse Brain Atlas, CDP1-P3: A virtual imaging lab app 

Progress on Component: This model starts on year 2, on April 1st 2017.  

Links: N/A  

Quality Control: 

· Upstream - SP2 - Multilevel maps of quantitative cell distributions and morphologies 

· Upstream - SP2 - Maps of different human neuronal circuits 

· Downstream - Structural and functional connectivity at different scales 

· Downstream - Allen Mouse Atlas (AMA) based brain network  

12.3.2 Simplified model of local field potentials (from PLA) 
Description of Component (from PLA): Simple model of LFPs based on unit-LFP relations from 
extracellular recordings.\r\n 

CDP to which Component contributes: CDP2-UC-002 - Multi-scale validation, generic models 
and algorithms 

https://project-lifecycle.herokuapp.com/component/1234/
https://project-lifecycle.herokuapp.com/component/63/
https://project-lifecycle.herokuapp.com/component/902
https://project-lifecycle.herokuapp.com/component/896/
https://project-lifecycle.herokuapp.com/use_case/109
https://project-lifecycle.herokuapp.com/use_case/32
https://project-lifecycle.herokuapp.com/use_case/101
https://project-lifecycle.herokuapp.com/use_case/101
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Progress on Component: We have calculated the "kernel" to relate single spikes to LFPs,  
and we are now using this information to generate a simplified  
model of the LFP. 

Quality Control: 

· Upstream - Simulation of brain lesion and cortical bistability on complexity 

· Upstream - Photostimulation 

· Upstream - Electrical perturbations on slices during sleep-like pattern before and after 
drug application 

· Upstream - Intracortical SPES recording combined with hd-EEG and intracortical 
recording 

· Upstream - Slow waves and complexity relationships explored by perturbations: 
definition of models, T3.2.2 

· Downstream - T3.2.1 (3) Multipurpose simplified neuronal network model of different 
cortical areas matching SWA/wake transitions  

· Downstream - Modelling and analysis of slow-wave activity across a cortical area with 
laminar organization  

· Downstream - Collective behaviour of mean-field and neural population models: A 
comparative study  

· Downstream - Improved LFP model with quasi-active conductances  

· Downstream - SP6-T6.3.6-SGA1-Tool for LFP recording in NEST simulations 

12.3.3 Improved LFP model with quasi-active conductances 
Description of Component (from PLA): Using quasi-active conductances, we improve the 
estimation of the effect of active conductances on the Local Field Potential 

CDP to which Component contributes: CDP1 Development of Whole Mouse Brain Model and 
Related Mouse Brain Atlas, CDP1-P3: A virtual imaging lab app 

Progress & links: 

We recently published a paper (onlinelibrary.wiley.com/doi/10.1113/JP272022/full) about 
the effect of quasi-active conductances on the LFP for single cells, and we are preparing a 
manuscript where this has been extended to populations of cells. The framework we have 
developed is in principle ready to be used for investigating the impact of active conductances 
on the LFP in large-scale brain simulations, e.g., from SP6, or in our SGA-2 Component 
“Hybrid Schemes for combining point-neuron network simulations in NEST with 
biophysically detailed NEURON simulations (Einevoll, T4.1.4)”. We have also finished an 
investigation of the impedance spectrum of cortical tissue with a focus on the propagation 
of LFPs (eneuro.org/content/4/1/ENEURO.0291-16.2016.full).  

Quality Control: 

· Upstream - nmc-portal, (T5.6.1, RUP) We have extensively used the MNC-portal 
(bbp.epfl.ch/nmc-portal), and it has been a great resource, although we could have 
wished for more information on the connectivity.  

· Upstream - NEURON. We have used NEURON to simulate the neural activity underlying 
all our LFP calculations. 

· Upstream - NEST Support for Modellers, (T7.5.5, SGA1) When needed, we have received 
support for using NEST.  

· Upstream - NEST - The Neural Simulation Tool. We have used NEST for producing 
plausible network activity that is used as input for cell populations.  

https://project-lifecycle.herokuapp.com/use_case/109
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· Upstream - Simplified model of local field potentials (T4.1.4, SGA1). We have so far not 
used input from this Component  

· Downstream - Tool for LFP recording in NEST simulations (T6.3.6, SGA1). We have 
established contact, and made some initial plans for our collaboration.  

· Downstream - Simplified EEG models (T4.1.4, SGA1). The quasi-active conductance 
scheme is ready to be used to probe the impact of active conductances on EEG 
recordings.  

· Downstream - Multi-area recordings from visual and somatosensory cortices, perirhinal 
and entorhinal cortex and hippocampal CA1 (T3.3.3, SGA1). We have so far not 
contributed to this Component  

· Downstream - Decoded spike patterns of neural ensembles in cortex and hippocampus 
during multimodal scene representation (T3.3.3, SGA1). We have so far not contributed 
to this Component  

12.3.4 Simplified EEG models 
Description of Component (from PLA): We will provide a simplified and memory efficient 
formalism for calculating EEG signals from neural simulations in NEURON and NEST. This will 
help relating large scale brain simulations to experimentally measurable quantities like the 
EEG, and also greatly simplify analysis, by simplifying the link between the EEG signal and 
the underlying neural sources. 

CDP to which Component contributes: CDP1 Development of Whole Mouse Brain Model and 
Related Mouse Brain Atlas, CDP1-P3: A virtual imaging lab app 

Progress & links: 

We have developed and tested a framework for simplified EEG calculation from complex 
neuron models (master thesis, hdl.handle.net/11250/292868), and we plan to finish a 
manuscript on it during the fall 2017. Currently, we are preparing a short note about analytic 
four-sphere EEG models that will be useful when exploring the simplified EEG models.  

Quality Control: 

· Upstream - nmc-portal, (T5.6.1, RUP) We have extensively used the MNC-portal 
(bbp.epfl.ch/nmc-portal), and it has been a great resource, although we could have 
wished for more information on the connectivity.  

· Upstream -NEURON. We have used NEURON to simulate the neural activity underlying all 
our LFP calculations. 

· Upstream - NEST Support for Modellers, (T7.5.5, SGA1) When needed, we have received 
support for using NEST.  

· Upstream - NEST - The Neural Simulation Tool. We have used NEST for producing 
plausible network activity that is used as input for cell populations.  

· Upstream - population activity equations: Finite-N mean-field model for interacting 
populations (with adaptation) (T4.1.3, SGA1). We have so far not used input from this 
Component.  

· Upstream - Intracortical SPES recording combined with hd-EEG and intracortical 
recording (T3.2.2, SGA1). We have so far not used data from this Component, but it 
might be important at a later stage  

· Upstream - Population density techniques for the simulation of populations and neural 
circuits (T4.1.3, SGA1). We have so far not used input from this Component, but we have 
made initial plans for the collaboration 

https://project-lifecycle.herokuapp.com/use_case/109
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· Upstream - Improved LFP model with quasi-active conductances (T4.1.4, SGA1). We will 
use the quasi-active conductances to probe the impact of active conductances on the 
EEG signal.  

· Upstream - Detailed models of human cortical neurons (T6.1.3, RUP). We have so far not 
used data from this Component, but detailed models of human cortical neurons will be 
important later.  

· Downstream - Tool for LFP recording in NEST simulations (T6.3.6, SGA1). We have 
established contact, and will collaborate on LFP recordings from NEST. 

· Downstream - Point-neuron model of the whole mouse brain (T6.2.6, SGA1). Large-scale 
point-neuron models will be very important for our work, and this Component will be 
important at a later stage.  

 

13. T4.2.1 - Simplified network models of different cortical 
areas 

13.1 Key Personnel 
Task Leader: Markus DIESMANN (JUELICH, P20, lead) 

Other Researcher: Viktor JIRSA (AMU, P78, lead), Davide LILLO (AMU, P78) 

Other Researcher: Sacha van ALBADA (JUELICH, P20), Rembrandt BAKKER (JUELICH, P20), 
Maximilian SCHMIDT (JUELICH, P20), Moritz HELIAS (JUELICH, P20), Jannis SCHUECKER 
(JUELICH, P20)   

13.2 DoA Goal(s): 
1. The Task will construct multi-layered multi-area models of the cortex relating the 

local microscopic connectivity to the macroscopic connectivity of the brain. On the 
local level, this leads to models with a higher degree of self-consistency than 
previously possible, because the origins of synapses from remote sources are 
included, and the lower parts of the power spectrum of neuronal activity missing in 
purely local models can be investigated. On the global level, the bottom-up and top-
down flow of activity between cortical areas in these hierarchical models are 
investigated and compared to results from neuronal mass models. 

Changes to DoA Goal(s): none. 

13.3 Components Progress 
PLA Components: 

Owner of Components 730 and 944 has been changed (initially entered as owned by Markus 
Diesmann, the owner is now Sacha van Albada) ; a mistake on the owner and task 
contribution of Component 777 has been corrected (previously Sonja Gruen à Markus 
Diesmann)  

730. Multi-area model of cortical network at neuronal resolution – owner: Sacha VAN 
ALBADA, type: model (DoA Goal 1). 

777. 4x4 mm2 motor cortex model – owner: Markus DIESMANN, type: model (DoA Goal 1) 

944. Full density model of cortical microcircuit– owner: Sacha VAN ALBADA, type: model 
(DoA Goal 1) 

1573. Neuro-glial model for bursting activity  - owner: Viktor JIRSA, type: model (DoA Goal 
1) 

https://project-lifecycle.herokuapp.com/component/730
https://project-lifecycle.herokuapp.com/component/777/
https://project-lifecycle.herokuapp.com/component/944/
https://project-lifecycle.herokuapp.com/component/1573/


 

Co-funded by  
the European Union 

 

 

 

 

D4.7.1 (D25.1 D31) SUBMITTED (SGA1 M12) PUBLIC PU = Public 29-Aug-2017 Page 26 of 66 
 

CDP Contributions: Component 730 and 777 link to CDP4 - Visuo-Motor Integration, Use Case 
«comparative analysis of experimental and simulated data» with more concrete links to be 
made in SGA2. The 4x4 mm2 model provides the microscopic template substrate for mapping 
the population-level model constructed in CDP4, and the multi-area model provides 
anatomical constraints as well as a template implementation and techniques for the multi-
scale modelling of inter-area interactions. 

13.3.1 Multi-area model of cortical network at neuronal resolution  
Description of Component (from PLA):  Construct multi-layered multi-area models of 
the cortex relating the local microscopic connectivity to the macroscopic connectivity of the 
brain. On the local level, this leads to models with a higher degree of self-consistency than 
previously possible, because the origins of synapses from remote sources are included, and 
the lower parts of the power spectrum of neuronal activity missing in purely local models 
can be investigated. On the global level, the bottom-up and top-down flow of activity 
between cortical areas in these hierarchical models are investigated. 

CDP to which Component contributes (if relevant): CDP4 - Visuo-Motor Integration, 
comparative analysis of experimental and simulated data  

Progress: In SGA1, JUELICH published a paper (Schuecker et al., 2017) on the stabilization 
of the dynamics using high-level constrains with the aid of the mean-field tool set from 
T4.1.3 (Faugeras). We performed graph theoretical analyses of the corresponding 
connectivity matrix, and submitted a paper on the joint microscopic and macroscopic 
anatomy of the model. Further analysis has been performed on the origin of area-specific 
time scales of the spiking dynamics. A release of the model is planned for the end of SGA1.    

Links: 

· Schmidt M, Bakker R, Hilgetag C-C, Diesmann M, van Albada SJ. Multi-scale account 
of the network structure of macaque visual cortex (submitted for publication, 2017). 

· Schuecker J, Schmidt M, van Albada SJ, Diesmann M, Helias M. Fundamental activity 
constraints lead to specific interpretations of the connectome (2017) PLoS CB 
13(2):e1005179, doi:10.1371/journal.pcbi.1005179. 

Quality Control: 

Upstream Components 

· Full density model of cortical microcircuit: finished Component, now an integral part of 
the present Component 

· Macaque connectivity database (CoCoMac): intermediate release, used extensively by 
the present Component 

· Python: intermediate release, used extensively by the present Component 

· Elephant: intermediate release, not yet used by the present Component 

· SP6-T6.3.6-SGA1-Tool for LFP recording in NEST simulations: not yet released 

· SP6-T6.3.6-SGA1-Tools for configuring stimulation and recording in NEST simulations: not 
yet used by the present Component 

· HPC systems at JSC: used extensively by the present Component 

· Rule- and data-based connectivity generation in NEST: the present Component uses NEST 
connectivity functions for which the latest NEST release contains updates and bug fixes 

· NEST Support for Modellers: ongoing, extensively used by the present Component 

· NEST - The Neural Simulation Tool: ongoing, extensively used by the present Component 

Downstream Components 
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· Mouse cortical regions for object recognition learning: not yet used by the downstream 
Component 

· VisNEST: finished Component, already used for visualizations with VisNEST 

· Rule- and data-based connectivity generation in NEST: we have not yet provided 
requirements for novel connectivity functions to the downstream Component 

· NEST Requirements Management: we have generated requirements regarding novel 
recording devices, successfully addressed by the downstream Component 

13.3.2 4x4 mm2 motor cortex model  
Description of Component (from PLA): Microcircuit model extended to 4x4 mm^2 with motor 
connectivity. 

CDP to which Component contributes (if relevant): CDP4 - Visuo-Motor Integration, 
comparative analysis of experimental and simulated data  

Progress: The work towards this Component started in the RUP and the work will continue 
in SGA2. A preliminary version of the model has been developed and presented at CNS*2016, 
and first iterations comparing simulated and experimentally recorded activity have been 
performed together with T4.5.1 (Gruen). We expect to provide a release in SGA2. 

Hagen E., Senk J., van Albada S.J., Diesmann M.: Local field potentials in a 4 × 4 mm² 
multi-layered network model. BMC Neuroscience 2016, 17(Suppl 1): P167  

Quality control 

Upstream Components:  

· Full density model of cortical microcircuit: finished Component, now an integral part of 
the present Component 

· NEST Requirements Management: This upstream Component successfully provides an 
ongoing service, which has for instance led to improved performance of threaded 
connection generation. 

· NEST Support for Modellers: ongoing, extensively used by the present Component 

· NEST - The Neural Simulation Tool: ongoing, extensively used by the present Component 

· HPC systems at JSC: used extensively by the present Component 

Downstream Components: 

· Elephant: intermediate release, not yet used by the present Component  

· Workflow for comparison of electrophysiological and simulated data: intermediate 
release, a prototype version of the model has been used to create a first version of the 
workflow 

· VIOLA: intermediate release, already used for visualizations of simulation results 

13.3.3 Full density model of cortical microcircuit  
Description of Component (from PLA): the model has been published as 

Potjans TC and Diesmann M (2014) The Cell-Type Specific Cortical Microcircuit: Relating 
Structure and Activity in a Full-Scale Spiking Network Model. Cerebral Cortex 24(3):785-806. 
DOI:10.1093/cercor/bhs358  

The model is maintained and curated by task T4.2.1. 

CDP to which Component contributes (if relevant): N/A 

Progress: In the current grant period, a PyNEST model description has been developed and 
made available in the latest NEST release (Kunkel et al., 2017) as well as on Open Source 
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Brain. Furthermore, the model has been ported to SpiNNaker using a PyNN model 
description. This description has entered into an example workflow using the Collaboratory 
in combination with HPC resources and neuromorphic hardware, led by T4.5.1 (Gruen). The 
plan for SGA2 is to further increase the agreement of the model with fundamental properties 
of local cortical circuits like simultaneous balance and excitability. As an auxiliary study for 
these SGA2 plans, JUELICH re-implemented an earlier model of local cortical circuits from 
the literature in NEST (Maksimov et al., 2016).  

Links:  

· http://opensourcebrain.org/projects/potjansdiesmann2014 

· Kunkel S et al. (2017). NEST 2.12.0. Zenodo. 10.5281/zenodo.259534. 

· Van Albada SJ, Rowley AG, Hopkins M, Schmidt M, Senk J, Stokes AB, Galluppi F, 
Lester DR, Diesmann M and Furber SB (2016). Full-scale simulation of a cortical 
microcircuit on SpiNNaker. Front. Neuroinform. Conference Abstract: 
Neuroinformatics 2016. doi: 10.3389/conf.fninf.2016.20.00029. 

