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Figure 1: (Left) In- and (Right) anti- phase synchronization between brain hemispheres (KR4.6) 
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DESCRIPTION OF CHANGES: 

Here are the changes detailed, and comments regarding those. 

(1) As requested, we now provide a table summarizing the status of all milestones in SP4 (Appendix 
II: Milestones Status). Note that the milestones (4.1.3/4.3.1/4.4.3, in red and italics) which have 
been achieved after the first submission of the deliverable will be reported in the Month 18 report. 

(2) As suggested we have identified the key tasks in HBP and platform activities where SP4 models 
contribute. We also have identified the datasets in SP1, SP2, SP3 which were (or will be) used to 
constrain the models developed in SP4.  This information was compiled in a table, which is now given 
in Appendix III: Contributions, Data used and Platform. We plan to complete this table by the end of 
SGA2, so that each task is fully connected with the rest of HBP. 

(3) As suggested, an updated publication list which contains the most recent publications (some of 
them were in arXiv or bioRxiv in the report) – see Appendix IV: List of Publications in SGA2. Note 
that the publications of SGA2 Year 2 (in red and italics) will be reported in the Month 18 report. 

We think that no redistribution of resources is needed at this point. All milestones are on track, with 
slight delay for a couple of them (see Appendix II), so we can say that all activities of SP4 are 
globally on track with no major concern. 

Also note that nearly all research themes of SP4 will be continued in SGA3, with more emphasis on 
large scale models and models based on human data.  The activities in SGA2 Year 2 will emphasize 
these themes to ensure a smooth transition to SGA3. 
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1. Overview 
The first work-package of SP4, WP4.1, has progressed towards the exploration of the computational 
role of dendrites as well as towards integrating dendritic models in neuromorphic hardware. The 
design of mean-field models has also progressed very well, with several papers published including 
the MIIND simulator. Finally, models of brain signals have made essential steps with the modelling 
of calcium imaging signals (using neuroscience experiments from the project), and the development 
of tools such as LFPy. 

WP4.2 made further steps towards the construction of a multi-layered model covering 4mm x 4mm 
cortical surface. This is documented in two arXiv pre-prints (Senk et al. 2018a,c), and van Albada et 
al. 2018 reports on the successful transfer of the microcircuit building block to the SpiNNaker system. 
In addition, a model of astrocyte-glia interaction was submitted to PLoS CB (Manninen et al.). Finally, 
Schmidt et al. 2018a,b reports on an initial multi-area model where each area is represented by a 
microcircuit.  

In WP4.3, major progress has been made on a Lagrangian formulation of synaptic plasticity rules 
that provide a biologically attractive alternative to the Back-propagation algorithm. Overall, the 
partners have worked towards translating synaptic plasticity rules to hardware and to explore 
biologically motivated learning paradigms and algorithms in software. 

All tasks of WP4.4 have shown satisfactory advances. At the macroscopic level, a model-based 
inference of stimuli propagation over large-scale brain activity was proposed. At the mesoscopic 
level, a model simulating brain activity of mice recorded via calcium imaging was developed, 
including adaptation to capture different brain states. Models of spatial navigation were also 
extended to include planning and memory. At the microscopic level, models of the retina are now 
being implemented at the population level; whilst the model of basal ganglia for motor control 
shifted from point-neurons to multi-compartment neuron models, thus allowing to capture empirical 
observations arising from dendritic plateau potentials.  

WP4.5 has developed minimally invasive network interventions for stopping seizure propagation in 
epileptic patients. We also explained a specific seizure onset pattern observed using depth 
electrodes in some epileptic patients. Regarding the comparison of activity dynamics between 
models and living brains, a phenomenological model of delay-coupled oscillators was applied to 
identify underlying principles by which the spatio-temporal structure of the brain governs phase lags 
between distant brain regions. A validation process has also been established for network 
simulations, specifically against massively parallel activity data from experiments on a statistical 
level. 

2. Introduction 
SP4 is responsible for the theoretical neuroscience part of the HBP, and is involved in designing 
models at various scales, from cellular models up to whole-brain level. SP4 also develops strong 
interactions with all the platforms, from SP5 to SP10.  It also has tight links with many of the 
experimental neuroscience data (SP1 to SP3).  In this deliverable, we report the progress made in 
the different models developed in SP4, and how they connect to the key results of the HBP. 
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3. Key Result KR4.1: Develop models of single-cell 
and population levels 

3.1 Outputs 

3.1.1 Overview of Outputs 

Table 1: Overview of outputs for Key Result KR4.1 

Output Component number(s) Component name(s) Additional information 

Simplified dendritic 
models C951 Complex to Simplified 

Models T4.1.1 

Input-Output Transfer 
function of detailed 
morphological models 

C2453 

Input-output 
"correlation" transfer 
properties in simplified, 
"ball-and-stick", multi-
compartmental models 

T4.1.2 
Contributes to KR4.1 
and KR4.5 

C2454 + C2455 

Input-output 
"correlation" transfer 
properties in 
reconstructed multi-
compartmental models 
of rodent + human 
cortical neurons 

C951 Complex to Simplified 
Models 

C1031 

Mean-field models of 
interacting spiking 
neurons with dendritic 
compartment 

Mean-field and population 
models 

C1031 

Mean-field models of 
interacting spiking 
neurons with dendritic 
compartment 

T4.1.3 
Contributes to KR4.1 
and KR4.5  

C2357 Slow-fast effects in 
mean-fields models 

C1030 

Mean-field models of 
interacting populations 
of rate and spiking 
neurons 

C2742 Application of Mean-
field simulations (MIIND) 

Biophysical models of 
brain signals C1234 Model of calcium 

imaging signals T4.1.4 
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3.1.2 Simplified dendritic models 

Task T4.1.1 

We derive simplified neuron and neural circuit models from biophysically and morphologically 
detailed models. We continued to study the correlation processing in neurons with simplified 
dendrites. We adjusted the parameters of our model to have a level of dendritic spikes activity 
similar to that observed in recent in vivo experiments (J. Moore et al. 2017). To better understand 
the mechanisms behind synaptic correlation processing, we also looked more specifically at dendritic 
firing rate responses to correlated synaptic input in addition to somatic firing rate responses. By 
doing this, we verified that interactions between dendritic spikes are responsible for the inverse 
correlation processing seen previously in somatic firing (Fig. 1-2, Gorski et al., 2018). 

We also showed analytical estimation of the dendritic spikes collision rate. Assuming a constant 
velocity of dendritic spikes’ propagation and a uniform distribution of dendritic spikes, the number 
of direct collisions is proportional to the length of the dendrite, while the sole effect of 
refractoriness does not scale with the length of a dendrite. 

We are currently studying the correlation processing in more complex morphologies (Fig. 3). While 
inverse correlation processing is present in this kind of morphologies, here we can also analyse 
branch-specific synaptic correlations. 

Implementation of our models on neuromorphic hardware involved re-writing our Hodgkin-Huxley 
model code in PyNN language. The AdEx mechanism will be implemented in PyNN by SP5, thus paving 
the way for running network model on BrainScaleS2 neuromorphic hardware. 

 

Figure 2: Comparison of dendritic and somatic spikes. 
(a) Membrane voltage in the dendrite at 500 μm from soma. (b) Membrane voltage in soma. Most of the dendritic 
spikes cannot actively invade soma causing depolarizations with amplitudes of few millivolts. 
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Figure 3: Somatic and dendritic spikes 
(a) Ratio of dendritic spike firing to somatic spike firing as a function of the density of dendritic sodium channels. The 
somatic firing rate was kept at a constant level of 15 Hz by adjusting the input firing rate while changing channel 
densities. The input spike trains were uncorrelated. Dendritic spikes were detected in the middle at 500 μm from the 
soma. (b) Somatic and dendritic firing responses correlated with synaptic activity.  

 
Figure 4: More complex dendritic morphologies affect synaptic correlations processing. 

The model can be interrogated on branch specific correlations. 
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3.1.3 Input-Output Transfer function of detailed 
morphological models 

Task T4.1.2 

UA built spiking models from three-dimensional reconstruction of human neuronal morphologies from 
SP2 (H. Mansvelder). To explore the functional consequences of dendritic trees’ size in these cells, 
we studied the dynamical transfer properties of multi-compartmental models based on these 
morphologies. We found that larger dendrites correlate 1) with more rapid action potential (AP) at 
the onset and 2) with a broader transmission bandwidth, extending well beyond 100 cycles/s (Fig. 
4). 

Within the same task, UA received data from in-house in vitro experiments in rodent cortical tissue. 
To extend the dynamical response characterization of the simplest microcircuits (i.e. pairs of 
neurons), UA focused on the somatosensory L5 microcircuits. We applied and validated for the first 
time a theoretical approach linking unique dynamical transfer properties of pyramidal cells, SOM-
positive interneurons, and PV-positive interneurons to the spike-count covariance of pairs of cells 
receiving a known fraction of common inputs (Fig. 5). 