· Johanna Senk, Alper Yegenoglu, Olivier Amblet, Yury Brukau, Andrew Davison, David 
Roland Lester, Anna Lührs, Pietro Quaglio, Vahid Rostami, Andrew Rowley, Bernd 
Schuller, Alan Barry Stokes, Sacha Jennifer van Albada, Daniel Zielasko, Markus 
Diesmann, Benjamin Weyers, Michael Denker, Sonja Grün (2017) A Collaborative 
Simulation-Analysis Workflow for Computational Neuroscience Using HPC. In: Di 
Napoli E., Hermanns MA., Iliev H., Lintermann A., Peyser A. (eds) High-Performance 
Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science, vol 10164. 
Springer, Cham, doi:10.1007/978-3-319-53862-4_21 

· [Re] Cellular and Network Mechanisms of Slow Oscillatory Activity (<1 Hz) and 
Wave Propagations in a Cortical Network Model Andrei Maksimov, Sacha J. van 
Albada (JUELICH), and Markus Diesmann (JUELICH) published in ReScience, 2016 
October 17, Open Access 

Upstream Components:  

· NEST Requirements Management: This upstream Component successfully provides an 
ongoing service, which has for instance led to improved performance of threaded 
connection generation. 

· NEST code with abstracted neuron model representations: This upstream Component 
delivered what it promised. 

Downstream Components: 

· Neuro-glial model for bursting activity: finished Component, used as example network 
by the downstream Component  

· population activity equations: Finite-N mean-field model for interacting populations 
(with adaptation): finished Component, used as biological example network by the 
downstream Component 

· Elephant: finished Component, delivers simulated activity data for testing statistical 
analysis functions implemented in the downstream Component 

· Multi-area model of cortical network at neuronal resolution: finished Component, now 
an integral part of the downstream Component 

· 4x4 mm2 motor cortex model: finished Component, now an integral part of the 
downstream Component 

13.3.4 Neuro-glial model for bursting activity - owner: Vitkor Jirsa 

Description of Component (from PLA): The impairment of neuron-glia cross talk may be 
responsible, among other factors, for the onset of seizures in brain cortex. We aim to build 

http://opensourcebrain.org/projects/potjansdiesmann2014
https://doi.org/10.5281/zenodo.161526
https://doi.org/10.5281/zenodo.161526
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a network model for neuro-glial tissue with a bottom-up approach: starting from a 
physiologically detailed and biophysically validated point-neuron model, embedded in its 
metabolic environment enclosing glial activity and interaction, we study its bursting 
properties and identify the minimal set of fast/slow variables that are involved in the 
bursting dynamics. This should lead to identification of a local slow permittivity variable 
modulating ictal-interictal alternation. Further mean-field derivation from this point-model 
may provide a mesoscopic biomarker of seizure, with spatial propagation depending on the 
connectivity of the cortical structure at study. Continuing up along the hierarchy, we may 
be able to build a simplified model for whole-area seizure, keeping into account local 
synaptic cabling and cross-area signalling. A resulting slow, large-scale variable of seizure 
modulation should be experimentally identifiable and measurable, to assess conclusions 
about seizure paths in the cortex as well as new therapeutic strategies for pharmacoresistant 
epileptic patients. 

CDP to which Component contributes: Not contributing yet, but in the next phase expected 
to contribute to Development of Whole Mouse Brain Model and Mouse Brain Atlas (CDP1), we 
are responsible for the P3 Virtual imaging lab app 

Progress: We started by considering a HH-type neuron with persistent K+ current, transient 
Na+ current, leak Cl- current and ATP pump current. The conductance-based equations for 
this model are coupled to the equations describing the change of ionic concentrations in the 
intracellular and extracellular space, as well as to the equation for passive diffusion from 
the K+ bath. The total set of 11 variables is then reduced to a set of 4 variables thanks to 
mass/charge constraints and approximations of gating dynamics. The reduced system is then 
analysed in slow/fast fashion. A 2D bifurcation diagram of the fast subsystem, comprised of 
membrane potential and K+ activation variable, is obtained for each fixed couple of values 
of the two slow variables (intra- and extracellular shift of K concentration from resting 
values). The passive diffusion from external K+-bath induces a slow-wave bursting behaviour 
of the neuron for a certain range of bath concentrations. This can be visualised as a closed 
trajectory in the slow-variables’ plane, which crosses a SNIC line in both onset and offset 
bifurcations of the fast subsystem. Such SNIC/SNIC burster appears to be robust to slight 
changes of the metabolic parameters in the model, but bursters of other classes are observed 
as transients before stabilization to the aforementioned class. Our model is able to combine 
realism and computational handiness to reproduce a K+-elevation-induced bursting. 

For the next phase we are trying to translate this local, point-neuron model into a mesoscale 
population mean-field model that will be able to describe dynamics inside a sketched copy 
of cortical column. Different approaches are available from master equation theory. The 
population dynamics should be a function of the biophysical parameters we have plugged 
inside the single-cell model. The resulting mean-field formalism may give us hints about 
what are the conditions (within our model) that lead to hyper-synchronous activity of the 
overall population and eventually to a spreading of the seizure to neighbouring areas. We 
should then compare our results with experimental literature in order to check validity and 
consistency of our workflow. We are confident about the possibility of bridging physiological 
knowledge about cortical focal seizures with a corresponding mathematical 
characterization. 

Hired PhD student Davide Lillo. 

Quality Control: 

Upstream Components 

· Model of biologically-realistic network states [added value]; It is not yet needed, we 
expect it in the next phase.  

· population activity equations: Finite-N mean-field model for interacting populations 
(with adaptation) [important]; It is not yet needed, we expect it in the next phase.  
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· Full density model of cortical microcircuit [important]; It is not yet needed, we expect 
it in the next phase.   

Downstream Components: 

· SOFTWARE > Data Factory > Data Storage [essential]; Not yet implemented (we believe 
that this platform does not exist and hasn’t been needed yet, but it should become 
relevant in the next phase) 

· Effective connectivity changes inferred from optogenetic brain interrogation and calcium 
imaging [added value]; The Component is not yet active, and its connection are under 
discussion.    

· Allen Mouse Atlas (AMA) based brain network; It is not yet implemented. We expect it to 
happen in the next phase.  

 

14. T4.2.2 - Network models including neuron-glia 
interactions 

14.1 Key Personnel 
Task Leader: Marja-Leena LINNE (TUT, P103) 

Other Researcher: Andre GRÜNING (SURREY, P102) 

14.2 DoA Goal(s): 
The objectives of our Task are: 

1. To develop a framework to model neuron-astroglia interactions in plasticity and 
learning, with data from SP1; 

2. To formulate novel plasticity algorithms that include mathematically abstracted 
astroglial functions; 

3. To construct models of cortical networks based on (1) and (2). 

14.3 Changes to DoA Goal(s):  
No change in DoA Goals are expected. Since we did not have funding from April 2016 (and, 
consequently, the postdoc working in the Project was unemployed during this period of 
time), we have done the work using small institutional funding. This institutional funding 
was originally allocated to other applications than the ones proposed by us in the HBP. Due 
to delay in EU funding and complication using the institutional funding the work has so far 
addressed mainly Goals (1) and (2) of the DoA. 

14.4 Component progress 
PLA Components: 

70. Astrocyte neuron interaction SYNAPSE model (ANI model) – owner: Marja-Leena LINNE, 
type: model (DoA Goal 1) 

973. Astrocyte-Neuron interaction NETWORK model (ANN model) – owner: Marja-Leena 
LINNE, type: model (DoA Goal 3) 

CDP Contributions: None for the moment, we do not receive funding through CDPs. But 
T4.2.2 is involved in following the progress made in CDP5 through Andre Gruning. 

https://project-lifecycle.herokuapp.com/component/70/
https://project-lifecycle.herokuapp.com/component/973/
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14.4.1 Astrocyte neuron interaction SYNAPSE model (ANI model)  
Description of Component (from PLA): The astrocyte-neuron interaction (ANI) model is a 
detailed biophysical excitability model that involves the astrocyte, and the presynaptic and 
postsynaptic terminals of the so-called tripartite synapse. The model describes key cell 
membrane excitability as well as intracellular calcium mechanism that are shown to take 
part in the information transfer in the cortical synapse. 

The SYNAPSE model for plasticity, involving astrocyte modulation (named as ANI model) will 
continue in SGA-1. 

CDP to which Component contributes: CDP5, indirectly through Andre Grüning. 

Progress: We have started the work towards the Component during RUP and the work 
continues in SGA2. All model elements to form the Component are now finalised and 
implemented. We are currently performing extensive testing of the model, validation of the 
model against experimental data, and writing up the publication. We expect to release the 
Component after the acceptance of the publication and no later than the end of SGA1.  

Links: We have already published several publications in relation to this Component. These 
publications present work on initial selection of Component elements (ie. model elements). 
Publications and materials include: 

Manninen T., Havela R., Linne M.-L. (2017) Computational models of astrocytes and 
astrocyte-neuron interactions: Categorization, analysis, and future perspectives. 
Computational Glioscience (peer-reviewed book chapter), 2017 (in press). 

Manninen T., Havela R., Linne M.-L. (2017) Reproducibility and comparability of 
computational models for astrocyte calcium excitability. Frontiers in Neuroinformatics 
11:11. https://doi.org/10.3389/fninf.2017.00011  

Quality Control: 

· Upstream - Neuro-Glia Vasculature (model) by T6.4.3 (RUP) Molecular models of neuro-
vascular-glial coupling. T4.2.2 has been in contact with the developers and visited 
Geneva location to discuss about the Component. The upstream model can be used to 
simulate data for the use of the ANI model (Component 70). 

· Downstream - Astrocyte-Neuron interaction NETWORK model (ANN model) by T4.2.2 
(SGA1) Network models including neuron-glia interactions + Task responsible. The 
downstream Component development is in the very early phase, due to delay in funding. 

14.4.2 Astrocyte-Neuron interaction NETWORK model (ANN model) 
Description of Component (from PLA): ANN model involves detailed models of neurons, 
astrocytes, and synapses. To simulate the model, we use mathematical model order 
reduction techniques which we have developed recently. In the future, there may be a need 
to implement model order reduction techniques as software (in the Simulation Platform). 

CDP to which Component contributes: CDP5, indirectly through Andre Grüning. 

Progress: The development of this Component is in its early phase. We have developed and 
tested the dimensionality reduction (model order reduction) methodology used to simulate 
this model. We are in the process of specifying the network level model elements and 
selecting experimental data to be used for model validation. The release of the Component 
will happen at earliest at the end of SGA1, also due to delay in funding in the beginning of 
SGA1. 

Links: One publication is accepted (description of the algorithm to perform the 
dimensionality reduction). 

Lehtimäki M., Paunonen L., Pohjolainen S., Linne M.-L. (2017) Order reduction for a signaling 
pathway model of neuronal synaptic plasticity. IFAC2017 Conference (accepted). 

https://doi.org/10.3389/fninf.2017.00011
https://project-lifecycle.herokuapp.com/component/90/
https://project-lifecycle.herokuapp.com/component/973/
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Quality Control: 

· Upstream - Astrocyte neuron interaction SYNAPSE model (ANI model) by T4.2.2. The 
upstream Component will be finalised during 2017 after which it can be used in the 
present Component. 

· Upstream - Plasticity: Two-compartment neuron by T4.3.1, T4.3.2, and T4.3.3. 
Discussion is ongoing how to utilise the upstream Component in the future version of the 
ANN Component. 

· Downstream - Plasticity models by T. 4.3.1 Synaptic plasticity and learning. The 
connection has been initialised very recently. 

 

15. T4.3.1 - Plasticity algorithms 

15.1 Key Personnel 
Task Leader: Wulfram GERSTNER (EPFL, P1) 

Other Researcher: Walter SENN (UBERN, P71) 

15.2 DoA Goals: 
1. To formulate synaptic plasticity algorithms from experimental data, in a way 

compatible with the models developed in the Platforms. 

2. To develop models of learning and reward, compatible with neuromorphic systems, 
and finally develop models of behavioural learning and long-term memory in the 
brain. 

3. The derivation of learning rules from plausible synapse models, the identification of 
rules for unsupervised learning and learning under the control of neuromodulators 
(encoding reward, surprise and novelty). 

4. Functional consequences and the long-term memory capabilities of the brain. 

 

Changes to the DoA Goals: No changes to the research plan are foreseeable at this stage. 
No deviations are visible at this point into the SGA1, and no corrective actions need to be 
taken. 

15.3 Components Progress 
PLA Components linked to this task:  

66. Plasticity: STDP for structural plasticity (STDPstructural) – owner: Wulfram Gerstner, 
type: model (DoA 1-4), reported under task 4.3.2 

969. Plasticity: Two-compartment neuron – owner: André Grüning, type: model (DoA x), 
reported under task 4.3.3 

1033. Plasticity: STDP for a multi-compartment model with NMDA spikes (Algo 
STDPbackprop)  – owner: Walter Senn, type: model (DoA Goals 1-4). Reported under task 
4.3.2  

1066. Plasticity models: SP 4 (theory) T. 4.3.1 synaptic plasticity and learning (DoA Goals 1-
4). Owner: W. Gerstner  

1182. Plasticity: voltage-based STDP (Clopath model) – owner: Wulfram Gerstner, type: 
model (DoA 1)  

https://project-lifecycle.herokuapp.com/component/66
https://project-lifecycle.herokuapp.com/component/969
https://project-lifecycle.herokuapp.com/component/1033/
https://project-lifecycle.herokuapp.com/component/1033/
https://project-lifecycle.herokuapp.com/component/1066/
https://project-lifecycle.herokuapp.com/component/1182


 

Co-funded by  
the European Union 

 

 

 

 

D4.7.1 (D25.1 D31) SUBMITTED (SGA1 M12) PUBLIC PU = Public 29-Aug-2017 Page 33 of 66 
 

1032. Plasticity: Dendritic predictive plasticity that reproduces STDP data (Algo 
STDPpredictive)  – owner: Walter Senn, type: model (DoA 1-4)  

1203. Plasticity: INST/FILT Rule – owner: André Grüning, type: model (DoA goal 1-4) reported 
under T4.3.3 

CDP contributions: Component 1033, 969 and 1203 are relevant for CDP5.  

15.3.1 Plasticity models: SP 4 (theory) T. 4.3.1 synaptic plasticity and 
learning 

Description of Component (from PLA): This Component refers to the TASK plasticity in 
SubProject 4 (theory). It resembles several upstream Components. Please look at each of 
these Components to find out more. 

CDP to which Component contributes (if relevant): CDP No., CDP Name & Use Case 

Progress: For several models we have received the upstream Component (see below) and 
checked the compatibility with NEST. Currently none of the models has been officially 
released in NEST but a pipeline has been established, via contacts with Markus Diesmann 
and Hans-Ekkehard Plesser who represent the NEST development team in HBP. 

Links: Not applicable. 

Quality Control: 

· Upstream -1182 Plasticity: voltage-based STDP (Clopath model), (Gerstner). We have 
received the model. The upstream Component is of excellent quality. We tested NEST 
compatibility, but within the current version of NEST the model is not implementable.  

· Upstream - 66 Plasticity: STDP for structural plasticity (STDPstructural) (Gerstner). We 
have received the model. The upstream Component is of excellent quality. We tested 
NEST compatibility, but it would further adjustments of the NEST software to make it 
easily implementable in NEST.  

· Upstream - 65 Plasticity: STDP with heterosynaptic plasticity and homeostasis for 
memory formation (Gerstner). We have received the model. The upstream Component 
is of excellent quality. We tested NEST compatibility, but within the current version of 
NEST the model is not implementable. 

· Downstream - 980 Model for high-level contributions to low-level vision (Ullman). We 
have not officially released or delivered any model, but discussions are in progress in 
view of SGA2.  

Analogous statements hold for other downstream Components: we expect that the 
downstream path will become more important in SGA2. 

15.3.2 Plasticity: voltage-based STDP (Clopath model) 
Description of Component (from PLA): Synaptic plasticity is broader then standard spike-
timing dependent plasticity (STDP), because synapses can change without postsynaptic spike 
if presynaptic activity is combined with postsynaptic voltage. This Component is based on 
the CLOPATH model (Nature Neuroscience, 2010). The aim is to adapt it so that it fits 
published dendritic plasticity experiments of Letzkus et al. 

The standard reference for this model is pre-HBP: 
Connectivity reflects coding: a model of voltage-based STDP with homeostasis 
C Clopath, L Büsing, E Vasilaki, W Gerstner 
Nature neuroscience 13 (3), 344-352 

CDP to which Component contributes (if relevant): CDP No., CDP Name & Use Case 

Progress: We made a modification of the Clopath model that enables us to better describe 
data of plasticity in dendrites. See Annex to Deliverable for more detail. 

https://project-lifecycle.herokuapp.com/component/1032
https://project-lifecycle.herokuapp.com/component/1032
https://project-lifecycle.herokuapp.com/component/1203
https://project-lifecycle.herokuapp.com/component/1182/
https://project-lifecycle.herokuapp.com/component/66/
https://project-lifecycle.herokuapp.com/component/65/
https://project-lifecycle.herokuapp.com/component/65/
https://project-lifecycle.herokuapp.com/component/980/
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Links: Not applicable.  

Quality Control: 

· Downstream 1066 Plasticity models: SP 4 (theory) T. 4.3.1 synaptic plasticity and 
learning.  The original version of the Clopath model was delivered downstream. 

15.3.3 Plasticity: Dendritic predictive plasticity that reproduces STDP 
data (Algo STDPpredictive) 

Description of Component (from PLA): The algorithm is derived as a gradient-based plasticity 
rule in a supervised learning scenario, but the same rules also work in a reinforcement 
learning scenario (when modulated by reward) and in an unsupervised learning scenario 
(depending on the somato-somatic connectivity pattern that acts as a self-supervision 
signal). The algorithm is an extension of a previous model and shows that dendritic predictive 
plasticity can reproduce most of the experimental results on spike-timing dependent 
synaptic plasticity (SDTP) on the dendritic tree. A neuron is still reduced to 2 compartments, 
a somatic and dendritic compartment, but the action potential and all synaptic inputs is 
modelled by conductances. The dendritic predictive plasticity model is applied to a 
population of neurons that controls the joints of a line man who learn to stand up and walk 
in a combination of unsupervised, supervised and reinforcement learning. 

CDP to which Component contributes (if relevant): CDP No., CDP Name & Use Case 

Progress: The theoretically derived error-correction rule was successfully applied to synaptic 
plasticity data. It does reproduce many of the STDP data for synapses depending on the 
location on the dendritic tree, as this was envisaged in the Project proposal. The doctoral 
student working on that Project now finalises the application to the virtual line man that 
learns to stand up and walk based on unsupervised, supervised and reinforcement learning. 
For details see Annex 

Links: Cosyne abstract 2017, http://cosyne.org/cosyne17/Cosyne2017_program_book.pdf. 

Quality Control: 

· Upstream - 1182 Plasticity: voltage-based STDP (Clopath model), (Gerstner). We have 
received the model, used it to identify the original experimental data and compare the 
fits between the Clopath model and ours  

· Downstream Components: See the various downstream links in the PLA.  

 

16.  T4.3.2 - Learning in networks of neurons 

16.1 Key Personnel 
Task Leader: Walter SENN (UBERN, P71) 

Other Researcher: Wulfram GERSTNER (EPFL, P1) 

Other Researcher: Misha TSODYKS (WEIZMANN, P84),  

16.2 DoA Goal(s) 
1. To formulate synaptic plasticity algorithms from experimental data, in a way 

compatible with the models developed in the Platforms. 

2. To develop models of learning and reward, compatible with neuromorphic systems, 
and finally develop models of behavioural learning and long-term memory in the 
brain. 

https://project-lifecycle.herokuapp.com/component/1066/
https://project-lifecycle.herokuapp.com/component/1066/
https://project-lifecycle.herokuapp.com/component/1182/
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3. The derivation of learning rules from plausible synapse models, the identification of 
rules for unsupervised learning and learning under the control of neuromodulators 
(encoding reward, surprise and novelty). 

4. Functional consequences and the long-term memory capabilities of the brain. 

Changes to the DoA Goal(s): There are no changes and no deviations. 

16.3 Components Progress 
PLA Components:  

1066. Plasticity models: SP 4 (theory) T. 4.3.1 synaptic plasticity and learning – owner: 
wolfram GERSTNER, type model (DoA Goal 1) reported under Task 4.3.1 

969. Plasticity: Two-compartment neuron – owner: André Grüning, type: model (DoA Goal 1-
4) reported under Task 4.3.3 

1033. Plasticity: STDP for a multi-compartment model with NMDA spikes (Algo 
STDPbackprop) – owner: Walter SENN, type model (DoA Goal x) 

1032. Plasticity: Dendritic predictive plasticity that reproduces STDP data (Algo 
STDPpredictive)  - owner Walter Senn, type model (DoA Goals 1-4). This Component is 
relevant for CDP5. 

66. Plasticity: STDP for structural plasticity (STDPstructural) – owner: Gerstner, type: 
model (DoA Goal 1-4). This Component is relevant for NEST and CDP5. 

971. Neural network model of working memory – owner: Misha TSODYKS, type: model (DoA 
Goals 2-4). Relevant for the link to cognitive sciences as well as WP4.4. 

CDP Contributions: CDP5 - Functional Plasticity for Learning in Large-Scale Systems  

Components 1032 & 66 contributes to CDP5  

 

16.3.1 Plasticity: STDP for a multi-compartment model with NMDA spikes 
(Algo STDPbackprop) 

Description of Component (from PLA): Error-backpropagation is a successful algorithm for 
supervised learning in neural networks. Whether and how this technical algorithm is 
implemented in cortical structures, however, remains elusive. Also STDPbackprop is a 
version of the original error-backpropagation algorithm for spiking neurons equipped with 
nonlinear dendritic processing. An error expressed as mismatch between somatic firing and 
membrane potential may be backpropagated to the active dendritic branches where it 
modulates synaptic plasticity. While the original algorithm only considered firing rates, the 
biological implementation enables learning for both a firing rate and a spike-timing code. 
Moreover, when modulated by a reward signal, the synaptic plasticity rule maximises the 
expected reward in a reinforcement learning framework 

Progress: Paper has been published at PLoS Computational Biology. 

Links: Schiess M, Urbanczik R and Senn W: Somato-dendritic Synaptic Plasticity and Error-
backpropagation in Active Dendrites. PLoS Comput Biol. 2016 Feb 3;12(2):e1004638. doi: 
10.1371/journal.pcbi.1004638. eCollection 2016. 
Quality Control: 

· For up- and downstream Components see PLA. 

https://project-lifecycle.herokuapp.com/component/1066
https://project-lifecycle.herokuapp.com/component/969
https://project-lifecycle.herokuapp.com/component/1033
https://project-lifecycle.herokuapp.com/component/1033
https://project-lifecycle.herokuapp.com/component/1032
https://project-lifecycle.herokuapp.com/component/1032
https://project-lifecycle.herokuapp.com/component/66
https://project-lifecycle.herokuapp.com/component/971
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16.3.2 Plasticity: Dendritic predictive plasticity that reproduces STDP 
data (Algo STDPpredictive) 

Description of Component (from PLA): AlgoProspective is a synaptic plasticity rule that learns 
predictions on a single neuron level on a timescale of seconds. The learning rule allows a 
spiking two-compartment neuron to match its current firing rate to its own expected future 
discounted firing rate. For instance, if an originally neutral event is repeatedly followed by 
an event that elevates the firing rate of a neuron, the originally neutral event will eventually 
also elevate the neuron’s firing rate. The plasticity rule is a form of spike timing dependent 
plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. 
Even if the plasticity window has a width of 20 milliseconds, associations on the time scale 
of seconds can be learned. We illustrate prospective coding with three examples: learning 
to predict a time varying input, learning to predict the next stimulus in a delayed paired-
associate task and learning with a recurrent network to reproduce a temporally compressed 
version of a sequence. In the special case that the signal to be predicted encodes reward, 
the neuron learns to predict the discounted future reward and learning is closely related to 
the temporal difference learning algorithm TD(λ). 

Progress: Paper has been published in PLoS Computational Biology 

Links: Brea J, Gaál AT, Urbanczik R, Senn W: Prospective Coding by Spiking Neurons. PLoS 
Comput Biol. 2016 Jun 24;12(6):e1005003. doi: 10.1371/journal.pcbi.1005003. eCollection 
2016 

Quality Control: 

· For up- and downstream Components see PLA. 

16.3.3 Plasticity: STDP for structural plasticity (STDPstructural) 
Description of Component (from PLA): Learning & synaptic plasticity: Multi-contact synapses 
for stable networks: a spike-timing dependent model of dendritic spine plasticity and 
turnover  

We have implemented a new model for the slow processes of formation, maturation, 
shrinkage and removal of excitatory synaptic contacts, based on spike timing dependent 
plasticity in combination with creation of new synapses. Main results are that the distribution 
of number of contacts has the typical bimodal shape: either there is no connection between 
neurons or the two neurons make 5+/2 connections. The simulation runs in big networks and 
has been used to study lesion experiments.  

Progress: Ultimately, the aim is to make the simulation code available in NEST. The 
submission to NEST (in the form of a github release) has been done 1.12.2016. 

The paper is now under review for journal publication. 

Links: 

Preprint available at: http://arxiv.org/abs/1609.05730 (Deger et al. 2016) 

Quality Control: 

· Upstream Component name (from PLA) + Task responsible + status (i.e. you have received 
nothing / intermediate release / finished Component) + your assessment of quality of 
upstream Component 

· Downstream Component name (from PLA) + Task responsible + status (i.e. you have 
provided nothing / intermediate release / finished Component) + feedback from 
downstream Component’s Task on quality of your Component 

16.3.4 Neural network model of working memory 
Description of Component (from PLA): The model aims to understand the origins of working 
memory capacity. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Brea%20J%5BAuthor%5D&cauthor=true&cauthor_uid=27341100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ga%C3%A1l%20AT%5BAuthor%5D&cauthor=true&cauthor_uid=27341100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Urbanczik%20R%5BAuthor%5D&cauthor=true&cauthor_uid=27341100
https://www.ncbi.nlm.nih.gov/pubmed/?term=Senn%20W%5BAuthor%5D&cauthor=true&cauthor_uid=27341100
http://arxiv.org/abs/1609.05730
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Progress on Component, including: planned releases achieved / which partner did what 

Links: Include links to relevant material available publicly online. 

Quality Control: 

· Upstream Component name (from PLA) + Task responsible + status (i.e. you have received 
nothing / intermediate release / finished Component) + your assessment of quality of 
upstream Component 

· Downstream Component name (from PLA) + Task responsible + status (i.e. you have 
provided nothing / intermediate release / finished Component) + feedback from 
downstream Component’s Task on quality of your Component 

 

17. T4.3.3 - Functional plasticity for multi-compartment 
neurons 

17.1 Key Personnel 
Task Leader: Andre GRÜNING (SURREY, P102) 

Other Researcher: Walter SENN (UBERN, P71) 

17.2 DoA Goal(s) 
1. To formulate synaptic plasticity algorithms from experimental data, in a way 

compatible with the models developed in the Platforms. 

2. To develop models of learning and reward, compatible with neuromorphic systems, 
and finally develop models of behavioural learning and long-term memory in the 
brain. 

3. The derivation of learning rules from plausible synapse models, the identification of 
rules for unsupervised learning and learning under the control of neuromodulators 
(encoding reward, surprise and novelty). 

4. Functional consequences and the long-term memory capabilities of the brain. 

Changes to the DoA Goal(s): The hypercolumn simulations turn out to be too slow, even 
after reducing the complexity of the individual neurons. therefore, instead of an embedded 
simulation in the hypercolumn, we envisage running only a single multi-compartment 
neuron. Due to reduction in the SGA1 budget, SURREY (P102) concentrates on the 
neuromorphic implementations and learning showcases as required for CDP5. 

17.3 Components Progress 
PLA Components: 

969. Plasticity: Two-compartment neuron – owner: André Grüning, type: model (DoA Goals 
1-4). 

1348. Plasticity: STDP for imitation learning (Algo STDPimitation) – owner: Andre Grüning, 
type: model (DoA Goal x) 

1033. Plasticity: STDP for a multi-compartment model with NMDA spikes (Algo 
STDPbackprop) – owner: Walter SENN, type: model (DoA Goal x) 

1032. Plasticity: Dendritic predictive plasticity that reproduces STDP data (Algo 
STDPpredictive) – owner: Walter SENN, type: model (DoA Goal x) 

https://project-lifecycle.herokuapp.com/component/969
https://project-lifecycle.herokuapp.com/component/1348
https://project-lifecycle.herokuapp.com/component/1033
https://project-lifecycle.herokuapp.com/component/1033
https://project-lifecycle.herokuapp.com/component/1032
https://project-lifecycle.herokuapp.com/component/1032
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CDP Contributions: CDP5 - Plasticity, Learning and Development: modelling the Dynamic 
brain  

Component 969, 1348 and 1033 contribute to CDP5-P3: Guiding Platform design on functional 
plasticity 

Component 969, 1348 and 1033 contribute to CDP5-P4: Concept showcases in big-systems. 

17.3.1 Plasticity: INST/FILT Rule 
Description of Component (from PLA): The INST and FILE rules are efficient supervised 
learning rules for spiking neural networks: one relies on an instantaneous error signal to 
modify synaptic weights in a network (INST rule), and the other on a filtered error signal for 
smoother synaptic weight modifications (FILT rule). They have been tested with respect to 
their temporal encoding precision, and the maximum number of input patterns they can 
learn to memorise using the precise timings of individual spikes as an indication of their 
storage capacity. In comparison with existing work, we determine the performance of the 
FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but 
with the distinct advantage that our FILT rule is also implementable as an online method for 
increased biological realism. 

CDP to which Component contributes (if relevant):  

Progress: Partner SURREY made excellent progress on this Component, and a first paper on 
the rules has been published. Refer to Annex of Deliverable for details 

Links: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161335 

Quality Control: 

· Upstream - Plasticity models: SP 4 (theory) T. 4.3.1 synaptic plasticity and learning 
[important]:  Discussion with W. Gerstner and W. Senn underway to incoporate more 
biological detail. 

Downstream: 

· Downstream - WP9.2 BrainScaleS standalone next generation single chip physical 
model system [important]: Work is under way to implement the INST/FILT rule on 
the PPU (new in SGA1). A NEST implementation under “PPU-like” conditions has been 
tested. 

· Downstream - CDP5-P3: Guiding Platform design on functional plasticity [important]: 
Work is underway to implement this rule on the way together with WP9.3 (Spinnaker) 
to implement on Spinnaker, however Spinnaker is not yet ready to accept this 
Component. We aim to remedy this with a jointly supervised SP4/SP9 postdoc at the 
EITN to start from April 2017. 

· Downstream - CDP5-P4: Concept showcases in big-systems [essential]: pending on 
previously mentioned CDP5-P3. 

· Downstream - WP9.3 SP9 SpiNNaker software stack [important]: inclusion of 
INST/FILT into software stack by joint EITN postdoc from April 2017. 

17.3.2 Plasticity: Two-compartment neuron  
Description of Component (from PLA):  

CDP to which Component contributes: CDP5- Plasticity, Learning and Development: 
modelling the Dynamic brain , CDP5-P3: Guiding Platform design on functional plasticity & 
CDP5-P4: Concept showcases in big-systems. 

In light of the above note on change of objective, this Component focuses on the following: 

This Component specifically seeks to analyse and extend existing two compartment neuron 
models on the neuromorphic Platforms. It utilises an abstract predictive learning scheme 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161335
https://project-lifecycle.herokuapp.com/component/1066/
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based on the detailed dendritic morphology of layer 5 pyramidal neurons that, ultimately, 
leads to cortical functions such as stimulus classification, pattern completion and motor 
control. Predictive learning has recently been formulated in the context of a dendritic 
prediction of somatic firing. Goal-orientated learning, on to other hand, is an upcoming topic 
for the biologically detailed hypercolumn model, as well as for the Neuromorphic Computing 
Platform. SURREY (P102) concentrates on the neuromorphic implementations and learning 
showcases as required for CDP5. 

Progress: A joint SP4/SP9 EITN postdoc from April 2017 has been advertised and selected to 
take forward the implementation of this model on the Spinnaker Platform. Implementation 
details for the Physical Model Platform are being discussed and depend on the newly 
introduced PPU – which however it first tested on the easier to adapt INST/FILT rule. 

You can refer for Annex of Deliverable for details 

Links: N/A. 

Quality Control: 

· Upstream - Task 4.3.2 and 4.3.1 and their respective Components to provide biologically 
plausible learning rules. 

· Downstream - 1348: STDP for imitation learning (Algo STDPimitation) [important] 
reported below. 