 

Figure 5: Higher total dendritic length results in faster AP at onset and wider transmission 
bandwidth 

This work appeared in eLife at the end of 2018. 

 
Figure 6: Predicted & measured spike-count covariance match, validating linear response 

theory 
A manuscript has been submitted to the Journal of Neuroscience. 
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3.1.4 Mean-field and population models 

Task T4.1.3 

Mean-field models of a network of stochastic spiking neurons with dendritic compartment 

The dendrites of many neurons are endowed with active mechanisms, which confer them properties 
of excitability and enable the genesis of local dendritic spikes. In this work, we consider the 
propagation of dendritic spikes in a single dendritic compartment. Because the dendrite morphology 
is modelled after a half-line, dendritic spikes propagate in both directions, although with possibly 
different speeds. Two dendritic spikes propagating in opposite directions will cancel out when they 
collide as in the case of the axon. We focus on an abstract description of this non-linear behaviour 
that is more amenable to analysis. This description reveals a rich mathematical structure that we 
study through the use of combinatorics. This also provides an algorithm for an efficient simulation. 
In passing, we link this description to the famous Ulam problem opening the door for a mean-field 
model. 

We can now describe an isolated neuron as follows: whenever a dendritic spike reaches the soma, it 
triggers a depolarization. For simplicity, we put a spiking mechanism in the soma modelled after a 
generalized integrate-and-fire model. We call this a Ball-and-Stick (BaS) neuron. We then study the 
large N limit of networks of N excitatory BaS neurons. Among other findings, we are able to extract 
the right scaling for the synaptic weights, allowing for a large N limit which we derive. Intensive 
numerical simulations are presented for cases not covered by our mathematical results. This is one 
of the first pieces of work on mean-field limits of networks of spiking neurons with a dendritic branch 
(Fig. 6). Its significance is in demonstrating how to scale conductances when networks of neurons 
with dendritic compartments are considered. This work has been accepted for publication in Annales 
de l'Institut Henri Poincaré (B) Probabilités et Statistiques (2019). 

 

Figure 7: Mean-field limits of networks of spiking neurons with a dendritic branch. 
Top: Comparison of the Firing rate in the finite size network and the mean-field limit. Middle: density plot of 
membrane potentials g(t,v) in the mean-field. Bottom: empirical density in the finite size network. 

Study of a mean-field of network of spiking neurons with non-linear Integrate-and-Fire dynamics 

The family of two-dimensional non-linear spiking neuron models (Gerstner et al. 2014) is efficient in 
reproducing the majority of observed membrane potential behaviour, such as bursting. 

As described in previous studies (De Masi et al., 2015; Fournier et al., 2016), we use a stochastic 
firing mechanism of jump type with rate function lambda only depending on the membrane 
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potential, followed by a reset. We then considered a large number (N) of excitatory neurons each 
connected to randomly chosen N other ones. The firing of one neuron induces a size jump J/N of the 
membrane potential of the post-synaptic neurons. The goal of the present work is to analyze the 
(heuristic) mean-field limit. General studies of this problem are scarce. 

The contributions of this work are two-fold: theoretical and numerical. The main theoretical 
advances are the proof of existence of invariant distribution, which is notoriously difficult for jump 
processes (Fig. 7). This is done by showing that an isolated neuron with arbitrary current is ergodic, 
thanks to the fact that the embedded Markov chain $(\bar v, w_n)_n$ is one-dimensional here. We 
then analyzed the PDE limit and analyzed its equilibrium and (linear) stability based on the analysis 
of the isolated neuron. This allows prediction of collective oscillations.  

On the numerical side, we developed an adaptive implicit positive and conservative scheme, which 
has second-order accuracy in time in order to simulate the dynamics of the mean-field limit. Without 
this scheme, the simulation of the mean-field is extremely unstable due to the reset mechanism. 
Finally, we are able to perform numerical bifurcation analysis of the PDE and predict multi-stability 
and collective oscillations. 

 

Figure 8: Example of invariant distribution for a neuron in a bursting firing regime 
Example of invariant distribution for a neuron in a bursting firing regime, visible as the density present on the reset 
line. 

Long-term behaviour of a mean-field model of interacting neurons 

We model the steady-states of a network of integrate-and-fire neurons in interaction. The dynamics 
are as follows: 

• between two spikes, the membrane potential of each neuron i evolves according to a 
deterministic one-dimensional equation   

• a neuron spikes randomly at time t with a rate depending on its potential 𝑓𝑓(𝑉𝑉𝑡𝑡𝑖𝑖). 

• when neuron i spikes, its potential is reset to a deterministic constant and the membrane 
potential of the post-synaptic neuron receives small kicks 𝐽𝐽𝑖𝑖𝑖𝑖 

We studied the long-term behaviour of the limit system when the number of neurons in the network 
approaches infinity.  

First, the value of the synaptic weights is:  𝐽𝐽
deg(𝑖𝑖), where the degree  deg(𝑗𝑗) of the neuron j is the 

number of incoming synapses. The mean-field equation is obtained when the size of the network 
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approaches infinity. The membrane potential of a typical neuron evolves according to a jumping 
non-linear McKean Vlasov equation. 

We obtained the explicit Volterra equation satisfied by the spiking rate function of a typical neuron. 
We proved that for small synaptic weight J, a unique equilibrium exists to the McKean Vlasov 
equation and any solution converges exponentially fast to this equilibrium. For larger J, even in a 
pure excitatory (sub)-network, we observed spontaneous oscillation and a bi-stability phenomenon 
(Fig. 8). 

  

Figure 9: Mean–field model of interacting neurons. 
Left: dynamics of a single neuron in the network. Right: example of Raster plot for the network. 

Mean-field dynamics of networks with correlated synaptic weights 

The mean-field effects are well-known in networks of interacting neurons with deterministic 
synaptic weights. In this work, we generalized the study to more realistic settings in which the 
unknown synaptic weights are modelled with correlated random variables. 

We proved that the size of the synaptic weights can be of the order of 1/√𝑁𝑁 instead of 1/𝑁𝑁 in the 
deterministic setting. Moreover, the limit equation does not satisfy the propagation of chaos 
property. In other words, even in the mean-field limit, the activity of two typical neurons is still 
correlated. In the deterministic setting, the propagation of chaos property holds: two typical neurons 
have independent activities in the thermodynamic limit (Fig. 9). 

  

Figure 10: Mean-field and synaptic weight correlation. 
Left: plot showing the absence of correlation between the activities of two typical neurons when synaptic weights 
are uncorrelated. Right: significant amount of correlation when they are. 



   
 

 
D4.7.1 (D27.1 D18) SGA2 M12 ACCEPTED 201005.docx PU = Public 15-Oct-2020 Page 17 / 83 

 

Biologically realistic mean-field models 

We extended our work on building mean-field models, which describe neural dynamics at the 
mesoscopic scale. Using few equations, these models predict the time-course of global quantities 
(e.g. a population spiking activity) of a network composed by a large number of interconnected 
neurons. We extended previous work (Zerlaut et al., 2018) by deriving a mean-field model that takes 
explicitly into account spike frequency adaptation, a very important property observed in excitatory 
neurons. This improvement makes the model biologically realistic and allows correct prediction of 
mean spontaneous activity in asynchronous irregular regimes, which are typical of wake states. 
Consistently, this was also possible in the previous version of the model, which considers adaptation 
as stationary, as it actually happens during spontaneous activity of asynchronous dynamical states. 
Nevertheless, by introducing spike frequency adaptation as a dynamical variable in the new version, 
we are also capable of correctly predicting transient responses to external stimuli. Figure 10 shows 
how the new mean-field version (Mean-field, green line) accurately captures the activity measured 
through a computer simulation of the corresponding network composed of 10,000 coupled neurons 
(Network, noisy green line), at variance with the previous version of the model (Stationary MF, red 
dashed line). 

Moreover, by introducing adaptation as a dynamical variable, the present model is capable of 
quantitatively predicting network dynamics during slow oscillations, which are characterized by the 
alternation of low and high activity periods typically observed during anaesthesia or deep sleep. This 
can be appreciated by comparing direct simulations of the network (Fig. 11A-B) and mean-field 
model (Fig. 11C).  

Furthermore, thanks to the simplicity of the model, we gained a mechanistic understanding of the 
processes yielding these oscillations, as interplay of neural noise and spike frequency adaptation 
acting on a bi-stable system characterized by a down- and an up-state (Fig. 11D). 

We conclude that the new mean-field model is “biologically realistic” i.e. it can capture both 
spontaneous and evoked activity during wake and sleep states. Therefore, this model appears a 
suitable candidate for the design of very large-scale models involving multiple brain areas. 
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Figure 11: Population activity of excitatory sub-population of a network of N=10,000 neurons 

Population activity of the excitatory sub-population of a network of N=10,000 neurons (noisy green line) in the 
presence of different time-varying external stimuli. Superimposed are the mean and standard deviation over time 
predicted by the mean-field model. Bottom panels represent the time-course of the external stimulus. Red dashed 
lines are the theoretical prediction based on the previous mean-field model version where the adaptation variable is 
fixed to its stationary value. 

 
Figure 12: Raster plot of a spiking network of N=10,000 neurons 

A) Each dot represents a spiking event from a specific neuron. B) Average firing rate (green=excitation; 
red=inhibition). C) Corresponding mean-field model dynamics. D) Phase-plane derived from mean-field with 
superimposed the firing rate (green dots) of the network dynamics (B). Green dashed arrows are used to guide the 
eyes through the spiking network trajectory during DOWN-UP cycle. 
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Application of mean-field simulations (MIIND) 

We spent considerable effort parallelizing our code. In the end, a CUDA implementation was the 
most efficient, leading to simulation times comparable to NEST, but using an order of magnitude 
less memory, thereby allowing a large-scale 80GByte 16 thread OpenMP simulation to be moved from 
HPC cluster to PC, equipped with GPU. The version of MIIND with CUDA implementation has been 
installed on the JURON machine of the HBP cluster (Fig. 12). We are now ready to produce network 
models in MIIND and provide an example of work in progress on spinal cord circuitry. 

Muscle synergies are canonical patterns of temporally-linked muscle activations and inhibitions, 
which are combined to produce the complexities of motor control. The role of proprioception in the 
muscle synergy hypothesis of motor control is unclear. The Chakrabarty group (University of Leeds) 
identified two synergies responsible for control of knee flexion accounting for >90% variation across 
participants. 

Having demonstrated that static proprioceptive feedback influences muscle synergy recruitment, we 
then reproduced this pattern of activity in a neural population model. We used the MIIND neural 
simulation platform to build a network of populations of motor neurons and spinal interneurons with 
a simple Integrate-and-Fire neuron model. Two mutually inhibiting populations of both excitatory 
and inhibitory interneurons were connected to five motor neuron populations, each with a balanced 
descending input (Fig. 13). The synergies arise naturally from the connectivity of the network and 
afferent input. This suggests muscle synergies could be generated at the level of spinal interneurons 
wherein proprioceptive feedback is directly integrated into motor control. 

 

Figure 13: MIIND 
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Figure 14: Application of MIIND. 
Proprioceptive feedback effects muscle synergy recruitment during an isometric knee extension task. 

3.1.5 Biophysical models of brain signals 

Task T4.1.4 

We aimed to model the calcium signal expected from the activity of a spiking network. We recorded 
the membrane potential (Vm) values of 10 neurons in each excitatory and inhibitory population 
during the simulations. Increases in the Vm lead to an inward calcium current through voltage-
dependent channels. These currents increased the calcium concentration inside the cells, which had 
been previously loaded with a calcium indicator. Binding of the calcium ions to the calcium indicator 
produces a fluorescence F(t) signal, which is proportional to the amount of calcium ions. This is the 
measured signal (calcium, two-photon, Fig. 14). We modelled this signal for 10 cells in each 
population and then computed the average fluorescence, describing the dynamical changes observed 
at the spiking level (Fig. 15). 
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Figure 15: Computation of fluorescence (F) associated with increased Vm 

Computation of fluorescence (F) associated with increased Vm and spikes or action potentials (AP) triggering the 
activation of calcium channels and producing intracellular calcium increase. Right: formulas used to calculate F. 

 
Figure 16: Average fluorescence in excitatory and inhibitory neuronal populations 

Average fluorescence in excitatory and inhibitory neuronal populations at each level of adaptation. This reproduces 
changes in dynamics observed both experimentally (two-photon signals) and in the spiking network model. 
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Modelling of local field potentials 

Action potentials (APs) are electric phenomena that occur both intracellularly and extracellularly. 
APs are usually initiated in the short segment of the axon called Axon Initial Segment (AIS). It was 
recently proposed that at onset of an AP the soma and the AIS form a dipole. We studied the 
extracellular signature (extracellular action potential, EAP) generated by this dipole. We first 
demonstrated the formation of the dipole and its extracellular signature in detailed morphological 
models of a reconstructed pyramidal neuron. Then, we studied the EAP waveform and its spatial 
dependence in models with axonal AP initiation and contrast it with the EAP obtained in models with 
somatic AP initiation. As shown in Figure 16, in models with axonal AP initiation, the dipole forms 
between somato-dendritic compartments and the AIS, and not between soma and dendrites, as in 
the classical models. The soma-dendrite dipoles are present only in models with somatic AP 
initiation. The two dipole configurations produce different extracellular potential (LFP) signatures. 
Thus, this study has consequences not only for interpreting extracellular recordings of single-neuron 
activity and determining electrophysiological neuron types, but also for validating models against 
experimental data. 

 
Figure 17: Comparison of the extracellular potentials generated by models with axonal (left) or 

somatic AP initiation (right). 
A) Membrane potential in the soma (orange) and in the end of the AIS (blue). Dotted vertical lines show at which time 
points B-D are recorded. B–D) Extracellular potential (color-map: see color-bar on the right, red=positive and 
blue=negative) and electrical current (arrows) at different times of APs plotted for around whole morphology (left) 
and around the soma–AIS region (right). Recordings were made at: 0.15msec before the peak of the AP in the AIS (B), 
at the peak of the AP in the AIS (C), 0.4msec after the peak of the AP in the AIS (D). The two models give different 
dipole configurations, and this affects the extracellular potential. (From Telenczuk et al. eNeuro, 2018) 
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3.2 Validation and Impact 

3.2.1 Actual Use of Output(s) / Exploitation 

The MIIND simulation experiment has been performed in a virtual environment within the 
Neurorobotics Platform. 

3.2.2 Potential Use of Output(s) 

Task T4.1.2 

The reconstructed human cortical pyramidal cells, turned into spiking neuron models, can be 
immediately incorporated in large scale simulation of the human cortex. 

The computational analysis performed within this task can be applied and generalised to 
morphologically accurate models of biological neurons.  

Our discovery of slow “intra-burst” oscillations emerging in simplified recurrent networks of 
excitatory neurons may be immediately translated in more accurate models of neocortical neuronal 
networks, bridging theoretical and experimental observations in a model of genetic disease 
(Moskalyuk, 2019). 

Task T4.1.3 

The biologically realistic mean-field model can be used for the design of large-scale models involving 
multiple brain areas. 

3.2.1 Publications 

• de Kamps M, Lepperød M, Lai YM (2019) Computational geometry for modeling neural 
populations: From visualization to simulation. PLoS Comput Biol 15(3): e1006729. 
https://doi.org/10.1371/journal.pcbi.1006729 

o Significance: The authors describe a new geometrical method to design population models 
and show that it is applicable to a wide variety of models. 

• di Volo M, Romagnoni A, Capone C , Destexhe A (2019)  Biologically realistic mean field models 
of conductance-based spiking neurons with adaptation, Neural Computation 31: 653-680.  

o Significance: The authors provide a mean-field model of unprecedented biological realism 
that can capture the response of a network to various inputs, as well as the dependency of 
the response to the state of ongoing network activity. 

• Goriounova NA, Heyer DB, Wilbers R, Verhoog MB, Giugliano M, Verbist C, Obermayer J, Kerkhofs 
A, Smeding H, Verberne M, Idema S, Baayen JC, Pieneman AW, de Kock CPJ, Klein M, Mansvelder 
HD (2018) Large and fast human pyramidal neurons associate with intelligence, eLife 7:e41714, 
https://doi.org/10.7554/eLife.41714 

o Significance: Using a combined experimental and modelling approach, the authors show that 
human pyramidal neurons of individuals with higher IQ scores sustain fast action potential 
kinetics during repeated firing and display wide information transmission bandwidth. 

Total number of publications: 10 

3.2.2 Measures to Increase Impact of Output(s): 
Dissemination 

• Results from MIIND (C2742) applications were presented at CNS2019 and will be uploaded as a 
paper on arXiv. 

https://doi.org/10.1371/journal.pcbi.1006729
https://doi.org/10.7554/eLife.41714
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4. Key Result KR4.2: Plausible biological models of 
plasticity for large networks with non-trivial 
functionality 

4.1 Outputs 

4.1.1 Overview of Outputs 

Table 2: Overview of outputs for Key Result KR4.2 

Output Component number(s) Component name(s) Additional information 

Synaptic plasticity and 
learning 

C1066 Plasticity models T4.3.1 

C66 (completed) Plasticity: STDP for 
structural plasticity 

Learning in networks of 
neurons 

C2472 Plasticity: multifactor 
rule for deep networks 

T4.3.2 

Functional Plasticity for 
multi-compartment 
neurons in a multi-scale 
simulation framework 

C2420 Plasticity: prototype 
implementations of 
rules and testing within 
and without the SP9 
platforms 

T4.3.3 

Motor control model C1025 Motor control model T4.4.3 
Contributes to CDP1 and 
CDP4 

4.1.2 Synaptic plasticity and learning 

Task T4.3.1 

(UBern) The tag & capture rule and the natural gradient rule are currently in discussion with the 
Heidelberg group for implementation in the neuromorphic hardware. Both rules achieve improved 
performances as compared to standard gradient-based learning rules and even more so as compared 
to phenomenological rules, such as classical SDTP. 