· Downstream - CDP5-P3: Guiding Platform design on functional plasticity [important] 
Joint SP4/SP9 EITN postdoc to take forward on Spinnaker WP9.3 (Furber, Lester). 
Exploratory work on NM-PM/PPU (Schemmel, Hartel, Meier) 

· Downstream - CDP5-P4: Concept showcases in big-systems [essential] pending on CPD5-
P3. 

· Downstream - T3.1.4 Information Theoretic Network Model of Layer 5 Pyramidal Cells 
[added value] Understanding of behaviour in larger scale simulations and effect of 
compartments on mean field behaviour (exchanges with M de Kamps) 

· Downstream - T4.2.2 Astrocyte-Neuron interaction NETWORK model (ANN model) 
[essential]. Intenstive discussion with ML Linne re widening of model compartments to 
be able to cater for modulation by glia and analysis of network-level mechanisms 
constraining the in vivo implementation of learning rules and implementing integration, 
encoding and recall of multisensory memories [important] 

17.3.3 Plasticity: STDP for imitation learning (Algo STDPimitation) 
Description of Component (from PLA): In this Component we develop a model of song bird 
learning based on experimental data provided by external collaborator R Hahnloser at ETH 
and Uni Zurich. We apply the two-compartment neuron to a behavioural imitation learning 
task.  

CDP to which Component contributes: CDP5- Plasticity, Learning and Development: 
modelling the Dynamic brain, CDP5-P3: Guiding Platform design on functional plasticity & 
CDP5-P4: Concept showcases in big-systems , as first show cases of the Platforms 
capabilities. 

Progress: We implemented a stand-alone simulation with the view of implementing on the 
neuromorphic hardware as a showcase pending further progress with Components 1302 and 
969. The progress in this control period up to date included progress on the theoretical 
understanding of songbird song learning and a recast of the underlying model. 
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18. T4.4.1 - Models of spontaneous brain activity  

18.1 Key Personnel 
Task Leader: Gustavo DECO (UPF, P77) 

Other Researcher: Alain DESTEXHE (CNRS, P10) (Leader researcher from CNRS partner) 

Other Researcher: Gorka ZAMORA-LÓPEZ (UPF, P77) 

Other Researcher: Nikos KOUVARIS (UPF, P77) 

18.2 DoA Goal(s) 
To create models of the spontaneous activity of the brain and compare them to empirical 
recordings from humans. The models will be compatible with SP9 hardware, so that they can 
be simulated on the Neuromorphic Computing Platform. On a larger scale level of neural 
populations, we will use whole- brain models (spiking, mean-field, etc.) to obtain a large-
scale model that includes multiple areas of the human cerebral cortex. This model will be 
directly constrained by anatomical measurements (DTI), and its spatiotemporal patterns of 
spontaneous activity will be compared to resting-state human brain recordings (fMRI). The 
models of spontaneous activity developed in T4.4.1 are mostly from human intracranial 
recordings. Within the framework of CDP1, these models will be extended to simulate the 
spontaneous activity and brain states in mouse, as recorded in SP1 using calcium imaging 
and single-cell mapping. These data will be used to constrain the models and obtain network 
models that fully reproduce the main features determined experimentally. The models 
produced will be fully compatible with neuormorphic hardware. This work will be performed 
with the help of one postdoc shared between SP4 and SP1, and will be carried out during 
the second year of SGA1. 

 
Changes to DoA Goal(s): No change has been foreseen for the moment. As can be seen in 
the description of the Components, the goals of the Task have only been refined and broken 
into different compartments. The goal is not to create “just a model” of spontaneous brain 
activity but create models that reproduce empirical observations and we understand why. 
The models are complex and composed of several parts. Our aim is to understand how each 
part, e.g., the quality of DTI data necessary to constraint the models, affect the outcome 
of the model and support their realism. 

18.3 Components Progress 
PLA Components: 

1069. Influence of topological heterogeneities on network activity – owner: Gorka Zamora-
Lopez, type report (DoA Goal 1). 

1070. Collective behaviour of mean-field and neural population models: A comparative 
study  – owner: Gorka Zamora-Lopez, type report (DoA Goal 1). 

1068. Investigation and correction of link weights in human structural connectomes via 
effective connectivity. – owner: Gorka Zamora-Lopez, type report (DoA Goal 1). 

999. Macroscopic model of spontaneous human brain activity - owner: Gustavo DECO, type: 
model (DoA Goal 1). 

1067. Python software to simulate spontaneous brain activity - owner: Gustavo DECO, type 
software (DoA Goal 1). 

1206. Prototype software to estimate effective connectivity owner: Gustavo DECO, type 
software  (DoA Goal 1). 

https://project-lifecycle.herokuapp.com/component/1069
https://project-lifecycle.herokuapp.com/component/1070
https://project-lifecycle.herokuapp.com/component/1070
https://project-lifecycle.herokuapp.com/component/1068
https://project-lifecycle.herokuapp.com/component/1068
https://project-lifecycle.herokuapp.com/component/999
https://project-lifecycle.herokuapp.com/component/1067
https://project-lifecycle.herokuapp.com/component/1206
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1205. Effective connectivity changes inferred from optogenetic brain interrogation and 
calcium imaging – owner: Gustavo DECO, type report (DoA Goal 1). 

1235. Local-network model of spontaneous activity in cortex – owner: Alain DESTEXHE, type 
model  (DoA Goal 1). 

CDP Contributions: 

· CDP1 - Development of Whole Mouse Brain Model and Mouse Brain Atlas  

Component 1205 contribute to CDP1-P1: Reference set-up of the experiment 

Component 1070 contributes to CDP1-P3: A virtual imaging lab app 

· CDP3 - Multi-level Human Brain Atlas  

Component 1068 contributes to CDP3-P8 Modelling and model validation using human 
quantitative data 

· CDP4 - Visuo-Motor Integration (Component 1070 contributes to CDP4) 

18.3.1 Investigation and correction of link weights in human structural 
connectomes via effective connectivity 

The progress report on this Component currently remains confidential, as the data are 
currently proprietary and not yet in the public domain. 

18.3.2 Influence of topological heterogeneities on network activity 
The progress report on this Component currently remains confidential, as the data are 
currently proprietary and not yet in the public domain. 

18.3.3 Collective behaviour of mean-field and neural population models: 
A comparative study 

The progress report on this Component currently remains confidential, as the data are 
currently proprietary and not yet in the public domain. 

18.3.4 Macroscopic model of spontaneous human brain activity 
We construct a model to simulate whole brain activity at rest, at the scale of interconnected 
brain regions. The model is constrained using an empirically determined structural 
connectivity matrix (the network) via imaging and tractography. Local activity of the brain 
regions will be represented by models to simulate the activity of one brain region or neural 
population. There are many such population models available but each of these choices may 
lead to a different outcome of the network model. That is, the brain activity simulated by 
the model depends on how the model is built. Comparison of the model outcome to 
empirically observed resting-state fMRI will be crucial to determine the correctness of the 
choices taken to build the model. 

CDP to which Component contributes (if relevant):  

Progress: Over the recent years the efforts to describe the resting-state brain activity have 
focused on the representation of resting-state over its time-averaged functional 
connectivity. The "resting-state networks" widely discussed in the literature are an example 
of these efforts. However, spontaneous brain activity is also characterised by notable spatio-
temporal fluctuations. In order to reproduce these fluctuations, we have introduced a new 
category of mesoscopic models to simulate the local brain region dynamics, the normal form 
of a Hopf bifurcation. With this novel approach, we reveal that the human brain during 
resting state operates at maximum metastability, i.e. in a state of maximum network 
switching. 

We have applied this novel approach to model task-dependent brain activity, finding that 
structural rich-club brain regions exhibit oscillations during task but not during rest. Rich-

https://project-lifecycle.herokuapp.com/component/1205
https://project-lifecycle.herokuapp.com/component/1205
https://project-lifecycle.herokuapp.com/component/1235
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club hubs can harmonise a set of asynchronous brain regions, supporting functional coupling 
among them. 

Links:  

– Introduction of a novel category of mesoscopic models for dynamics resting-state activity: 
http://biorxiv.org/content/early/2016/12/21/065284 

- Application of the novel framework to task-related brain activity: 
http://www.sciencedirect.com/science/article/pii/S1053811916306000 

18.3.5 Python software to simulate spontaneous brain activity. 
This is the code we develop to run simulations of the model " A model of spontaneous 
(human) brain activity" 

CDP to which Component contributes (if relevant): None. 

Progress: The Component is in intermediate stage. We have written the code to simulate 
macroscopic models of spontaneous human brain activity and we have tested different 
performance optimization strategies available in the Python programming "universe". These 
include both the vectorization of the multidimensional problem using the array structure 
provided by the NumPy library and the use of Numba, an optimization compiler which 
translates Python code into LLVM "just in time". Our preliminary observations show that code 
running with the Numba implementation is in most situations significantly faster than the 
code using NumPy-based vectorization, although its portability to high-performing 
computing remains to be tested. The vectorised code is, in this sense, more flexible. 

Links: None 

18.3.6 Prototype software to estimate effective connectivity 
A method, developed during the Ramp-Up Phase, that uses structural and functional 
connectivities to estimate effective connectivity (most probable structural weights giving 
rise to observed functional connectivity), is planned to be used in a software during SGA-1. 

CDP to which Component contributes (if relevant): CDP-3, Multilevel brain atlas. CDP3-P8 
Modelling and model validation using human quantitative data. 

Progress: The status of the Component is advanced. Following the development of a novel 
method to estimate effective connectivity during the Rump-Up Phase, we have devoted the 
past year to apply the method in practical examples and to create a public version of the 
software. The software to estimate effective connectivity was publicly released in November 
2016 by making the code available in GitHub. Current version has been written in Python 2.7 
and requires additional libraries NumPy, SciPy and Matplotlib (otional). In the current 
version, the model and requires (i) a structural connectome and (ii) BOLD time-series from 
functional MRI as input from the user. The software release includes example datasets which 
we used for two publications, see links below.  

During second year of SGA1 (latest during SGA2) we have planned to integrate the software 
into the HBP Collaboratory with help from SP5 as a collaboration within CDP3. Future plans 
are to allow the method to work with EEG data and with wide-field calcium imaging. 

Links:  

– Public release of the software to estimate effective connectivity in GitHub: 
https://github.com/MatthieuGilson/EC_estimation 

– Original peer-reviewed publication of the method, with explanation of the datasets: 
dx.doi.org/10.1371/journal.pcbi.1004762 

– Manuscript showing practical application of the method during movie viewing: 
http://biorxiv.org/content/early/2017/02/20/110015 

http://biorxiv.org/content/early/2016/12/21/065284
http://www.sciencedirect.com/science/article/pii/S1053811916306000
https://github.com/MatthieuGilson/EC_estimation
http://biorxiv.org/content/early/2017/02/20/110015
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18.3.7 Local-network model of spontaneous activity in cortex  
Description of Component (from PLA): Biophysically plausible models of spontaneous activity 
states in excitatory-inhibitory networks, including asynchronous states, and sleep slow-
waves (previous Component name in RUP: Model of spontaneous network activity in cortex). 

SGA2: continuation of a SGA1 model of spontaneous activity and slow-waves by AdEx 
networks. 

Progress: We have a network model with RS and FS cells, displaying asynchronous states with 
the correct conductance level as measured in vivo.  We are now investigating the properties 
of these network states, and how they can produce slow oscillations with Up and Down 
states. 

 

19. T4.4.2 - Models of low-level vision 

19.1 Key Personnel 
Task Leader: Olivier MARRE (UPMC, P105) 

Other Researcher: Shimon ULLMAN (WEIZMANN, P84)  

Other Researcher: Ulisse FERRARI (UPMC, P105) 

19.2 DoA Goal(s) 
1. To develop models of the retina responding to complex stimuli that can be used as 

an input for models of the visual cortex. 

Changes to DoA Goal(s): None.  

Component Progress  

PLA Components: 

The name of the Component has been slightly modified to better fit the objectives (preivous 
name was Network model of the retina responding to complex stimuli).  

981. Model of the retina responding to complex stimuli – owner: Olivier Marre, type: model 
(DoA Goal 1) 

CDP contributions: None. 

Model of the retina responding to complex stimuli 

Description of Component: This model aims to do quantitative predictions of how cells 
/populations of cells are responding to complex stimuli. 

CDP to which Component contributes: Not relevant 

Progress: There was no planned release at that stage.  

Links: Include links to relevant material available publicly online. 

Quality Control: 

· No Upstream Component 

· Downstream Laminart with segmentation and retina into the NRP , Michael Herzog: 
intermediate release of information: we gave them access to our most recent reports. 

· Downstream NRP - Sensor model library, Stefan Ulbrich (Dillman Rüdiger): intermediate 
release of information: we gave them access to our most recent reports.  

https://project-lifecycle.herokuapp.com/component/981/
https://project-lifecycle.herokuapp.com/component/658/
https://project-lifecycle.herokuapp.com/component/850/
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19.2.1 Model for high-level contributions to low-level vision of the retina 
responding to complex stimuli  

Description of Component (from PLA): This in an algorithm for using information from higher-
level visual areas in the processing of information in low level areas such as primary visual 
cortex. It will also lay the ground for a later development of a network model. 

CDP to which Component contributes: Not relevant 

Progress: There was no planned release at that stage. 

Links: Include links to relevant material available publicly online. 

Quality Control: 

· Upstream - added value - Plasticity models: SP 4 (theory) T. 4.3.1 synaptic plasticity and 
learning 

· Upstream- added value - Laminart with segmentation and retina into the NRP  

· Downstream - added value - Laminart with segmentation and retina into the NRP 

 

20. T4.4.3 - Models of motor control 

20.1 Key Personnel 
Task Leader: Jeanette HELLGREN KOTALESKI (KTH, P39) 

Other Researcher: Jovana BELIC (KTH, P39); Mikael Lindahl (KTH, P39) 

20.2 DoA Goals 
1. This Task will develop models of the basal ganglia system using mainly data from the 
literature, but also data produced in SP1-3 via NIP can be used. The model will be challenged 
in neurorobotics experiments (SP10) and also be used to interpret PD data together with 
SP8. The action selection capabilities of the model system will be compared with previously 
developed basal ganglia models used for studying such functions. In addition, strategies will 
be developed for classifying cellular and network changes correlated with disease as 
compensatory vs symptom causing factors. 

Changes to DoA Goal(s):   No significant changes in plans are foreseen. 

20.3 Components Progress 
PLA Components: 

1025. Motor control model – Owner: Jeanette Hellgren Kotaleski, type model (DoA x). 

The model built in this task will mainly build on literature data, but in addition data from 
SP1 (T1.2.3) will be used when released. In SP6, a data-driven microcircuit level model of 
the basal ganglia is foreseen (T6.2.5), thus insights derived from that work will feed into the 
current model as well. Dopamine is important both for controlling membrane excitability 
and synaptic effects in the basal ganglia, and also for reward dependent learning. Several 
SP6 Components relating to dopamine signalling are directly useful for the current task (e.g. 
the Components ‘Dopamine receptor induced signalling in striatum ’ as well as ‘SP6-T6.1.2-
SGA1-Subcellular Model of Timing Dependent Reward/Dopamine Plasticity ’. As the model is 
simulated using Nest it also uses Components from work done in SP6, especially the 
Component called ‘Nest-the Neural Simulation tool’ (T6.3.5). 

CDP Contributions: None for the moment. As basal ganglia are important in motor control, 
the model built in T4.4.3 will be possible to use in CDP4 ‘Visuo-motor integration’ in later 

https://project-lifecycle.herokuapp.com/component/1025/
https://project-lifecycle.herokuapp.com/component/89/
https://project-lifecycle.herokuapp.com/component/765/
https://project-lifecycle.herokuapp.com/component/765/
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SGAs. In addition, plasticity rules used in CDP5 can be plugged in and tested in the model 
we are building currently. 

20.3.1 Motor control model   
Description of Component: One important aspect of motor control is to select which actions 
to perform in a certain situation and recruit the appropriate motor program. The basal 
ganglia are crucial for this and their function is disturbed in Parkinson’s Disease (PD), where 
neurons exhibit inappropriate synchronisation and oscillations. This Task will develop models 
of the basal ganglia system using data from SPs 1-3 and SP5, as well as the literature. The 
model will be challenged in neurorobotics experiments (SP10) and also used to interpret PD 
data together with SP8. The action selection capabilities of the model system will be 
compared with previously developed basal ganglia models used for studying such functions. 
In addition, strategies will be developed for classifying cellular and network changes 
correlated with disease as compensatory vs symptom causing factors. 