(EPFL) Model of Neurogenesis in hippocampus: Neurogenesis is part of the learning mechanism used 
by the brain to store novel data in the hippocampus. Adult neurogenesis of dentate granule cells 
(DGC) only concerns a small percentage of the dentate gyrus (DG) cell populations; yet, it has been 
shown to promote behavioural pattern separation from similar stimuli in a variety of tasks. The 
properties of new-born DGC evolve as a function of maturation: only cells that are well-integrated 
into the DG survive. This process critically depends on GABAergic input. The latter is excitatory in 
the early maturation phase and becomes inhibitory later in maturation. The modelling work of Olivia 
Gozel (EPFL-LCN) studies why the switch from excitation to inhibition in adult DG neurogenesis is 
crucial for proper integration. To our knowledge, we present the first model that can explain both 
how adult new-born DGC integrate into the pre-existing network and why they promote pattern 
separation of similar stimuli (C1066). 

Eligibility Traces and 3-factor learning rules (C1066 and C2472): Synaptic eligibility traces are a 
major ingredient that enables the brain to link reward to the earlier activity of neurons. The basic 
idea is that joint activity of a pre-synaptic and a post-synaptic neuron leaves a trace at the synapses 
which is transformed into a weight change only if a neuromodulatory signal occurs in parallel or 
within the next few seconds. The neuromodulator could broadcast information on reward or surprise. 
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Structural Plasticity in Recurrent Networks (C66): Excitatory synaptic connections in the adult 
neocortex consist of multiple synaptic contacts, which are almost exclusively formed on dendritic 
spines. Mortiz Deger at EPFL-LCN developed a combined model of structural and spike-timing–
dependent plasticity that explains the multi-contact configuration of synapses in adult neocortical 
networks under steady-state and lesion-induced conditions. Our plasticity rule with Hebbian and 
anti-Hebbian terms stabilizes both the post-synaptic firing rate and correlations between the pre- 
and post-synaptic activity at an active synaptic contact. Contacts appear spontaneously at a low 
rate and disappear if their strength approaches zero.  

4.1.1 Learning in networks of neurons 

Task T4.3.2 

(UBern) We describe a concrete example of a spike sampling network which learns to dream 
handwritten digits (MNIST) and is amenable to implementation in neuromorphic hardware. 

(EPFL) Combined unsupervised and supervised learning in Layered Networks (C2472): We 
investigated a simplistic network with one hidden layer and a single readout layer. The hidden layer 
weights are either randomly fixed or trained with an unsupervised, local learning rule implementing 
Sparse Coding. This achieves 98.1% test accuracy on MNIST, which is close to the optimal result 
achievable with error-back-propagation in non-convolutional rate networks with one hidden layer. 

(Weizmann) Modeling of free recall of randomly assembled lists of words: Free recall of random lists 
of words is a standard way to probe human memory. We propose (Romani et al., 2013; Katkov et al., 
2017) a deterministic step-by-step associative algorithm based on two basic principles: 1) memory 
items are represented in the brain by sparse neuronal ensembles in dedicated memory networks; 2) 
the next item to be recalled is the one having the representation with the largest overlap with the 
current one. This model predicts a simple analytical relation between the number of words acquired 
by subjects during the acquisition phase of the experiment (M), and the average number of words 
recalled (RC) (Figure 17). 

 
Figure 18: Average number of words recalled as function of average number of acquired words 
Black line: theoretical prediction. Yellow line: experimental results for presentation rate 1.5 sec/word. Green line: 
experimental results for presentation rate 1 sec/word.  



   
 

 
D4.7.1 (D27.1 D18) SGA2 M12 ACCEPTED 201005.docx PU = Public 15-Oct-2020 Page 26 / 83 

 

4.1.2 Functional Plasticity for multi-compartment neurons in 
a multi-scale simulation framework 

Task T4.3.3 

(UBern) Dendritic non-linearities distributed across multiple compartments are shown to be crucial 
to overcome random drifts in synaptic plasticity and to stabilize learning based on the dendritic 
prediction of somatic spiking. A new contrastive certainty coding model allows for a certainty-
weighted dendritic integration. 

4.1.5 Motor control model 

Task T4.4.3 

(Karolinska) During the last 12 months the previously built basal ganglia network model (Lindahl et 
al. 2017; doi: 10.1523/ENEURO.0156-16.2016) was used for testing hypotheses on basal ganglia role 
in “action selection”, and to generate hypotheses on the underlying network mechanisms. In 
particular, the model has been used for studying stop-signaling tasks (Fig. 18). 

In parallel, in collaboration with SP6, we have constructed a systems level rate-based model to 
investigate how the recently discovered populations in Globus Pallidus Externa could influence the 
action selection capabilities of the Basal Ganglia (Suryanarayana et al., 2018, 2019).  

 

Figure 19: Intrinsic organization of GPe incorporated into the model. 
In order to better define the role of the GPe in action selection, we incorporated the arkypallidal (GP-TA) and 
prototypical (GP-TI) neural sub-populations and their connectivity in the GPe. The arkypallidal neurons provide a 
massive striatal innervation. Another level of organisation of the prototypical neurons, as outer and inner GPe 
neurons, is also represented. 
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4.2 Validation and Impact 
Task T4.3.1 (EPFL) 

The interplay of single-neuron genesis and single-synapse plasticity in the model is now well 
understood, so that we can move on to networks. The relation of plasticity models with eligibility 
trace to synaptic plasticity data with delayed neuromodulators is now well understood.  

Task T4.3.2 (EPFL) 

The limits of MNIST as a benchmark for spiking neuron models with plasticity have been explored. 
The link between abstract models using eligibility traces and recent experimental data on synaptic 
plasticity under neuromodulation has been summarized in a review. 

Task T4.3.3 (UBern) 

We have validated our approach to spike-based supervised learning by 
comparison to standard ML benchmark tasks. 

4.2.1 Actual Use of Output(s) / Exploitation 

Task T4.3.3 (UBern) 

Outputs are used in CDP5. They are also used to guide integration of learning rule templates in the 
neuromorphic platforms in SP9.2 and SP9.3. We are aware that the Loihi project has expressed 
interest in the rules developed within T4.3.3. 

4.2.2 Potential Use of Output(s) 

Task T4.3.1 and Task T4.3.2 

The plasticity models developed in these Tasks are strongly inspired by the past and current work of 
Matthew Larkum (HUBERLIN, SP3). 

• EPFL: The results with plasticity for spiking neurons that are established here are transferable 
to neuromorphic spiking chips. The transfer is ongoing and happens via CDP5. 

• UBern: The plasticity rules developed in T4.3.1 (and tested in T4.3.2) are continuingly discussed 
with the Heidelberg group (SP9, through Mihai Petrovici) for their hardware implementation. The 
transfer happens via CDP5. 

Task T4.3.3 (UBern) 

The learning rules developed and l transformed to the NM platforms need to undergo another cycle 
of validation and need to be better integrated into the existing platforms to enable testing on a 
large scale. 

The learning rules once fully adapted to the platforms offer the promise of competitive performance 
of spike-based neuromorphic computations with respect to standard AI approaches. 

Rules are being integrated into the NM platforms of SP9. 

4.2.3 Publications 

• Wybo WAM, Torben-Nielsen B, Nevian T, Gewaltig MO (2019). Electrical Compartmentalization 
in Neurons. Cell Reports 26, 1759–1773, https://doi.org/10.1016/j.celrep.2019.01.074. 

o Significance: The paper presents a rigorous mathematical formalism to link the dendritic 
arborisation to an impedance-based tree graph and from there to functional dendritic 
subunits. It thus clarifies the putative role of neuronal dendrites. 

https://doi.org/10.1016/j.celrep.2019.01.074
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• Leng L, Martel R, Breitwieser O, Bytschok I, Senn W, Schemmel J, Meier K, Petrovici MA. (2018), 
Spiking neurons with short-term synaptic plasticity form superior generative 
networks. Scientific Reports 8: 10651 

o Significance: This paper links the abstract idea of generative networks used in artificial 
intelligence research to specific neuronal properties, in particular short-term synaptic 
plasticity. It shows that sampling works better in networks with short-term depression 
because a larger fraction of the space becomes accessible. 

• Katkov M., Romani S. & Tsodyks M. (2017) Memory Retrieval from First Principles. Neuron, 
94:1027-1032.  

o Significance: This paper turns a very strong, parameter-free theoretical prediction into 
experiments at the level of psychophysics of free memory recall. 

Total number of publications: 9 

4.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

• Work on the model of neurogenesis in hippocampus (T4.3.1, C1066) has been presented at the 
Cosyne Conference 2019 (Lisbon, Portugal) as Poster Number II-17. 

• Work on the model of unsupervised and supervised learning (T4.3.2, C2472) has been presented 
at the Cosyne Conference 2019 (Lisbon, Portugal) as Poster Number II-12. 

• Suryanarayana SM, Kozlov A, Hjorth J, Hellgren Kotaleski J, Gurney K, Grillner S (2018) 
Investigating action selection in the basal ganglia – computational approaches at different levels 
of biological description, FENS abstract, 2018 (T4.4.3) 

Total number of disseminations: 23 

5. Key Result KR4.3: Develop models of brain 
activity and function 

5.1 Outputs 

5.1.1 Overview of Outputs 

Table 3: Overview of outputs for Key Result KR4.3 

Output Component number(s) Component name(s) Additional information 

Collective states in 
recurrent networks 

C1030 Mean-field models of 
interacting populations 
of rate and spiking 
neurons 

T4.1.3 

C1054 Population activity 
equations: finite-N 
mean-field model for 
interacting populations 

 

Models of spontaneous 
activity and sleep 

C1235 Local network model of 
spontaneous activity in 
cortex 

T4.4.1 

https://www.nature.com/srep/
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Models of low-level vision C2296 Network model of the 
retina responding to 
complex stimuli 

T4.4.2 
Contributes to KR4.1 
KR4.3, KR4.5, and 
KRc4.1 

Whole-brain model for 
propagation of 
spontaneous activity 

C1859 Alteration of 
spontaneous activity and 
emergent dynamics 
under external stimuli 

T4.4.4 

C999 Macroscopic model of 
spontaneous human 
brain activity 

5.1.2 Collective states in recurrent networks 

Task T4.1.3 

To perform complex tasks, our brains transform inputs in a complicated, non-linear manner. Such 
transformations are implemented by large recurrent networks. Corresponding neural network models 
exhibit a transition to chaotic activity if the overall coupling strength between neurons is increased. 
This transition is believed to coincide with optimal information-processing capabilities, such as short-
term memory. Our work has shown that this coincidence is not valid for networks receiving time-
varying inputs. 

We analysed the stochastic non-linear dynamics of randomly coupled neural networks of rate units 
in the presence of fluctuating inputs and derived the dynamic mean-field theory using systematic 
methods from statistical physics (C1030). This approach reveals that fluctuating inputs shape the 
network's activity and suppress the emergence of chaos. We discover an unreported dynamical 
regime that amplifies perturbations on short time scales, but is not chaotic for longer times. In this 
regime, networks optimally memorize their past inputs (Fig. 19). 

 
Figure 20: Phase diagram of a driven network 

Gray curve: Loss of linear stability. Red curve: Transition to chaotic activity. Shading indicates memory capacity. 

5.1.3 Models of spontaneous activity and sleep 

Task T4.4.1 

We developed a spiking network model capable of reproducing the spontaneous activity of a cortical 
network during anaesthesia. We decreased the strength of adaptation to reproduce the increase in 
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frequency of the slow oscillations observed from two-photon calcium signals when decreasing the 
level of anesthesia in Thy1-GCaMP6f mice (data from the collaboration with SP1, Fig. 20). The 
network consists of an excitatory population of regular spiking neurons (RS) and an inhibitory 
population of fast spiking neurons (FS). All neurons were modelled as adaptive exponential integrate-
and-fire neurons (Fig. 21). 

The membrane potential of RS neurons is affected by spike frequency adaptation, which we modelled 
with the variable w. At each spike, w is incremented by a value b, which regulates the strength of 
adaptation. In order to simulate different levels of adaptation to model fading of anesthesia, the 
parameter b varies between 60 and 1 pA in RS cells, while the inhibitory population (FS) has no 
adaptation (Fig. 22). 

 

Figure 21: Spiking network model of spontaneous cortical activity during anaesthesia 
Frequency of slow oscillations increased as the level of anaesthesia decreased (two-photon data). 

 
Figure 22: Schematic spiking network model indicating connections between two populations 

Right: example of raster plot of neuronal spikes in a network showing slow oscillations. Bottom: equations driving the 
neuronal network dynamics. 
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Figure 23: Model of spike frequency adaptation. 
Raster plots show changes in spiking patterns in the network as adaptation strength (b) is progressively reduced to 
mimic changes observed experimentally. 

5.1.4 Models of low-level vision 

Task T4.4.2 

We develop models of the retina that accurately predict retinal network responses to complex 
stimuli and ultimately natural scenes. Our work contributes to SP10 (models of retina-brain signals 
during visuo-motor tasks). We provide them with a realistic retinal input. To do this, we built on the 
single-cell model developed in SGA1 and extended it to an entire population of ganglion cells 
responding to complex stimuli.  

Data from neuronal simultaneous recordings show that cells of the same type have specific fast-
noise correlation, probably due to gap junction coupling. We have integrated this coupling in our 
model to predict how an entire neuronal population responds to dynamic stimuli.  

We equipped an arbitrary model of single-neuron stimulus encoding with a network of couplings 
between output neurons. We developed a method for inferring both the parameters of the encoding 
model and the couplings between neurons from simultaneously recorded retinal ganglion cells (Fig. 
23). The inference method fits the couplings to accurately account for noise correlations, without 
affecting the performance in predicting the mean response. 

We have demonstrated that the inferred couplings are independent of the stimulus used for learning 
and can be used to predict the correlated activity in response to more complex stimuli. 
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Figure 24: Inference method of neuronal couplings 
A) Top: activity of one ganglion cell over repeated presentations of the same stimulus. Bottom: firing rate of the cell 
across time. B) Receptive field mosaic of the isolated OFF ganglion cells. C) Our model predicts empirical noise 
covariances when applied on a testing set (blue points). Conditionally-independent model predicts zero noise 
covariances (red). D) Same as C, but when the couplings are inferred from response to a different type of stimulation. 

Model for high-level contributions to low-level vision 

We develop functional and circuit models of integrating bottom-up with top-down processing in 
vision. We developed two main extensions of previous work: 1) we identified the contribution of 
activations proceeding from high-level visual areas, in particular IT areas, to lower-level areas, in 
particular V1. These allow the visual system to disambiguate the categorization of image features 
that cannot be reliably recognized without the top-down contribution. 2) We developed a network-
level model including a bottom-up stream, a top-down stream and their interactions.  

To reach the goal of categorizing image features which require the contribution from higher-level 
visual areas, we developed a model for the full interpretation of so-called “minimal images”. These 
are local image regions recognized with high accuracy by human observers, which become 
unrecognizable with any reduction in size or resolution. We first showed that current feed-forward 
models, including leading models based on deep-network models, cannot perform this task and their 
performance is far below human level. We next developed a functional model allowing the 
categorization of minimal images and their internal features through integration of top-down with 
bottom-up processing. 

The model uses a two-stage computation: an initial processing by a feed-forward network, followed 
by a top-down process. The top-down process uses an object model stored in long-term memory to 
search for a specific configuration of image contours. 

We recently applied this to challenging images showing people in close interaction. Images were 
significantly better interpreted than with alternative schemes using bottom-up processing alone (Fig. 
24). 
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Figure 25: Outputs of the algorithm integrating top-down with bottom-up processing. 
The model was asked to recognize the internal contours of difficult images, such as a human torso, bicycles, a horse-
head, and people interacting. These contours, which are not detected by feed-forward models, are detected in the 
current model at nearly human-level performance. 

5.1.5 Whole-brain model for propagation of spontaneous 
activity  

Neuroimaging techniques (fMRI) have been widely used to explore the associations between brain 
areas. Structural connectivity (SC) captures the anatomical pathways across the brain and functional 
connectivity (FC) measures the correlation between the activity of brain regions. However, the 
application of network theory is only a “static” representation despite the dynamic nature of time 
series obtained from fMRI. Here, we tune a multivariate Ornstein-Uhlenbeck (MOU) process: 

 

to reproduce the statistics of the whole-brain resting-state fMRI signals. The dynamic 
communicability is defined as the Green function of the MOU on the network. It describes the 
elementary and transient network response to an external impulse applied to all nodes. Formally, 
dynamic communicability is defined as: 

 

where J is the Jaccobian of the networked MOU and J0 is the Jaccobian of the intrinsic leakage. In 
contrast to classical graph theory, our model-based framework stresses the importance of taking the 
temporal aspect of fMRI signals into account, which allows us to identify a separation of time-scales 
and of individual roles of brain regions (Fig. 25). Two publications have been submitted (Gilson M. 
et al.). 
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Figure 26: Dynamic communicability 
(Top) A perturbation applied to all network nodes generates a collection of states. At early times it resembles the 
underlying connectivity, but over time the local effects of the perturbation homogenize. (Bottom) Dynamic 
communicability allows to study the temporal role of each ROI on the propagation of the perturbation. 