Links: A first draft point neuron model of the basal ganglia system is published:  

Lindahl M, Hellgren Kotaleski J. Untangling Basal Ganglia Network Dynamics and Function: 
Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model, eNeuro. 
2017 Jan 12;3(6). pii: ENEURO.0156-16.2016. doi: 10.1523/ENEURO.0156-16.2016. PMID: 
28101525; 

Model can be found at github https://github.com/mickelindahl/bgmodel 

The basal ganglia model consists of 80000 point neurons. The model was used to test the 
role of parameter changes associated with dopamine depletion. Multiple changes of 
parameters for synaptic efficacy and neural excitability that could improve action selection 
ability and at the same time reduce systems level oscillations following dopamine depletion 
were identified. This study increases our understanding of the relation between network 
dynamics and network function in health and disease. 

Quality Control: 

· Component released ‘Motor control model’; received released Components called 
‘Dopamine receptor induced signaling in striatum’ from RUP and Component’ called SP6-
T6.1.2-SGA1-Subcellular Model of Timing Dependent Reward/Dopamine Plasticity (from 
the SGA1 phase)  

List of PLA dependencies: 

· Upstream SP6-T6.2.5-SGA1-Models of basal ganglia nuclei  

· Upstream SP6-T6.1.2-SGA1-Subcellular Model of Timing Dependent Reward/Dopamine 
Plasticity ( 

· Upstream Cellular properties of neurons within striatum   

· Upstream Connectivity and morphology of neurons within striatum 

· Upstream SP2 - Selected multimodal regional maps with cognitive features  

· Downstream SP3-Shrewbot++ robot Platform  

· Downstream Elephant  

· Downstream NEST - The Neural Simulation Tool  

· Downstream NEST code with abstracted neuron model representations  

 

https://project-lifecycle.herokuapp.com/component/89/
https://project-lifecycle.herokuapp.com/component/972/
https://project-lifecycle.herokuapp.com/component/765/
https://project-lifecycle.herokuapp.com/component/765/
https://project-lifecycle.herokuapp.com/component/940/
https://project-lifecycle.herokuapp.com/component/938/
https://project-lifecycle.herokuapp.com/component/773/
https://project-lifecycle.herokuapp.com/component/1140/
https://project-lifecycle.herokuapp.com/component/348/
https://project-lifecycle.herokuapp.com/component/209/
https://project-lifecycle.herokuapp.com/component/514/


 

Co-funded by  
the European Union 

 

 

 

 

D4.7.1 (D25.1 D31) SUBMITTED (SGA1 M12) PUBLIC PU = Public 29-Aug-2017 Page 46 of 66 
 

21. T4.4.4 - Models of spatial navigation 

21.1 Key Personnel 
Task Leader: Neil BURGESS (UCL, P82) 

21.2 DoA Goals  
1. To implement a neural-level model of spatial navigation, explore its use for episodic 
memory and planning, and help to implement on robots and neuromorphic computing 
hardware. 

Changes to the DoA Goals: No changes to these goals are planned. 

21.3 Components Progress 
PLA Components:  

This task comprises a single PLA model Component: 

984. Hippocampal and striatal model of spatial navigation, with extension to planning and 
episodic memory  - owner: Neil Burgess, type: model (DoA Goal 1). To be used to investigate 
the different learning rules and neural representations involved in spatial navigation, and 
how they combine to guide action. The output is behaviour in classic navigation tasks used 
in rodents, neural firing characteristics, effects of lesions and behaviour are compared with 
data from the literature. Future work will investigate how this model can be extended to 
episodic memory and planning. 

We have begun conversation with PLA Components from SP3: Rodent physiology: pattern 
completion in episodic memory; Shrewbot++ robot Platform. There will be mutual added 
value in these exchanges.  

This is not a Component for a Co-Design Project. 

CDP contributions: None. 

21.3.1 Hippocampal and striatal model of spatial navigation, with 
extension to planning and episodic memory  

Description of Component (from PLA): A network model of firing-rate coded neurons in 
hippocampus and striatum which performs spatial navigation. This model is used to 
investigate the different learning rules (temporal difference in striatum, incidental in 
hippocampus) and representations (e.g. sensory/action in striatum, and place cells etc in 
hippocampus) involved in spatial navigation, and how they combine to guide action. The 
output is behaviour in classic navigation tasks used in rodents, neural firing characteristics, 
effects of lesions and behaviour are compared with data from the literature.  
Future work will investigate how this model, constrained by plentiful data on navigation, 
can be extended to episodic memory and planning. 

CDP to which Component contributes: N/A 

Progress: Progress on this Component has been delayed by recruitment issues arising from 
the late delivery of money to UCL for SGA1 (end of September 2016). Progress since 
recruitment of Dr Andrej Bicanski (starting 1st Jan 2017) has begun in the finalising a rate-
coded model of the hippocampal and striatal contributions to spatial navigation following 
work in the Ramp-Up Phase. He has also begun considering the model’s extension to episodic 
memory and (general) non-spatial planning. In addition, initial steps have been made in 
implementation on the neuromorphic Platform SpiNNaker. Additional researcher will be 
recruited to provide the missing 9 person months of work needed to ensure delivery of this 
task’s Milestone at M24. 

https://project-lifecycle.herokuapp.com/component/984
https://project-lifecycle.herokuapp.com/component/984
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Quality Control: 

· Upstream Component: (Francesca Cacucci, SP3 Episense T3.3.2, SGA1) Rodent 
physiology: pattern completion in episodic memory. We have held discussions concerning 
the comparison of model and data before M24. Both Projects suffered from delayed 
recruitment due to arrival of money only in September 2016.   

· Downstream Component: (Tony Prescott, SP3 Episense T3.3.4, SGA1) Computational 
modelling of multisensory episodic memory. We have held discussions and shared code 
from a previous model (Byrne, Becker, Burgess, 2007) to aid their development of a 
model of episodic memory. 

· Downstream Component: (Martin Pearson, SP3 Episense T3.3.5, SGA1) Robotic systems: 
hardware implementation of multisensory episodic memory. We have held discussions 
and shared code from a previous model (Byrne, Becker, Burgess, 2007) regarding the 
implementation of models of spatial and episodic memory on SpiNNaker neuromorphic 
Platform and on their Shrewbot++ robotic systems 

 

22. T4.4.5 - Development of a large-scale, mean field model 
on sensorimotor integration 

22.1 Key Personnel 
Task Leader: Gustavo DECO (UPF, P77) 

Other Researcher: Nikos KOUVARIS (UPF, P77) 

CDP4 Researcher: Rainer GOEBEL (Leading researcher from UM, P117) 

CDP4 Researcher: Mario SENDEN (UM, P117) 

22.2 DoA goal(s) 
1. This Task contributes to CDP4, supporting the development of a mean-field model of 
sensorimotor integration. The developed simplified mean field model provides insights in 
the computational mechanisms underlying sensorimotor operations preparing the integration 
in the NEST Platform. The model will be developed in collaboration with Task 4.4.2, and the 
required conceptual models of object perception and attention-for-action will be provided 
by SP3 (cross-cutting Project ContextDeepNet) and SP2 (WP2.4). 

Changes to DoA goals: No change has been foreseen for the moment. 

22.3 Components Progress 
PLA Components: 

Elaboration of Components undergoing during M1-M6, should be finallised during M6-M12 

Task T4.4.5 owns or participates in the following Components: 

1070. Collective behaviour of mean-field and neural population models: A comparative study 
– owner: Gorka Zamora-Lopez, type: report (DoA Goal 1). 

1207. Large-scale model of visuo-motor integration – owner: Gustavo DECO, type: model 
(DoA Goal 1). 

CDP Contributions: 

· CDP4- Visuo-Motor Integration 

Task 4.4.5 is fully embedded as a support task for CDP4.  

https://project-lifecycle.herokuapp.com/component/1070
https://project-lifecycle.herokuapp.com/component/1207
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· CDP1- Development of Whole Mouse Brain Model and Related Mouse Brain Atlas 

Component 1070 contributes to CDP1-P3: A virtual imaging lab app. 

22.3.1  Collective behaviour of mean-field and neural population models: 
A comparative study 

Description of Component: There exist many population models to simulate the activity of 
one brain region. The goal of this Component is to understand how those models behave, 
collectively, when simulating a network of interacting brain areas. 

CDP to which Component contributes (if relevant): CDP4 Visuo-motor integration 

Progress: Status of the Component is in initial stage. During the first 12 months we have 
gathered some evidence of how different local models to simulate the local dynamics of the 
nodes in a network alter the global network dynamics. However, those observations have 
been performed in generic oscillatory models and in models of spiking neurons, instead of 
mean-field and population models. The results of this Component are critical to build the 
large-scale network models of the resting-state and it will be given priority in the period 
M12-M24 after the work from the Components in advanced state is finalised. 

Links: None. 

Quality Control: 

· Upstream: Mean-field models of interacting populations of rate and spiking neurons 
(Olivier Faugeras, INRIA). We will establish collaboration with the INRIA partner during 
M12-M24 once we start actively developing the Component. 
 

· Downstream: Macroscopic model of spontaneous human brain activity (Gustavo DECO).  

 Development of a large-scale, mean field model on sensorimotor integration 

The "Large-scale model of visuo-motor integration" is developped as part of the CDP4 at the 
UPF (Spain) in Gustavo Deco's lab. Rainer Göbel (CDP leader) and Mario Senden are 
collaborating to this Project. 

CDP to which Component contributes (if relevant): CDP4, Visuo-motor integration 

Progress: The status of the Component is in indermediate stage. A rate neuron model for 
the saccade generator in the reticular formation has been implemented (UM-P117). Based 
on network interactions among reticular formation neurons, the implemented model 
reproduces typical neuronal activation profiles observed during saccade generation, realistic 
saccade trajectories and cell tuning properties. A number of rate neuron has already been 
implemented in the NEST Platform. This model forms the back-end of a larger architecture 
of visuo-motor integration, transforming eye-displacement vectors into motor commands for 
the eye muscles. At the next stage, a mean-field description will also be developed (UPF, 
P77) and implemented for the NEST. 

Furthermore, it has been developed (UM-P117) a deep convolutional autoencoder network 
able to learn a mapping from natural images to topological saliency distributions. The 
performance of this network is good and can predict salience distribution given previously 
unseen natural images. This model forms the front-end of a larger architecture of visuo-
motor integration, providing salience distributions as input to a target selection process. 

Links: None. 
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23. T4.5.1 - Comparing models with mouse and human 
brains 

23.1 Key Personnel 
Task Leader: Sonja GRÜN (JUELICH, P20) 

Other Researcher: Viktor JIRSA (AMU, P78) 

23.2 DoA Goal(s): 
1. This Task will develop strategies, principles, and algorithms allowing comparative 

assessment of experimental data and different model approaches at different scales 
and description levels. It will analyse, compare and contribute to improve model 
modules of visuo-motor integration, which require the interaction of different 
cortical brain areas and subcortical structures. 

2. The Task will compare local network processes and dynamic interactions in simplified 
models building on point neurons and population models, with biophysically detailed 
micro- and meso-circuit models. Massively parallel single unit and LFP data resulting 
from large-scale spiking network simulations and experimental data will be analysed 
to validate and iteratively improve the models. 

3. Whole brain network models derived from human and mouse connectome data using 
neural mass models will also be validated against empirical data. 

Changes to DoA Goal(s): None. 

23.3 Components Progress 
PLA Components: 

The OdML Component has been transferred to SP5. 

812. Workflow for comparison of electrophysiological and simulated data  - Owner: Sonja 
Grün, type: service (DoA Goal 2). 

418. Massively Parallel Electrophysiology data  - owner Sonja Grün, type: data (DoA Goal 
2). 

1574. Structural and functional connectivity at different scales – owner: Viktor Jirsa, type: 
model (DoA Goal 3) 

1008: Multi compartmental reconstructed cortical cells: their input-output transfer 
properties – owner Giugliano, type Model reported in T4.1.2 

CDP Contributions: CDP4 

Component 418 contributes to the Use Case comparative analysis of experimental and 
simulated data. 

23.3.1  Workflow for comparison of electrophysiological and simulated 
data  

Description of Component: Example workflow for comparison of experimental and 
simulational spiking neuron data by correlation analysis. 

CDP to which Component contributes: CDP4, Visuo-Motor Integration  

Progress: The Component is in an early stage. We have outlined general requirements for a 
reproducible workflow for the comparison of experimental and modelled data in Denker and 
Grün (2016). We work closely with T9.1.5 and our work is based on the guideline comparison 
‘NEST SpiNNaker Elephant Demo’ (https://project-

https://project-lifecycle.herokuapp.com/component/812
https://project-lifecycle.herokuapp.com/component/418
https://project-lifecycle.herokuapp.com/component/1574/
https://project-lifecycle.herokuapp.com/component/1008/
https://project-lifecycle.herokuapp.com/component/1008/
https://project-lifecycle.herokuapp.com/component/886/
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lifecycle.herokuapp.com/Component/886/) available in the Collaboratory. The comparison 
of experimental and modelled data is currently developed outside the collaboratory and will 
be integrated in a later stage of SGA1.  
 
The comparison of experimental and modelled data is carried out for a system in a ‘resting’ 
state. On the experimental side we use Utah array recordings from the motor/premotor 
cortex of an awake non-human primate not performing any task. Spiking activity and local 
field potentials were measured for 15 min and the data was separated into periods of rest 
and movement. We separated the single units into excitatory and inhibitory neurons based 
on their respective waveforms and calculated the single neurons' firing statistics (firing rate, 
coefficient of variation) and network interaction measures (pairwise correlation 
coefficients). This was done for each rest and movement periods and the corresponding 
results were compared, showing that inhibitory neurons are more strongly affected by the 
motor state. The associated workflow and analyses, 'Analysis of single unit activity during 
rest and movement', were made available in the Collaboratory 
(collab.humanbrainproject.eu/#/collab/2493). 

Links:‘NEST SpiNNaker Elephant Demo’ 
(https://collab.humanbrainproject.eu/#/collab/507), 'Analysis of single unit activity during 
rest and movement' (https://collab.humanbrainproject.eu/#/collab/2493) 

Quality Control: 

Upstream Components: 

·  ‘Massively Parallel Electrophysiology data’ (owner: Sonja Gruen, T4.5.1) [essential]: 
data are available, not yet integrated into the NAR (T5.7.2), since the NAR is not in place 
yet  

· SGA1 - Federated data storage with flexible permission management and remote access 
[essential]: was newly defined as ‘Neural Activity Resource’ (T5.7.2) after the DPIT 
process, and is not yet in place 

· odML [important]: is moved to SP5; not yet needed 

· UNICORE [important]: part of SP7; is in place and was used 
https://collab.humanbrainproject.eu/#/collab/507/nav/6326; not yet needed here 

· PyCOMPSs Repository [added value]: is partly in place; not yet integrated 

· Collaboratory Task Service [important]: is in place; currently not used 

· Collaboratory Provenance Service [added value]: to my knowledge not in place, will be 
important for daily work 

· Collaboratory Storage Service [essential]: is in place, but on the long run should be 
replaced by HPC storage; not yet needed 

· Collaboratory Jupyter Notebook [essential]: in place, in use 

· HPC systems at JSC [essential]: in place, explored together with different other tasks 

· NEST - The Neural Simulation Tool [essential]: NEST: has been used to generate input to 
but not yet as integral part of the workflow 

· 4x4 mm2 motor cortex model [essential]: first version available, in use 

· Elephant [essential]: available, in use 

Downstream Components: 

· SP4 -SGA2 - Integrative Loop for Comparison of Experimental and Simulated Data 
using the Validation Framework [important] – is an SGA2 Component, not yet 
available 

https://project-lifecycle.herokuapp.com/component/886/
https://collab.humanbrainproject.eu/#/collab/507/nav/6326
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· SP6-T6.4.4-SGA1-Validation result service [important]: will be used 

23.3.2 Massively parallel electrophysiological data  
Description of Component: Extracellular electrophysiological recordings (100 electrode Utah 
array) from non-human primate from motor and premotor cortex during resting state. 
Further data sets will be integrated from recordings with the same technique and area but 
during performance of a reach-2-grasp task ( Riehle A, Wirtssohn S, Grün S and Brochier T 
(2013) Mapping the spatio-temporal structure of motor cortical LFP and spiking activities 
during reach-to-grasp movements Front. Neural Circuits 7:48. DOI: 
10.3389/fncir.2013.00048), plus full metadata annotation (in odML) and basic python loading 
routines and simple analysis scripts. 