5.2 Validation and Impact 
Task T4.1.3 

The Collective states in recurrent networks output develops a toolbox of methods allowing the 
prediction of parameters that are optimal for the computational performance of neuronal networks. 
This toolbox opens the study of recurrent neural networks to the rich, powerful and mature set of 
methods that have been developed over decades in statistical physics. These tools will have a 
substantial impact on the design, control, and understanding of biological and artificial neural 
networks with finite numbers of units (C1054). Importantly, they go beyond the known limitations 
of mean-field theory, which lacks finite-size fluctuations and requires homogeneous network 
architectures. 

Task T4.4.2 

The low-level vision model offers a powerful and precise tool for assessing the impact of noise 
correlations on the encoding of sensory information. We have tested quantitatively our models and 
found the parameters for several major cell types of the retina. This model will also provide a 
realistic input when no stimulation is presented, and will be a realistic input to thalamus model. 
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5.2.1 Actual Use of Output(s) / Exploitation 

Task T4.1.3 

These methods are used by T4.5.1 within the HBP to constrain recurrent network models by the 
statistics of massively parallel recordings from macaque monkeys. 

Task T4.4.2 

Our work was used to study and improve recognition in deep neural network models and make them 
more stable [1]. The approach is also being used in an ongoing study by Gilbert and Freiwald at the 
Rockefeller on the recognition of local image features in the macaque monkey [2]. 

[1] Srivastava et al. Minimal Images in Deep Neural Networks: Fragile Object Recognition in Natural 
Images (International Conference on Learning Representations 2019). 

[2] Altavini TS, et al. Object recognition in the Macaque based on informative components of familiar 
objects (SfN Abstract 2017) 

The model for high-level contributions to low-level vision has applications to Neurorobotics in SP10 
for in silico models of behaviour, cognition and motor control. 

5.2.2 Potential Use of Output(s) 

Task T4.1.3 

This output will be useful to analyse and understand how recurrent networks transform time-
dependent signals into network states. These results will allow us to impose functional constraints 
in the network models, e.g. in paradigms such as reservoir computing. 

Task T4.4.2 

It will help to understand the role of top-down inputs to area V1. It will improve recognition of local 
image regions in artificial vision systems.  

5.2.3 Publications 

Task T4.1.3 

• Schuecker, Goedeke, Helias (2018) Optimal Sequence Memory in Driven Random Networks. Phys 
Rev X 8, 041029 

• Owaki T, Vidal-Naquet M, Nam Y, Uchida G, Sato T, Câteau H, Ullman S, Tanifuji M. (2018) 
Searching for visual features that explain response variance of face neurons in inferior temporal 
cortex.  PLoS one, 13, 1-27. 

o Significance: This study combined physiological recordings and computational modelling to 
model object representation in high-level areas (specifically face-parts in inferior temporal 
cortex), which are potentially involved in the top-down, bottom-up integration. 

• Ullman S. (2019) Using neuroscience to develop artificial intelligence. Science, 363 (6428), 692-
693. 

o Significance: This is an opinion paper with a general significance for the HBP project. A large 
part of the HBP project centres around the development of realistic neural models for 
perceptual and cognitive tasks. The paper compares recent AI deep-net based models with 
biological cortical circuitry and argues that aspects of the biological circuitry are likely to 
prove crucial for future AI cognitive and perceptual models.   

Total number of publications: 4 
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5.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

Task T4.1.3 

• The developments of Output 1 (Collective states in recurrent networks) will be released as an 
overview monograph, which is currently in preparation (Helias, Dahmen 2019). 

• In addition, at the upcoming CNS*2019 conference, D. Dahmen, A. Crisanti, and M. Helias are 
going to give a tutorial to introduce students and postdocs to these methods: 
https://www.cnsorg.org/cns-2019-tutorials#T6. 

• A similar tutorial will also be held by Dahmen and Helias at the EITN Spring School 2019 (Helias, 
Dahmen, 2019) Statistical field theory for neural networks. ArXiv:1901.10416 [cond-mat.dis-nn]). 

6. Key Result KR4.4: EITN Postdoctoral programme 

6.1 Outputs 

6.1.1 Overview of Outputs 

Table 4: Overview of outputs for Key Result KR4.4 

Output Component number(s) Component name(s) Additional information 

State-dependent Mean 
Field 

C1024 EITN Postdoctoral 
Fellows Programme T4.6.2 Slow Oscillations 

Integration of models in 
The Virtual Brain 

6.1.2  State-dependent Mean-Field 

Mean-field theories aim at understanding how population dynamics are generated by the designed 
parameters of the networks. Despite analytic solutions for the mean-field dynamics already proposed 
for current based neurons (CUBA, Fig. 26A-B), a complete analytic description has not yet been 
achieved for more realistic neural properties, such as conductance-based (COBA, Fig. 26C-D) 
network of adaptive exponential neurons (AdEx). Here, we propose a novel principled approach to 
map a COBA on a CUBA. This approach provides a state-dependent approximation capable of reliably 
predicting the firing rate properties of an AdEx neuron with non-instantaneous COBA integration.  

One of the major challenges of this model is the evaluation of the transfer function for neurons 
provided with COBA signal integration, which generates a complicated and bidirectional interaction 
between input statistics and membrane potential statistics. The mean-field model obtained was 
tested against numerical simulations of the network. As shown in Fig. 26E, the average firing rate 
of the population is well-predicted by the theoretical transfer function. Our approach is particularly 
effective when applied to investigate the biologically relevant regimes of the population dynamics, 
i.e. asynchronous irregular (AI) and slow oscillating dynamics (SO). 

We considered a network based on two different cell types, excitatory (E), also known as “regular 
spiking” (RS) and inhibitory (I) or “fast spiking” (FS) neurons (Fig. 27A).  The mean-field model of 
RS-FS networks was based on a Master Equation Formalism proposed previously (El Boustani- 
Destexhe, 2009), while the method for evaluating the transfer function is inspired to (Brunel, 2000). 
The dynamics of the system can be described by the following equations: 

https://www.cnsorg.org/cns-2019-tutorials#T6
https://arxiv.org/abs/1901.10416
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where νE(t) and νI(t) are the excitatory and inhibitory population activities, and W(t) the level of 
adaptation, whose dynamics is defined by parameters a and b. 

Here, we show our mean-field model, successfully describing the dynamics of RS-FS networks (Fig. 
27B-C, phase space with nullclines and time-course of dynamics respectively), as observed in the 
spiking network (Fig. 27D) for different regimes (top: AI; bottom: SO models). These results show 
that a state-dependent approximation can be successfully introduced to take into account the subtle 
effects of COBA integration and to deal with a theory capable of correctly predicting the activity in 
regimes of alternating states like slow oscillations. 

 

Figure 27: Current-to-rate gain function for AdEx neurons with conductance-based input 
A different approximation is applied according to the input regime of the neuron. 



   
 

 
D4.7.1 (D27.1 D18) SGA2 M12 ACCEPTED 201005.docx PU = Public 15-Oct-2020 Page 38 / 83 

 

 

Figure 28: Mean-field dynamics in RS-FS network. 
Application of the state-dependent formalism to obtain a mean-field model of alternating Up- and Down-state regimes. 

6.1.3 Slow Oscillations 

We study how neuromodulation affects dynamics of spontaneous slow wave oscillations in brain 
slices. We first asked how cholinergic stimulation could affect statistical properties of slow waves 
(durations of up/down-states and correlations between durations of subsequent up- and down-
states). We analysed extracellular recordings in brain slices exhibiting spontaneous slow waves in 
entorhinal cortex. 

Carbachol, a cholinergic agonist, was dissolved in an artificial cerebrospinal fluid (ACSF) to activate 
cholinergic receptors. Carbachol addition increased slow wave frequency which became more 
irregular (Fig. 28). Down-states disappear for concentrations above 0.1μM. The correlation between 
durations of subsequent down- and up-states also changes: while without carbachol the correlation 
is positive i.e. long up-states follow long down-states and short up-states follow short down-states, 
during cholinergic stimulation the correlation becomes negative (Fig. 29). 

 

Figure 29: Extracellular recordings of spontaneous slow waves in brain slices 
with normal ACSF, or Carbachol 25nM and 50nM. 
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Figure 30: Correlation between UP-state and previous DOWN-state duration 
Correlation between UP-state and previous DOWN-state duration as a function of carbachol concentration 

The activation of cholinergic receptors is known to decrease spike frequency adaptation in pyramidal 
neurons (McCormick et al., 1989). To understand how the change of spike frequency adaptation can 
affect slow wave dynamics, we simulated random directed network of 104 neurons with 5% 
probability of connection. 80% of neurons were regular spiking excitatory cells, 20% were fast spiking 
inhibitory cells. We used adaptive exponential integrate-and-fire model introduced in (Brette et al., 
2005). 

Depending on parameters of adaptation or input noise fluctuations, our network can be in 
asynchronous state or synchronous oscillating state. For high adaptation parameter, the frequency 
of slow waves is low and waves are regular. The correlation between durations of subsequent down- 
and up-state is positive. For lower adaptation parameter, frequency increases and for stronger noise 
fluctuations waves can become irregular and the correlation negative (Fig. 30). This behaviour of 
computational network is in accordance with dynamics of slow waves in brain slices before and after 
cholinergic stimulation.  

Currently, we work on serotonergic modulation of slow waves dynamics. The aim is to adjust the 
computational model by adding further levels of complexity, by taking into account changes of spike-
frequency adaptation, leak conductance of pyramidal neurons and fast spiking inhibitory neurons, 
and synaptic quantal conductance. 

 

Figure 31: Correlation between DOWN- and subsequent UP-state 
Correlation between DOWN- and subsequent UP-state as a function of adaptation (parameter b in the model). 
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6.1.4 Integration of models in The Virtual Brain 

The Virtual Brain (TVB) is a powerful tool for personalized brain-wide modelling, capable of taking 
into account space-time dynamics over multiple scales by simulating each node of the brain network 
as a mean-field model (Sanz-Leon et al., 2015; Jirsa et al., 2017). It has, however, remained 
impossible to study the mechanisms regulating pathological and normal brain states, regulated by 
changes in spike-frequency adaptation, bursting dynamics, and cellular conductances using the TVB 
due to a lack of a mean-field model incorporating these parameters.  

We have recently developed a mean-field model of adaptive exponential integrate-and-fire neuron 
networks, with which it is possible to take into account biological differences between brain states 
(di Volo et al., 2018; Brette and Gerstner, 2005). Using this model, we have found that changing the 
level of spike frequency adaptation, conductance, and noise results in dynamics associated with the 
brain state space empirically associated with differing levels of arousal and consciousness. Studying 
fixed points of the model, we find naturally occurring quasi-stable states attributed to normal brain 
states including sleep and waking activity, but also aberrant states similar to epileptic seizure. 

In collaboration with the laboratory of Prof. Viktor Jirsa, we have prepared the AdEx mean-field 
model for integration into the framework of TVB. We begin now to explore the mechanisms 
regulating changes in neural dynamics with brain state for networks of mean-field models 
constrained by biological data including patch and dynamic clamp electrophysiology; Utah array; 
voltage and calcium imaging; local field potential (LFP); diffusion weighted magnetic resonance 
imaging (dw-MRI); electro-encephalography (EEG); and magneto-encephalography (MEG).  

We had previously found that spectral energy and entropy vary coherently even between subtly 
different brain states, dependent on the level of phenomenological coupling in the Kuramoto sense 
of coupled oscillators (Nghiem et al., 2018), as shown in Figure 31. However, biological mechanisms 
underlying brain state-dependent changes in coupling remained mysterious, necessitating 
biophysical features from single cells to connected neural networks spanning whole brain circuits. 
This becomes possible with the AdEx mean-field in TVB. Preliminary evidence from the TVB AdEx 
suggests that increasing spike frequency adaptation regulates the level of coupling in neural 
networks, promoting synchronous, regular dynamics found at the level of single cells, reduced 
spectral entropy, and enhanced spectral energy found in whole brain networks (Fig. 32). Using this 
new tool, mechanisms underlying the differing capacities for processing, encoding, and learning 
between brain states will be studied through the analysis of spatio-temporal codes within native 
person-specific neural anatomy. 
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Figure 32: Variation of the spectral energy-entropy relation between brain states is robust 

across subjects 
Mean spectral entropy (A) and mean spectral energy (B) are represented. 

 

Figure 33: Bridging scales: cellular spike frequency adaptation regulates spectral properties of 
brain wide neural networks 

The adaptive exponential mean-field model (di Volo et al. 2018) was adapted for use in The Virtual Brain (TVB). 
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6.2 Validation and Impact 
Mean-field models, the effect of controlling adaptation, and implementation in the Virtual Brain 
contribute to our understanding of the mechanisms supporting brain states, their transitions, and 
computational capacities, with the potential to explain inter-subject differences in neural coding 
between brain states 

6.2.1 Actual Use of Output(s) / Exploitation 

The mean-field models are already integrated in TVB, so they participate to the whole-brain models 
in HBP. 

6.2.2 Potential Use of Output(s) 

We would like mean-field models to be ported to platforms in the next years, but some work is 
needed to implement such models in SpiNNaker (a voucher was asked for this, but it was not 
obtained). 

6.2.2 Publications 

• Nghiem TAE, Tort-Colet N, Gorski T, Ferrari U, Moghimyfiroozabad S, Goldman JS, ... & Destexhe 
A (2018). Cholinergic switch between two different types of slow waves in cerebral 
cortex. BioRxiv, 430405. 

• Gorski T, Veltz R, Galtier M, Fragnaud H, Goldman JS, Telenczuk B and Destexhe A (2018) 
Dendritic sodium spikes endow neurons with inverse firing rate response to correlated synaptic 
activity. J. Computational Neurosci. 45: 223-234. 

• di Volo M, Romagnoni A, Capone C and Destexhe A. Biologically realistic mean-field models of 
conductance-based networks of spiking neurons with adaptation (2019) Neural Computation 31: 
653-680.  https://doi.org/10.1101/352393. 

Total number of publications: 3 

6.2.3 Measures to Increase Impact of Output(s): 
Dissemination 

At the moment, the dissemination is through publications, and pre-prints that are openly available 
(bioXiv, arXiv). 

  

https://doi.org/
https://doi.org/
http://paperpile.com/b/YJ3UvQ/En4L
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7. Key Result KR4.5: Validation of spiking network 
model against experimental data 

7.1 Outputs 

7.1.1 Overview of Outputs 

Table 5: Overview of outputs for Key Result KR4.5 

Output  Component number(s) Component name(s) Additional information 

Tool for Validation Testing 
on the Level of Network 
Activity 

C1680 
Python libraries for 
structured model 
validation tests 

T4.5.1 

Publications on conceptual 
implementation of model 
validation in simulation 
neuroscience 

C1863 
Concepts for comparison 
of massively-parallel 
electrophysiological data 

T4.5.1 

Mesocircuit model C2418 
4x4mm spatially 
organised model of a 
single area 

T4.2.1 

Biophysical models of brain 
signals 

C2339 

Hybrid Schemes for 
combining point-neuron 
network simulations in 
NEST with biophysically 
detailed NEURON 
simulations 

T4.1.4 
Contributes to KR4.1 and 
KR4.5 

C2340 

Biophysical modelling of 
population signals (LFP, 
ECoG, EEG, MEG, LMF), 
with detailed 
reconstructed neurons 

7.1.2 Tool for Validation testing on the Level of Network 
Activity 

In order to assess the validity of a model, its features must be validated against experimental findings 
on multiple levels in a rigorous and reproducible fashion. For brain simulations of the scale of 
neuronal networks and beyond, a key way to assess models’ validity is to reproduce the features of 
population activity dynamics observed in recordings of brain dynamics, e.g. in electrophysiological 
experiments. The Python library NetworkUnit, which is central to the back-end libraries for 
validation testing (C1680), represents a tool to formalize the validation process on the level of 
statistical features of network activity. It is based on the SciUnit framework, making it compatible 
with complementary validation libraries (i.e. NeuroUnit to validate single neuron models) and easy 
to integrate into the HBP validation framework. A first release (v0.1.0) of the library was published 
(https://github.com/INM-6/NetworkUnit), featuring 10 different tests in addition to various scores. 
In addition to both standard validation models against experimental data, it implements 
substantiation scenarios where models are compared against other models and/or simulation 
engines. The library, built on the functionality of the Elephant analysis toolbox (C348) and the 
generic Neo data model (C361), therefore, represents the technical basis for validation tests for 
spiking neural network models. 

https://github.com/INM-6/NetworkUnit
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7.1.3 Publications on conceptual implementation of model 
validation in simulation neuroscience 

The concepts of model validation (assessing the validity of models based on experimental data) and 
model substantiation (assessing the equivalence of models and simulators) have not received as much 
attention in neuroscience as in other computationally strong sciences. In an initial step, we laid the 
foundations to transfer concepts of validation testing to the domain of neural network simulations. 
The results of our work were published in two papers (Trensch et al., 2018 and Gutzen et al., 2018) 
and include (i) a comprehensive transfer of validation concepts to the domain, including a suggested 
terminology in line with existing literature and a discussion on differences to validation in other 
disciplines; (ii) a complete worked example of a substantiation scenario to compare models running 
on the NEST simulator against implementations on the SpiNNaker neuromorphic hardware; and (iii) 
an overview of the implementation of the validation process using NetworkUnit (part of C1680). 
Building on these results, we extended this work to experimental data (Gutzen et al., 2018). Further 
investigations will include, for example, formalizing the process of relating specific experimental 
data records to the correct counterparts in the simulation (Fig. 33). 

Theoretical work published in preprint format in Dahmen et al. (ArXiv:1711:10930) investigated the 
intrinsic distribution of covariance statistics in balanced network states. These results are in the 
process of being validated by experimental data, and will provide a further conceptual aspect in 
validating activity dynamics based on mathematical understanding. A peer-reviewed publication of 
the work is in progress. 