CDP to which Component contributes (if relevant): CDP4, Visuo-Motor Integration 

Progress: Utah array recordings (100 electrodes) from the motor/premotor cortex of an 
awake non-human primate not performing any task were provided by the 'Institut de 
Neurosciences de la Timone' in Marseille. The data have been recorded beforehand but were 
prepared and post-processed for our use. Spiking activity, waveforms and local field 
potentials were measured for 15 min and the monkey was recorded on video in order to 
separate the data into periods of quietly sitting (rest) and periods that involved limb or head 
movements. Spikes were already sorted offline so that single unit activities are available.  

More resting state recordings with other monkeys are planned and will be  
available in the late phase of SGA1 and in SGA2. 

Quality Control: 

Upstream Components: 

· Neural Activity Resource Development (API, WebApp, MetaData DB) [added value]: 
implementation started only recently (T5.7.2) after the DPIT process, and is not yet in 
place; data will be integrated there 

· Compute and data resource co-allocation [important]: unknown 

· SP7 Federated HPAC Computing Services [important]: storage service will be needed, but 
currently not yet used 

· Neo [important]: exploratory version available, in use 

· odML [essential]: exploratory version available, in use 

Downstream Components: 

· Elephant [important] (T5.7.1): available, in use 

· Workflow for comparison of electrophysiological and simulated data [essential] (T4.5.1): 
offline available, in use 

23.3.3 Structural and functional connectivity at different scales – owner: 
Viktor Jirsa   

Description of Component: Structural connectome (SC) constrains the functional 
connectivity (FC) in human and in mouse brain. For human and for individualised mouse brain 
the SC is extracted from diffusion MRI data, while axonal-projections tracing is used for the 
detailed connectome of the mouse brain from the Allen Institute. We will enable consistent 
representation at different scales of the human and mouse structural connectivity data from 
different modalities. Functional connectivity from experimental mouse imaging data will be 
extracted and represented in a similar manner. The structural data is then used for building 
macro and mesoscopic model of the brain activity, that can be compared with empirical FC 
in rest or in pathological conditions, such as epileptic seizure. 
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CDP to which Component contributes: it should contribute more in the next phase with the 
application of the same strategy as for human modelling on the mouse) Development of 
Whole Mouse Brain Model and Mouse Brain Atlas (CDP1), we are responsible for the P3 Virtual 
imaging lab app 

Progress:  

We have reconstructed epileptic patients’ brain networks, using their specific anatomical 
properties and used the Epileptor, a neural mass model capturing the temporal evolution of 
a seizure including on- and offset. Based on clinical hypothesis of EZ, we reproduced seizure 
propagation in silico as observed empirically with SEEG electrodes implanted in the patient. 
These propagation patterns cannot be captured by functional connectivity due to their 
inherent non-stationarity. We made the following steps: 1) Proix et al (2016) built the 
processing chain of all structural images (dMRI, MRI) required to build a virtual brain. 2) Jirsa 
et al (2016) demonstrated the methodology and proof of concept of how to create 
personalised models and fit them against empirical neuroimaging data. 3) Proix et al (2017) 
performed a pilot study (N=15), where we computed a score estimating the difference 
between the EZ identified by the brain model, and that identified by the clinicians during 
pre-surgical evaluation. This study demonstrated the favourable correlation between model 
prediction and surgery outcome. In other words: negative surgery outcome correlates with 
surgery not performed in line with model predictions. 

Modelling can be performed in the Collaboratory. Same strategies can be used for human 
and for mice, meaning that users can obtain virtual imaging data from selected brain 
regions, described either as standard atlas partitions (the entire cortex, M1 area, etc.) or in 
geometrical terms (e.g. arbitrary cut slice). The user can specify the portion of the brain to 
simulate (e.g. whole brain or a single slice – missing at least part of long range projections), 
the model to be used (e.g. high-dimensional, spiking point neurons, population 
level), physiological/pathological conditions, the type of imaging (calcium, VSD, fMRI, PET, 
electrophysiology), the details of imaging system (resolution, acquisition speed, field of 
view, spatial orientation effects).  

Hired two postdoc for this Project: Dr. Spase Petkoski and Dr. Andreas Spiegler, from 
1.4.2016. 

Quality Control: 

Upstream Components 

·  SOFTWARE > Algorithm Library > Brain Anatomy [added value]; Not yet implemented 
(we believe that this platform does not exist and hasn’t been needed yet, but it should 
become relevant in the next phase) 

· Model of biologically-realistic network states [added value]; It is not yet needed, we 
expect it to be implemented in the next phase.  

· Neuro-glial model for bursting activity [important]; It is not yet needed, we expect it in 
the next phase.  

·  Model of calcium imaging signals [important]; It is not yet needed, we expect it in the 
next phase.  

· Fluorescence imaging of cortical activity after stroke [important]; We have received and 
started analysing the experimental data and comparing with the model, and these were 
provided back to the experimentalist. More is expected in the next phase.  

· Allen mouse brain reference atlas with white matter structures parcellated [essential]; 
Actually this Component is more related to the Component 998, Allen Mouse Atlas (AMA) 
based brain network.  It will be used in the next phase when the accent will be on the 
modelling and validation of mouse using the same strategy as for human. It should help 
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to obtain the 2D mapping from the Allen’s structural data, for better correspondence 
with the calcium imaging 

· -Allen Mouse Atlas (AMA) based brain network [essential] (doesn’t exist but maybe to be 
added); The Component has provided the means for performing the same modelling for 
the mice as for human.  

Downstream Components: 

· SOFTWARE > Data Factory > Data Storage [essential]; Not yet implemented (we believe 
that this platform does not exist and hasn’t been needed yet, but it should become 
relevant in the next phase) 

· Effective connectivity changes inferred from optogenetic brain interrogation and calcium 
imaging [added value]: The Component not yet active, we expect to connect with it in 
the next phase.    

· Allen Mouse Atlas (AMA) based brain network; The results from validation of the same 
strategies in the mouse brain modelling as used for human, have been returned. Will be 
important in the next phase.  

 

24. T4.5.2 - Mouse brain function from structure 

24.1 Key Personnel 
Task Leader: Viktor JIRSA (AMU, P78) 

Other Researcher: Gustavo DECO (UPF, P77) 

Other Researcher: Spase PETKOSKI (AMU, P78), Andreas SPIEGLER (AMU, P78), Francesca 
MELOZZI (AMU, P78) 

24.2 DoA Goal(s) 
1. To integrate detailed structural data (connectivity, region mapping) of different 

origins (DTI, Allen Brain Atlas) in whole mouse brain network models. The network 
node models will be neural population models as developed in SP4 (Task 4.1.3). This 
Task will mathematically and computationally investigate the non-stationary 
properties and capacity of the models to propagate activations through the network. 
These reduced top-down models will be validated against high-dimensional neuronal 
network models, enabling parameter space explorations to guide high performance 
computations (SP7). Initial studies will model spontaneous resting state activity, 
whose understanding forms the basis for later extensions towards behavioural 
functions and pathologies (SP8). 

2. Within the framework of CDP1, the Task will further validate the whole brain mouse 
network models against empirical data recorded in SP1 using calcium imaging and 
local field potentials. The top-down models will systematically exploit the effects of 
the structural connectivity constraints upon network dynamics, and will be compared 
with empirical cortical and whole-brain activation maps in SP1. These empirical data 
will be used to constrain the structure-function relationship. This work will be 
performed with the help of one Postdoc shared between SP4 and SP1. 

Changes to DoA Goal(s): No modifications of goals. 

24.3 Components Progress 
PLA Components: 
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998. Allen Mouse Atlas (AMA) based brain network – owner: Viktor Jirsa, type: model (DoA 
Goal 1) 

CDP Contributions: 

· CDP1 - Development of Whole Mouse Brain Model and Mouse Brain Atlas 

Component 998 contributes to CDP1-P2: A virtual anatomy lab app & CDP1-P4: A 
virtual behaviour lab app 

24.3.1 Allen Mouse Atlas (AMA) based brain network 
Description of Component: Connectome-based models of the human brain provide insightful 
information on the structure-function relationship in health and disease. The connectome 
can be based on diffusion MRI data, for individualised mouse brain modelling, or on the 
detailed connectome of the mouse brain from the Allen Institute for Brain Science. We will 
develop clear practical examples, such as the switching of functional connectivity during 
resting state in health and seizure propagation in epilepsy, which should accelerate our 
understanding of whole brain dynamics in normal and pathological conditions, as model 
predictions can be readily tested in the numerous available transgenic mouse lines. 

CDP to which Component contributes: CDP1 - Development of Whole Mouse Brain Model and 
Mouse Brain Atlas / CDP1-P2: A virtual anatomy lab app + CDP1-P4: A virtual behaviour lab 
app. 

Progress: 

Partner AMU: We have implemented the open source tracer dataset of the Allen Institute 
(Oh et al., 2014) into The Virtual Brain (TVB) (Sanz-Leon et al. 2015), thus allowing detailed 
Structural Connectivity (SC) to be obtained (Melozzi et al 2017). This is then used to build 
large-scale brain network models for the resting state different modalities of Functional 
Connectivity, fMRI or calcium imaging. 

The resolution of the long-range structural connectivity can be as small as 0.1 mm leading 
to maximum number of 540 nodes, with 88 belonging to the isocortex. In addition to this, 
we have also applied homogeneous local connectivity for the isocortex, thus increasing its 
spatial resolution to several thousand nodes.  

Modelling and simulation can be performed in the same way as for the human connectome. 
Hence, users can obtain virtual imaging data from selected brain regions, described either 
as standard atlas partitions (the entire cortex, M1 area, etc.) or in geometrical terms 
(e.g. arbitrary cut slice). The user can specify the portion of the brain to simulate (e.g. 
whole brain or a single slice – missing at least part of long range projections), the model to 
be used (e.g. high-dimensional, spiking point neurons, population 
level), physiological/pathological conditions, the type of imaging (calcium, VSD, fMRI, PET, 
electrophysiology), the details of imaging system (resolution, acquisition speed, field of 
view, spatial orientation effects). This part has been put online in the Collaboratory.  

For the network nodes we have investigated the dynamics using the reduced Wong 
Wang model in the bistable regime, as was shown (Hansen et al. 2015) to capture the 
FC dynamics in humans, but we have also applied different oscillatory models, i.e. Hopf and 
Kuramoto oscillators. This has allowed the Allen’s data to be verified against resting state 
functional connectivity.  

Different lesioning or resection (stroke) strategies and their influence to propagation of 
excitability are systematically analysed. We have demonstrated proof of concept for the 
resection of the structural connectivity, and the impact that it has on the observed 
functional connectivity. 

In addition, resting state have been stimulated and propagation patterns (excitability) due 
to connectivity have been analysed for in line with the experimental data.  

https://project-lifecycle.herokuapp.com/component/998/
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Hired two postdoc for this Project: Dr. Spase Petkoski and Dr. Andreas Spiegler, from 
1.4.2016. 

Contributions also from PhD student Francesca Melozzi. 

Partner UPF: Within the CDP1, UPF partner has agreed to estimate the effective connectivity 
in mice before and after stroke (Effective connectivity changes inferred from optogenetic 
brain interrogation and calcium imaging). For that we need (i) the structural connectivity in 
mice (the Allen Atlas which is a Component of T4.5.2 and (ii) whole brain calcium imaging 
from italy. As a feedback to T4.5.2, we will return to T4.5.2 the estimated EC matrices for 
the mice, which may be used to constrain the models of the whole brain activity in mice. 

Publications (in preprint or in preparation) 

Melozzi F, Bergmann E, Kahn I, Jirsa VK, Bernard C. Individual predictability and comparison 
between different structural connectivities  (in preparation)   

Melozzi F, Woodman MM,  Jirsa VK. Bernard C. The Virtual Mouse Brain: A computational 
neuroinformatics Platform to study whole mouse brain dynamics (submitted for publication, 
2017) 

Upstream Components 

· SOFTWARE > Algorithm Library > Brain Anatomy [added value]; Not yet implemented (we 
believe that this platform does not exist and hasn’t been needed yet, but it should 
become relevant in the next phase) 

· Model of biologically-realistic network states [added value]; It is not yet needed/Data 
not yet available, we expect it in the next phase.  

· Neuro-glial model for bursting activity [important]; It is not yet needed, we expect it in 
the next phase.  

· Model of calcium imaging signals [important]; It is not yet needed, we expect it in the 
next phase.  

· Hippocampus reconstruction [added value]; Not yet needed, probably it might be used 
in the next phase. 

· Arc-dVenus half mouse brain [added value]; Not used and probably it won’t be needed 
in the next stage either. 

· Structural and functional connectivity at different scales [important]; Data from human 
modelling obtained and the same strategies compared and validated for the mouse.  

· Fluorescence imaging of cortical activity after stroke [important]; Data has been 
received for several mice in resting state, before and after stroke (although only few are 
about the same subjects). Some of the data analysed and compared/validated with the 
model. More needs to be done in the next phase.  

· Point-neuron model of the whole mouse brain [important]; It is not yet needed, we 
expect it in the next phase.  

Downstream Components: 

· SOFTWARE > Data Factory > Data Storage [essential]; Not yet implemented (we believe 
that this platform does not exist and hasn’t been needed yet, but it should become 
relevant in the next phase) 

· SOFTWARE > Algorithm Library > Statistical Analytics > Disease Signatures - concept and 
methodology [important]: Not yet implemented (we believe that this platform does not 
exist and hasn’t been needed yet, but it should become relevant in the next phase).  

https://project-lifecycle.herokuapp.com/component/1205/
https://project-lifecycle.herokuapp.com/component/1205/
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· Effective connectivity changes inferred from optogenetic brain interrogation and calcium 
imaging [added value]: The Component not yet active, we expect to connect with it in 
the next phase.    

· Analysis of meso-scale fluorescence functional data; We have started analysing the 
experimental data and comparing with the model, and these were provided back to the 
experimentalist. More is expected in the next phase.  

 

25. T4.7.1 - Scientific coordination 

25.1 Key Personnel 
Task Leader: Alain DESTEXHE (CNRS, P10) 

25.2 DoA Goals 
1. coordinate scientific activities within the SP 

2. coordinate with other SPs, Partnering Projects and international collaborations; 

3. perform quality assurance 

4. organise meetings and workshops 

5. coordinate reporting. 

Changes to DoA Goals:  None 

25.3 Components Progress 
PLA Components: 

1016. SP4_scientific Coordination and Management - owner: Alain DESTEXHE, type: service 
(DoA Goal 1,2,3,4 & 5) 

CDP Contribution: N/A  

25.3.1 SP4_scientific Coordination and Management 

Description of Component: This Task will coordinate scientific activities within the SP; 
coordinate with other SPs, Partnering Projects and international collaborations; perform 
quality assurance; organise meetings and workshops, and coordinate reporting. 

CDP to which Component contributes (if relevant): N/A 

 

26. Publications 

26.1 PREPRINTS: 
Gustavo Deco, UPF: 

R. G. Bettinardi, G. Deco (UPF), V. M. Karlaftis, T. J. Van Hartevelt, H. M. Fernandes, Z. 
Kourtzi, M. L. Kringelbach & G. Zamora-Lopez (UPF) How structure sculpts function: 
unveiling the contribution of anatomical connectivity to the brain's spontaneous 
correlation structure 

https://arxiv.org/abs/1612.02243 

Marc de Kamps, ULEEDS:  

https://project-lifecycle.herokuapp.com/component/1016/
https://arxiv.org/abs/1612.02243
https://arxiv.org/abs/1612.02243
https://arxiv.org/abs/1612.02243


 

Co-funded by  
the European Union 

 

 

 

 

D4.7.1 (D25.1 D31) SUBMITTED (SGA1 M12) PUBLIC PU = Public 29-Aug-2017 Page 57 of 66 
 

Lai Yi Ming & De Kamps Marc. Population Density Equations for Stochastic Processes with 
Memory Kernels (submitted to Phys Rev E, has passed the first round of review and was 
resubmitted) https://arxiv.org/abs/1601.07126 

Alain Destexhe, CNRS: 

Girones Z. and Destexhe A. Enhanced responsiveness in asynchronous irregular neuronal 
networks. (submitted for publication, 2017) arXiv preprint: 
https://arxiv.org/abs/1611.09089 

Telenczuk B., Kempter R., Curio G. and Destexhe A.. 2017. Encoding Variable Cortical States 
with Short-Term Spike Patterns. (submitted for publication 2017) BioRxiv preprint: 
10.1101/098210. 

Zerlaut Y. and Destexhe A. A mean-field model for conductance-based networks of adaptive 
exponential integrate-and-fire neurons. (submitted for publication, 2017) arXiv preprint: 

https://arxiv.org/abs/1703.00698 

Romain D. Cazé, Bartosz Telenczuk & Alain Destexhe Computing threshold functions using 
dendrites ArXiv – NIPS  

https://arxiv.org/abs/1611.03321 

Wulfram Gerstner, EPFL:  

M. Faraji, K. Preuschoff and W. Gerstner (2017) Balancing New Against Old Information:The 
Role of Surprise  arXiv:1606.05642 

Related to T4.3.2 

T. Schwalger, M. Deger and W. Gerstner (2016) Towards a theory of cortical columns: From 
spiking neurons to interacting neural populations of finite size  arXiv:1611.00294 

Related to T4.3.1 

Moritz Deger, Alexander Seeholzer, Wulfram Gerstner Multi-contact synapses for stable 
networks: a spike-timing dependent model of dendritic spine plasticity and turnover 
arXiv:1609.05730v1  

Sonja Grün, JUELICH: 

Michael Denker, Lyuba Zehl, Bjørg E. Kilavik, Markus Diesmann, Thomas Brochier, Alexa 
Riehle, Sonja Grün (2017) LFP beta amplitude is predictive of mesoscopic spatio-temporal 
phase patterns. arXiv:1703.09488 [q-bio.NC] 

Olivier Faugeras, INRIA: 

Pierre Guiraud, Etienne Tanré, Stability of synchronization under stochastic perturbations in 
leaky integrate and fire neural networks of finite size, submitted arXiv:1609.07103v1 

Olivier Marre, UPMC: 

Ferrari U, Gardella C, Marre O, Mora T (2016). Closed-loop estimation of retinal network 
sensitivity reveals signature of efficient coding arxiv: 1612.07712 [q-bio.NC]. Submitted 

Lefebvre B, Yger P, Marre O (2016). Recent progress in multi-electrode spike sorting methods 
Journal of Physiology Paris, in press. Biorxiv: 086991 

Deny S, Ferrari U, Mace E, Yger P, Caplette R, Picaud S, Tkacik G, Marre O (2016). 
Multiplexed computations in retinal ganglion cells of a single type biorxiv: 080135. In revision 

Yger P, Spampinato GLB, Esposito E, Lefebvre B, Deny S, Gardella C, Stimberg M, Jetter F, 
Zeck G, Picaud S, Duebel J, Marre O (2016). Fast and accurate spike sorting in vitro and in 
vivo for up to thousands of electrodes biorxiv: 067843. Submitted 

https://arxiv.org/abs/1601.07126
https://arxiv.org/abs/1611.09089
https://arxiv.org/abs/1703.00698
https://arxiv.org/abs/1611.03321
https://arxiv.org/abs/1611.03321
https://arxiv.org/abs/1606.05642
https://arxiv.org/abs/1606.05642
https://arxiv.org/abs/1611.00294
https://arxiv.org/abs/1611.00294
https://arxiv.org/abs/1609.05730v1
https://arxiv.org/abs/1609.07103v1
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Botella-Soler V, Deny S, Marre O, Tkacik G (2016). Nonlinear decoding of a complex movie 
from the mammalian retina. arXiv: 1605.03373 [q-bio.NC]. In revision.  

Ulisse Ferrari, Tomoyuki Obuchi & Thierry Mora Random versus maximum entropy models 
of neural population activity ArXiv & bioRxiv 

https://doi.org/10.1101/092973 

Shimon Ullman, Weizmann:  

Ben-Yosef, G.  Assif, L., Shimon Ullman, S. Full interpretation of minimal images. Submitted, 
2017  

Ben-Yosef, G.  Yachin, A., Shimon Ullman, S. A model for interpreting social interactions in 
local image regions. Submitted, Submitted, 2017 

26.2 Publications M1-M12 
Gustavo Deco, UPF:  

P281 Córdova-Palomera A., Tornador C., Falcón C., Bargalló N., Brambilla P., Crespo-Facorro 
B., Deco G., and Fañanás L., "Environmental factors linked to depression vulnerability are 
associated with altered cerebellar resting-state synchronization." Scientific Reports (2016) 
6, 37384. 

P280 Insabato A, Pannunzi M, Deco G (2017) Multiple Choice Neurodynamical Model of the 
Uncertain Option Task. PLoS Comput Biol 13(1):e1005250. doi:10.1371/journal.pcbi.1005250 

M6 Zamora-López, G., Chen, Y., Deco, G., Kringelbach, M.L. and Zhou, C.S. "Functional 
complexity emerging from anatomical constraints in the brain: the significance of network 
modularity and rich-clubs." Scientific Reports (2016) 6, 38424. 

Alain Destexhe, CNRS:  

M6 Zerlaut, Y., Telenczuk, B., Deleuze, C., Bal, T., Ouanounou, G. and Destexhe, A. 
Heterogeneous firing rate response of mice layer V pyramidal neurons in the fluctuation-
driven regime. Journal of Physiology 594: 3791-3808, 2016 Jul 1. 

M6 Le Van Quyen, M., Muller, L., Telenczuk, B., Cash, S.S., Halgren, E., Hatsopoulos, N.G., 
Dehghani, N. and Destexhe, A. High-frequency oscillations in human and monkey neocortex 
during the wake-sleep cycle. Proc. Natl. Acad. Sci. USA 113: 9363-9368, 2016. 

M6 Barbieri, F., Trauchessec, V.. Caruso, L., Trejo Rosillo, J., Telenczuk, B., Paul, E., Bal, 
T., Destexhe, A., Fermon, C., Pannetier-Lecoeur, M. and Ouanounou, G. Local recording of 
biological magnetic fields using Giant Magneto Resistance-based micro-probes. Nature 
Scientific Reports 6: 39330, 2016 Dec 19, Open Access. 

M6 Telenczuk, B., Dehghani, N., Le Van Quyen, M., Cash, S., Halgren, E., Hatsopoulos, N.G. 
and Destexhe, A. Local field potentials primarily reflect inhibitory neuron activity in human 
and monkey cortex. Nature Scientific Reports 7: 40211, 2017 Jan 11, Open Access. 

Related to T4.1.4 

Bedard, C., Gomes, J-M., Bal, T. and Destexhe, A. A framework to reconcile frequency 
scaling measurements, from intracellular recordings, local-field potentials, up to EEG and 
MEG signals. DOI: 10.3233/JIN-160001 Journal of Integrative Neurosci. 16: 3-18, 2017. 

P282 Touboul, J. and Destexhe, A. Power-law statistics and universal scaling in the absence 
of criticality. Physical Review E 95: 012413, 2017 January 31. 

Markus Diesmann, JUELICH:  

M6 David Dahmen, Hannah Bos, and Moritz Helias (2016) Correlated Fluctuations in Strongly 
Coupled Binary Networks Beyond Equilibrium. Phys. Rev. X 6, 031024 

Related to T4.1.3 

https://doi.org/10.1101/092973
https://doi.org/10.1101/092973
http://dx.doi.org/10.1371/journal.pcbi.1005250
http://dx.doi.org/10.1371/journal.pcbi.1005250
http://www.nature.com/articles/srep38424
http://www.nature.com/articles/srep38424
http://www.nature.com/articles/srep38424
http://www.pnas.org/content/113/33/9363.abstract
http://www.pnas.org/content/113/33/9363.abstract
http://www.nature.com/articles/srep39330
http://www.nature.com/articles/srep39330
http://www.nature.com/articles/srep40211
http://www.nature.com/articles/srep40211
https://doi.org/10.1103/PhysRevE.95.012413
https://doi.org/10.1103/PhysRevE.95.012413
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M6 Bos H, Diesmann M, Helias M (2016) Identifying Anatomical Origins of Coexisting 
Oscillations in the Cortical Microcircuit. PLoS Comput Biol 12(10): e1005132. 
doi:10.1371/journal.pcbi.1005132 

Related to T4.1.3 

M6 Andrei Maksimov, Sacha J. van Albada and Markus Diesmann [Re] Cellular and Network 
Mechanisms of Slow Oscillatory Activity (<1 Hz) and Wave Propagations in a Cortical 
Network Model Rescience, 2(1). http://doi.org/10.5281/zenodo.161526 Open Access 

Related to T4.2.1 

P43 Hagen E, Dahmen D, Stavrinou ML, Linden H, Tetzlaff T, van Albada SJ, Grün S, Diesmann 
M, Einevoll GT (2016) Hybrid Scheme for Modelling Local Field Potentials from Point-Neuron 
Networks. Cereb Cortex. 26 (12) 4461-4496. DOI: 10.1093/cercor/bhw237 

P272 Dmytro Grytskyy, Markus Diesmann, and Moritz Helias (2016) Reaction-diffusion-like 
formalism for plastic neural networks reveals dissipative solitons at criticality. Phys. Rev. E 
93, 062303 https://doi.org/10.1103/PhysRevE.93.062303 

Related to T4.1.3 

P149 Schuecker J, Schmidt M, van Albada SJ, Diesmann M, Helias M. Fundamental activity 
constraints lead to specific interpretations of the connectome (2017) PLoS CB 
13(2):e1005179, doi:10.1371/journal.pcbi.1005179. 

Related to T4.2.1 

Einevoll, NMBU 

M6 Ness, Remme, Einevoll. Active subthreshold dendritic conductances shape the local field 
potential. J Physiol (2016) 594:3809–3825.  

Involved in T4.1.4 - Improved LFP model with quasi-active conductances. 
Acknowledgements: RUP – 604102 

M6 Halnes, Mäki-Marttunen, Keller, Pettersen, Andreassen, Einevoll. Effect of Ionic Diffusion 
on Extracellular Potentials in Neural Tissue. PLoS Comput Biol (2016) 12(11): e1005193. 
Involved in T4.1.4 - Improved LFP model with quasi-active conductances. 
Acknowledgements: RUP - 604102 

P270 Miceli, Ness, Einevoll, Schubert. Impedance Spectrum in Cortical Tissue: Implications 
for Propagation of LFP Signals on the Microscopic Level. eNeuro (2017) 4(1) 0291-16.2016. 
Involved in T4.1.4 - Simplified EEG models, and T4.1.4 - Improved LFP model with quasi-
active conductances. Acknowledgements: SGA1 - 720270 

Olivier Marre, UPMC: 

M6 Ulisse Ferrari (UPMC) Learning maximum entropy models from finite-size data sets: A fast 
data-driven algorithm allows sampling from the posterior distribution Published in Physical 
Review E, 2016 August 1 

Related to T4.4.2, Model of the retina responding to complex stimuli 

P271 Lefebvre B, Yger P, Marre O (2016). Recent progress in multi-electrode spike sorting 
methods Journal of Physiology Paris, in press. 
http://dx.doi.org/10.1016/j.jphysparis.2017.02.005 

Related to T4.4.2, Model of the retina responding to complex stimuli 

Olivier Faugeras, INRIA: 

P276 Audric Drogoul & Romain Veltz, Hopf bifurcation in a nonlocal nonlinear transport 
equation stemming from stochastic neural dynamics, Chaos: 27, 021101 (2017); doi: 
10.1063/1.4976510 

https://doi.org/10.5281/zenodo.161526
https://doi.org/10.5281/zenodo.161526
https://doi.org/10.5281/zenodo.161526
https://doi.org/10.1103/PhysRevE.93.062303
http://dx.doi.org/10.5061/dryad.vn342
http://dx.doi.org/10.5061/dryad.vn342
http://dx.doi.org/10.1371/journal.pcbi.1005193
http://dx.doi.org/10.1371/journal.pcbi.1005193
https://doi.org/10.1523/ENEURO.0291-16.2016
https://doi.org/10.1523/ENEURO.0291-16.2016
https://doi.org/10.1103/PhysRevE.94.023301
https://doi.org/10.1103/PhysRevE.94.023301
http://dx.doi.org/10.1016/j.jphysparis.2017.02.005
http://dx.doi.org/10.1063/1.4976510
http://dx.doi.org/10.1063/1.4976510
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Wulfram Gerstner, EPFL:  

P284 Zenke F, Gerstner W. 2017,  Hebbian plasticity requires compensatory processes on 
multiple timescales. Phil. Trans. R. Soc. B 372: 20160259. 
http://dx.doi.org/10.1098/rstb.2016.0259 

Sonja Grün,JUELICH: 

M6 Zehl L, Jaillet F, Stoewer A, Sobolev A, Wachtler T, Brochier T, Riehle A, Denker M, Grün 
S. (2016) Handling Metadata in a Neurophysiology Laboratory. Frontiers in Neuroinformatics 
10, 26. DOI:10.3389/fninf.2016.00026 

André Grüning, SURREY:  

M6 Gardner, Brian and Grüning, Andre: Supervised Learning in Spiking Neural Networks for 
Precise Temporal Encoding. PLoS ONE 2016(11) 
http://dx.doi.org/10.1371%2Fjournal.pone.0161335. 

Jeanette Hellgren Kotaleski, KTH:  

P278 Lindahl M and Hellgren Kotaleski J (2017) Untangling basal ganglia network dynamics 
and function – role of dopamine depletion and inhibition investigated in a spiking network 
model, DOI: 10.1523/ENEURO.0156-16.2016 

Related to T4.4.3 

M6 Ekaterina Brocke, Upinder S. Bhalla, Mikael Djurfeldt, Jeanette Hellgren Kotaleski (KTH) 
and Michael Hanke. Efficient Integration of Coupled Electrical-Chemical Systems in 
Multiscale Neuronal Simulations Published in Frontiers in Computational Neuroscience, 2016 
September 12, Open Access 

Viktor Jirsa, AMU: 

P 52 Jirsa, V. K. et al. The Virtual Epileptic Patient: Individualized whole-brain models of 
epilepsy spread. Neuroimage (2017). doi:10.1016/j.neuroimage.2016.04.049 

Related to T4.5.2 & T4.2.1 

M12 Proix, T. et al. How do parcellation size and short-range connectivity affect dynamics 
in large-scale brain network models? Neuroimage (2016, November 15). 
doi:10.1016/j.neuroimage.2016.06.016 

Related to T4.5.2 

P 51 Spase Petkoski, Andreas Spiegler, Timothée Proix, Parham Aram, Jean-Jacques 
Temprado, and Viktor K. Jirsa. Heterogeneity of time delays determines synchronization of 
coupled oscillators Phys. Rev. E 94, 012209 – Published 11 July 2016 

P277 Proix T, Bartolomei F, Guye M, Jirsa V. Individual brain structure and modelling predict 
seizure propagation. Brain 140, 641–654 (2017). 

Related to T4.5.2 

M6 Viktor Müller, Dionysios Perdikis, Timo von Oertzen, Rita Sleimen-Malkoun, Viktor Jirsa 
(AMU) and Ulman Lindenberger Structure and Topology Dynamics of Hyper-Frequency 
Networks during Rest and Auditory Oddball Performance Published in Frontiers in 
Computational Neuroscience, 2016 October 17, Open Access 

Related to T4.5.2 

M6 Andreas Spiegler (AMU), Enrique C.A. Hansen, Christophe Bernard, Anthony R. McIntosh 
and Viktor K. Jirsa (AMU) Selective activation of resting state networks following focal 
stimulation in a connectome-based network model of the human brain Published in eNeuro, 
2016 September 21, Open Access 

Related to T4.5.1 & T4.5.2 

http://dx.doi.org/10.1098/rstb.2016.0259
http://dx.doi.org/10.1371%2Fjournal.pone.0161335.
http://dx.doi.org/10.1371%2Fjournal.pone.0161335.
http://dx.doi.org/10.1371%2Fjournal.pone.0161335
http://dx.doi.org/10.1371%2Fjournal.pone.0161335
http://dx.doi.org/10.3389/fncom.2016.00097
http://dx.doi.org/10.3389/fncom.2016.00097
http://dx.doi.org/10.1016/j.neuroimage.2016.04.049
http://dx.doi.org/10.1016/j.neuroimage.2016.04.049
http://dx.doi.org/10.1016/j.neuroimage.2016.06.016
http://dx.doi.org/10.1016/j.neuroimage.2016.06.016
https://doi.org/10.1103/PhysRevE.94.012209
https://doi.org/10.1103/PhysRevE.94.012209
https://doi.org/10.1093/brain/awx004
https://doi.org/10.1093/brain/awx004
http://dx.doi.org/10.3389/fncom.2016.00108
http://dx.doi.org/10.3389/fncom.2016.00108
http://dx.doi.org/10.1523/ENEURO.0068-16.2016
http://dx.doi.org/10.1523/ENEURO.0068-16.2016
http://dx.doi.org/10.1523/ENEURO.0068-16.2016
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Marja-Leena Linne, TUT: 

P283 Manninen T., Havela R., Linne M.-L. (2017b) Reproducibility and comparability of 
computational models for astrocyte calcium excitability. Frontiers in Neuroinformatics 
11:11. https://doi.org/10.3389/fninf.2017.00011 

Related to T4.2.2 

M6 Heidi Teppola, Jertta-Riina Sarkanen, Tuula O. Jalonen and Marja-Leena Linne. 
Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells 
by Estradiol, Retinoic Acid and Cholesterol.  Neurochem Res (2016) 41: 731. 
doi:10.1007/s11064-015-1743-6, Open Access 

Idan Segev, HUJI: 

P13 Eyal G, Verhoog MB, Testa-Silva G, Deitcher Y, Lodder JC, Benavides-Piccione R, Morales 
J, DeFelipe J, de Kock CP, Mansvelder HD, Segev I. (2016) Unique membrane properties and 
enhanced signal processing in human neocortical neurons. Elife. 2016 Oct 6;5. pii: e16553. 
doi: 10.7554/eLife.16553. 

Misha Tsodyks, WEIZMANN: 
P293 Romani S, Katkov M, Tsodyks M. Practice makes perfect in memory recall. Learning & 
Memory. 2016;23(4):169-173. doi:10.1101/lm.041178.115. 
P279 Y. Mi, M. Katkov & M. Tsodyks. Synaptic correlates of working memory capacity. Neuron, 
93:323-330 (2017). 
Related to T4.3.2  

26.3 RUP Publications 
The two following publications were not reported yet.  

Walter Senn, UBERN: 

Schiess M, Urbanczik R and Senn W: Somato-dendritic Synaptic Plasticity and Error-
backpropagation in Active Dendrites. PLoS Comput Biol. 2016 Feb 3;12(2):e1004638. doi: 
10.1371/journal.pcbi.1004638. eCollection 2016. 

Viktor Jirsa, AMU: 

Tim Kunze, Alexander Hunold, Jens Haueisen, Viktor Jirsa, Andreas Spiegler Transcranial 
direct current stimulation changes resting state functional connectivity: A large-scale brain 
network modelling study. NeuroImage 140 (2016) 174–187 
http://dx.doi.org/10.1016/j.neuroimage.2016.02.015 

 

26.4 Conference papers 
Markus Diesmann, Juelich: 

Hagen E, Senk J, van Albada SJ, Diesmann M: Local field potentials in a 4 × 4 mm² multi-
layered network model. BMC Neuroscience 2016, 17(Suppl 1):P167  

Related to T4.2.1 

Van Albada SJ, Rowley AG, Hopkins M, Schmidt M, Senk J, Stokes AB, Galluppi F, Lester DR, 
Diesmann M and Furber SB (2016). Full-scale simulation of a cortical microcircuit on 
SpiNNaker. Front. Neuroinform. Conference Abstract: Neuroinformatics 2016. doi: 
10.3389/conf.fninf.2016.20.00029. 

Denker M, Grün S (2016) Designing workflows for the reproducible Analysis of 
Electrophysiological Data. in: Brain Inspired Computing, eds Amunts K, Grandinetti L, Lippert 
T, Petkov N. Springer Series Lecture Notes in Computer Science, Vol 10087,pp. 58-72. 
DOI:10.1007/978-3-319-50862-7_5 

https://doi.org/10.3389/fninf.2017.00011
http://link.springer.com/article/10.1007%2Fs11064-015-1743-6
http://link.springer.com/article/10.1007%2Fs11064-015-1743-6
https://www.ncbi.nlm.nih.gov/pubmed/27710767
https://www.ncbi.nlm.nih.gov/pubmed/27710767
http://doi.org/10.1101/lm.041178.115
http://dx.doi.org/10.1016/j.neuroimage.2016.02.015
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P59 Yegenoglu A, Quaglio P, Torre E, Grün S, Enders D. (2016) Exploring the Usefulness of 
Formal Concept Analysis for Robust Detection of Spatio-Temporal Spike Patterns in Massively 
Parallel Spike Trains. In: Graph-Based Representation and Reasoning 22nd International 
Conference on Conceptual Structures, ICCS 2016, Annecy, France. pp 3-16. DOI:10.1007/978-
3-319-40985-6_1 ISBN: 978-3-319-40984-9 

Related to T4.2.1 

The conference paper below also relates to Sonja Grün  

P203 Johanna Senk, Alper Yegenoglu, Olivier Amblet, Yury Brukau, Andrew Davison, David 
Roland Lester, Anna Lührs, Pietro Quaglio, Vahid Rostami, Andrew Rowley, Bernd Schuller, 
Alan Barry Stokes, Sacha Jennifer van Albada, Daniel Zielasko, Markus Diesmann, Benjamin 
Weyers, Michael Denker, Sonja Grün (2017) A Collaborative Simulation-Analysis Workflow for 
Computational Neuroscience Using HPC. In: Di Napoli E., Hermanns MA., Iliev H., Lintermann 
A., Peyser A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in 
Computer Science, vol 10164. Springer, Cham, doi:10.1007/978-3-319-53862-4_21 

Related to T4.2.1 

Sonja Grün,Juelich: 

P239 Denker M. and Grün S. Designing workflows for the reproducible analysis of 
electrophysiological data. in: Brain Inspired Computing, Amunts et al. (Eds.), Lecture notes 
in computer science, vol 10087. pp. 58–72. doi:10.1007/978-3-319-50862-7_5. 2016 

Yegenoglu A, Quaglio P, Torre E, Grün S, Enders D. (2016) Exploring the Usefulness of Formal 
Concept Analysis for Robust Detection of Spatio-Temporal Spike Patterns in Massively 
Parallel Spike Trains. In: Graph-Based Representation and Reasoning 22nd International 
Conference on Conceptual Structures, ICCS 2016, Annecy, France. pp 3-16. DOI:10.1007/978-
3-319-40985-6_1 ISBN: 978-3-319-40984-9 

Marja-Leena Linne, TUT: 

Lehtimäki M., Paunonen L., Pohjolainen S., Linne M.-L. (2017) Order reduction for a signaling 
pathway model of neuronal synaptic plasticity. IFAC2017 Conference (accepted). 

Idan Segev, HUJI 

Eyal et al. An analytical and accurate model for reducing neuron- model complexity. Gordon 
conference on dendrites (March 2017).    

 

27. Dissemination 
In addition to the EITN dissemination, SP4 was involved in the science market where we 
presented our work to non-HBP public. 

For EITN dissemination activity please refer to Deliverable D4.6.1 of SGA1. 

Marc de Kamps, ULEEDS: 

NIPS workshop on: Representation Learning in Artificial and Biological Neural NetworksMartin 
Perez-Guevara*, Marc De Kamps, Christophe Pallier Blackboard Architecture simulation with 
simple biological networks captures the behavior of diverse neuroimaging measurements 
during language processing (https://sites.google.com/site/mlini2016nips/schedule) 

Wulfram Gerstner , EPFL: 

Poster presentation at CoSyne 2017, Holing Li and W. Gerstner, A unified neural network 
model for reconsolidation and extinction of fear memory 

Related to T4.3.1 

https://sites.google.com/site/mlini2016nips/schedule
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Markus Diesmann, JUELICH: 

Related to T4.2.1: 

van Albada SJ, Deco G, Gilson M. Organised workshop "Multi-area models of cortex", 
CNS*2016, Jeju, South Korea. 

Schmidt M, talk “A multi-scale spiking network model of macaque visual cortex,” workshop 
“Multi-area models of cortex,” CNS*2016. 

Schuecker J, Schmidt M, van Albada SJ, Diesmann M, Helias M (2016) talk “Global stability 
reveals critical Components in the structure of multi-scale neural networks,” 80th DPG 
annual conference, Regensburg, Germany. 

Schmidt M, talk “A multi-scale spiking network model of macaque visual cortex,” 
International workshop “Vision over vision: man, monkey, machine, and network models”, 
Osaka, Japan 

Van Albada SJ (June 10, 2016) talk “Multiscale modelling of cortex at cellular resolution,” 
PASC16 minisymposium “Level of Detail in Brain Modeling: Common Abstractions and Their 
Scientific Use”, Lausanne, Switzerland. 

Organization of the 9th Bernstein Sparks workshop by Farzad Farkhooi (TU Berlin), Guillaume 
Lajoie (U Washington), and Moritz Helias (INM-6/IAS-6) on the topic “Recent advances in 
recurrent network theory: fluctuating correlated dynamics across scales” in Goettingen. 

Diesmann, M (March 13-16, 2016) Talk “Multi-area models at cellular resolution” Workshop 
“Brain Manifesto 2.0”, Rheinfelden, Germany 

Diesmann, M (February 15, 2016) Talk “Brain-scale simulations of cortical networks at 
cellular and synaptic resolution” SFB 936 „Multi-Site Communication in the Brain“, Hamburg, 
Germany  

Diesmann, M (June 22-24, 2016) Talk “Progress and challenges in bottom-up network 
modeling”, MONA2 – Modelling Neural Activity, Waikoloa, Hawaii  

Diesmann, M (February 22-23, 2016) Talk “Necessity and feasibility of brain-scale simulations 
at cellular and synaptic resolution”, 6th AICS International Symposium, RIKEN AICS, Kobe, 
Japan 

Diesmann, M (Aug 29 – Sep 2, 2016) Talk “Multi-area model of macaque visual cortex at 
cellular and synaptic resolution” 12th International Neural Coding Workshop, Cologne, 
Germany 

Diesmann, M (February 24th, 2016) Talk” Simulations of macaque cortical networks 
at cellular and synaptic resolution”, Osaka, Japan 

Diesmann, M (October 3-4, 2016) Talk “Brain-scale simulations at cellular and synaptic 
resolution” Workshop “Vision over vision: man, monkey, machine, and network models”, 
Osaka, Japan 

Diesmann, M (April 24-29 2016) Talk “Necessity and feasibility of brain-scale simulation at 
cellular and synaptic resolution” Workshop on High-Performance Computing, Stochastic 
Modelling and Databases in Neuroscience, São Paulo, Brazil 

van Albada SJ, Deco G, Gilson M. Workshop "Multi-area models of cortex", CNS*2016. 

 

Related to T4.1.3: 

Organization of the 9th Bernstein Sparks workshop by Farzad Farkhooi (TU Berlin), Guillaume 
Lajoie (U Washington), and Moritz Helias (INM-6/IAS-6) on the topic “Recent advances in 
recurrent network theory: fluctuating correlated dynamics across scales” in Goettingen. 
Olivier Faugeras gave an invited talk. 
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Gustavo Deco,UPF: 

– Gustavo Deco. Oral presentation (invited speaker). BrainModes 2016: coordinated brain 
activity: foundations and applications. Royal Flemish Academy of Belgium for Science and 
the Arts, Brussels, Belgium. December 1-2, 2016. Title of presentation: "Towards a Whole-
Brain Model: Lessons from the Human Connectome." 

– Gustavo Deco. Oral presentation (invited speaker). Alpine Brain Imaging Meeting 2017. 
Champéry, Switzerland. 8th – 12th January 2017. Title of presentation: "Novel concept of 
intrinsic ignition characterises the broadness of communication underlying different brain 
states." 

- Gustavo Deco. Oral presentation (keynote speaker). MICCN Computational Neuroscience 
Symposium 2017. Monash Biomedical Imaging Auditorium, Monash, Australia. February 3rd 
2017. Title of presentation: "Towards a global model of brain activity: How to identify brain 
states?" 

Einevoll, NMBU: 

- Ness, Remme, Einevoll. Active subthreshold dendritic conductances shape the Local Field 
Potential. Poster presented at Young Researchers Event, April 2016  

- Ness, Remme, Einevoll. Active subthreshold dendritic conductances shape the local field 
potential. Poster presented at HBP summit, October 2016 

- Næss, Ness, Dale, Einevoll, Understanding EEG with Biophysical Modeling. Poster 
presented at NRSN PhD Conference, September 2016 

- Næss, Ness, Halnes, Halgren, Dale, Einevoll. Biophysical modelling of single-neuron 
contributions to EEG and ECoG signals. Poster presented at SfN, November 2016 

Olivier Faugeras, INRIA: 

Organization of the 9th Bernstein Sparks workshop by Farzad Farkhooi (TU Berlin), 
Guillaume Lajoie (U Washington), and Moritz Helias (INM-6/IAS-6) on the topic “Recent 
advances in recurrent network theory: fluctuating correlated dynamics across scales” in 
Goettingen. Olivier Faugeras gave an invited talk. 

Sonja Grün, JUELICH: 
All related to T451 

Grün, participated at the booth at the Brain Initiative Meeting in Bethesda, Dec 2016 

Gruen, Talk `Analysis of large-scale recordings of neural activity in vivo and in silico`, 
Intern. Workshop ‘Introduction to the HBP Collaboratory’, Copenhagen, Denmark, FENS, July 
2016 

Senk et al, Talk ‘Integrating HPC into a Collaborative Simulation-Analysis Workflow for 
Computational Neuroscience’, JARA-HPC Symposium, Aachen, Germany Oct 2016 

Denker, Poster: ‘Challenges in Designing Workflows for Reproducible Analysis of 
Electrophysiological Data – Usage of Community Tools’, INCF Neuroinformatics 2016, UK, 
Sept 2016 

 

28. Education 
SP4 and EITN help in the dissemination of the HBP education programme and activities when 
contacted and also facilitate the hosting of events related to education programme.  
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Gaute Einevoll, NMBU: 

Computational Neuroscience: Bridging brain scales with mathematics. HBP Curriculum – 
Neurobiology for non-specialists. Lecture 13 , held at the EITN, Paris, 2017 June 21-23: 
Computational Neuroscience: Bridging brain scales with mathematics 
https://www.youtube.com/watch?v=8KJLE4j92QM 

Alain Destexhe, CNRS: 

3rd HBP Winter School “Future Neuroscience _ The Multiscale Brain: from genes to Behaviour” 
on the 1st of December 2016, in Obergurgl, Austria. Lecture on Multiscale modelling. 

Sonja Grün, JUELICH: 

organisation of “Advanced course on Neural Data Activity”, held in Haus Overbach, Jülich, 
from March 26 -April 8 2017 

 

29. Ethics 
At the beginning of SGA1 the Ethics Rapporteur (ER) Gorka Zamora-López, from UPF, took 
over the ER responsibilities for SP4. He has since then participated in all Ethics and Society 
activities requested, including the joint ER – Ethics Advisory Board meeting organised by 
SP12 at the HBP Summit (October 2016, Florence).  

In June 2016, prior to the SIB meeting SP4 prepared an internal evaluation of Ethical issues 
as requested by the Ethics Management team. As a theoretical SubProject, none of the work 
packages in SP4 involves carrying out experiments with neither animals nor humans. 
Nevertheless, for model validation and analysis, SP4 researchers use and manipulate third 
party animal and human data acquired within and outside the HBP. However, several deficits 
were identified in what respects the storage and manipulation, in particular non-HBP and 
3rd country data. Action has been taken to inform the SP4 partners about correct storage 
and manipulation of empirical data, e.g. the need to request always, together with the data, 
the third-party re-use consents. 

SP4 has raised several ethical and legal questions which are currently being discussed by the 
competent organs within HBP. 

· While HBP encourages the public release of data acquired and software generated by 
the Project members, the legal requirements and support to do so need clarification 
because it may remain unclear to whom legally belongs the data acquired with HBP 
funding and who is the legal owner of the software developed within HBP. 

· Communications between HBP partners, data storage and HBP-related 
documentation needs the establishment of criteria and policies to guarantee privacy 
and confidentiality. Unfortunately, due to the lack of secure alternatives HBP 
members are often pushed to make use of unsecure means of communication, data 
transfer and cooperative documentation tools, e.g. the use of Google Docs for the 
creation of classified documentation. 

30. Innovation 
No innovation to report. 

31. Open Research Data 
Markus Diesmann, Juelich: 

Kunkel S et al. (2017). NEST 2.12.0. Zenodo. 10.5281/zenodo.259534. 

Related to T4.2.1 

https://www.youtube.com/watch?v=8KJLE4j92QM
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