 

Figure 34 Formalization process of experimental-to-simulated data relationship 

7.1.4 Mesocircuit model 

We aim to validate simulated model data and experimental data from electrophysiological 
measurements. This goal requires a network model representing the experimental conditions both 
in network size and measurement modalities. We have extended a cortical microcircuit model to 
cover the same surface area as the 4x4 mm² Utah multi-electrode array with 10x10 electrodes. The 
mesocircuit model accounts for spiking activity and local field potentials. Both signals are accessible 
in corresponding experiments and the results are published in Senk et al., 2018a (ArXiv:1805.10235). 

7.1.5 Biophysical models of brain signals 

Our main result is the release and corresponding publication of the open-source software LFPy 2.0 
(Hagen et al., 2018, Fig. 34) (http://github.com/LFPy/LFPy). This software can simultaneously 
calculate many different brain signals from arbitrary neural activity, such as the local field potential 

http://github.com/LFPy/LFPy
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(LFP), electro-corticography (ECoG), electro-encephalography (EEG) and magneto-encephalography 
(MEG), which makes it possible to directly compare simulated results with experimental 
measurements of many different kinds. Together with collaborators, we have used LFPy in several 
projects to elucidate the origin and interpretation of LFP signals.  

LFPy 2.0 is a vital part of our two components C2339 and C2340, and contributes towards Key Results 
4.1 and 4.5. We will make LFPy 2.0 an integrated part of the Brain Simulation Platform and other 
HBP simulation infrastructure, so that it can be easily used by the research community. 

 

Figure 35: Multimodal modelling of brain signals. 
Simultaneous calculation of several brain signals stemming from neural activity can be done with the software LFPy 
2.0 (Hagen et al., 2018), ensuring that simulated neural activity can be directly compared with experimental data. 

An efficient analytical reduction of detailed non-linear neuron models (Neuron_Reduce) 

Detailed conductance-based non-linear neuron models consisting of thousands of synapses are key 
to the understanding of computational properties of single neurons and large neuronal networks, 
and for interpreting experimental results. Simulations of these models are computationally 
expensive, considerably curtailing their utility. 

Neuron_Reduce is a new analytical approach to reduce the morphological complexity and 
computational time of non-linear neuron models (Fig. 35). Synapses and active membrane channels 
are mapped to the reduced model preserving their transfer impedance to the soma. Synapses with 
identical transfer impedance are merged into one NEURON process while still retaining their 
individual activation times. Neuron_Reduce accelerates the simulations by 40 to 250 folds for a 
variety of cell types and realistic number (10,000-100,000) of synapses while closely replicating 
voltage dynamics and specific dendritic computations. 
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Figure 36: Neuron_Reduce, a novel analytical method for reducing neuron model complexity. 
Reduction method that faithfully replicated the I/O properties of a detailed non-linear neuron model. A) Layer 5 
pyramidal cell model with excitatory (magenta dots) inhibitory synapses (cyan dots. B) An example of the voltage 
dynamics at the soma of the detailed model (black trace) and the Neuron_reduced model (red trace). C) Cross-
correlation between spikes in the reduced versus the detailed models. D) Inter-Spike Interval distributions for the 
two models. E) Output firing rate of the reduced (red) versus the detailed (black) models. F, G) SPIKE-synchronization 
measure between the two models. 

7.1.6 Overview of released components 

Table 6: Overview of major Component updates and releases related to Key Result KR4.5 

ID Component Name Contact Info on releases and major updates 

C2418 4x4mm spatially organised 
model of a single area 

Markus Diesmann Senk et al. 2018a 

C1680  Python libraries for structured 
model validation tests Michael Denker 

NetworkUnit 0.1.0 (6th Nov 2018) 
https://github.com/INM-6/NetworkUnit  

C1863 Concepts for comparison of 
massively-parallel 
electrophysiological 

Michael Denker 
Sonja Gruen 

Trensch et al. 2018 
Gutzen et al. 2018 

7.2 Validation and Impact 
Task T4.5.1 

The initial release of NetworkUnit was presented at conferences through posters and tutorials, and 
its impact is strengthened by the accompanying publication. 

Task T4.2.1 

The mesocircuit model allows direct comparison between simulated and experimental data, which 
can help to restrict network parameters and explain experimental observations. 

Task T4.1.4 

We released the software LFPy 2.0 with relative publication. This open-source Python package has 
proven to be a very useful tool for calculating brain signals from simulated neural activity, and has 
been used in many scientific publications. 

https://github.com/INM-6/NetworkUnit
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The reduced neuron-models (Neuron_Reduce) will enable realistic simulations of neural networks at 
unprecedented scale, including networks emerging from micro-connectomics efforts and 
biologically-inspired “deep networks”. Neuron_Reduce is publicly available and straightforward to 
implement (https://www.biorxiv.org/content/10.1101/506485v1). 

7.2.1 Actual Use of Output(s) / Exploitation 

Task T4.5.1 

The NetworkUnit library (within C1680) has been released following validation through extensive 
validation/substantiation scenario outlined and fully published in Trensch et al., 2018 and Gutzen 
et al., 2018. The library is currently being further co-designed, in particular in the context of 
validating spatial dynamics of UP/DOWN-state transitions in experiment and simulation within the 
HBP (WaveScalES, C2051, C2053), and with respect to development of the 4x4mm spatially organised 
model of a single area (C2418). In this process, the library will also become more integrated into the 
developing Validation Framework services of the HBP (e.g. C722). The published results of C1863 
directly relate to the NetworkUnit library by providing conceptual and practical blueprints for 
formalizing model validation and substantiation into a rigorous process, and currently hold an 
average view rank of 38% in comparison to all articles published in the Frontiers Journals. 

Task T4.2.1 

A generic version of the mesocircuit model has been published in Senk et al., 2018a. The model is 
currently further refined to better match experimental data. 

Task T4.1.4 

LFPy is extensively used within SP4 in our group (NMBU; Gaute Einevoll) for better understanding 
Local Field Potentials (LFPs). We are currently using LFPy in combination with the large-scale 
Hippocampus model from SP6 (Michele Migliore). LFPy is used by the group of Markus Diesmann 
(T4.2.1), in combination with large-scale point-neuron network simulations. Results from LFPy has 
been used by the group of Hans Ekkehard Plesser (SP7) to calculate Local Field Potentials (LFPs) 
directly from point-neuron simulations in the NEST Instrumentation App. LFPy is used in a wide range 
of research projects world-wide. For a list of publications using LFPy see: http://goo.gl/nKuRRE. 

We are not aware of any current uses of LFPy by medical or industrial bodies, but we have recently 
been approached by the developers of a commercial software intended for medical use, who are 
interested in using LFPy in combination with their product. 

We have received very positive feedback from the community. The first publication on LFPy (2014) 
currently has 88 citations (https://goo.gl/nktaEn). LFPy has been used in more than 20 scientific 
publications, from both computational and experimental neuroscientists. For a list of publications 
using LFPy see https://goo.gl/nKuRRE. 

7.2.2 Potential Use of Output(s) 

Task T4.5.1 

The NetworkUnit library represents a first stable initial release ready for use in validation scenarios. 
However, several changes are expected in the future. In particular: additional tests, improved 
documentation, inclusion of standard result data types, and a more sophisticated formalization of 
experimental data based on metadata. The library will become a standard component of HBP’s 
validation framework to enable statistical comparisons of network activity in four areas: 1) to 
validate models against recordings of activity data from the brain; 2) to compare different models; 
3) to substantiate one model implementation against another (e.g. on a different simulation engine); 
and 4) to contrast dynamics features of different experimental datasets. The library also plays a 
major role in defining a set of standard data types for the results of activity data analysis, as 
developed in the HBP Voucher Program. This is to further formalize the connection between the 
type of results obtained from a validation test and fitting scores, thus allowing to quantify the 
difference between the two datasets. 

https://webmail.cnrs.fr/owa/redir.aspx?C=vs2Dr45U7HTJSIRxDtSxF7Kz1ICM2-NtA5Jy9u9hLJnjZY_Ibb7WCA..&URL=https%3a%2f%2fwww.biorxiv.org%2fcontent%2f10.1101%2f506485v1
https://webmail.cnrs.fr/owa/UrlBlockedError.aspx
https://webmail.cnrs.fr/owa/redir.aspx?C=7SmQ43XCV6IThfVB05vg4A5MRQlwFyqkhWygR-RlKRtyyt_hw67WCA..&URL=https%3a%2f%2fgoo.gl%2fnktaEn
https://goo.gl/nKuRRE
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Task T4.2.1 

The mesocircuit model appears as a component in the long-term roadmap for the construction of 
multi-area models with spatial resolution in the individual areas. 

Once the manuscript on the mesocircuit is accepted by a peer-reviewed journal, an open source 
repository will be opened as we did in SGA1 for the microcircuit model. We expect that the model 
will then be used by a larger number of researchers as a building block for more complex models 
and a test-bed for mean-field and field-theoretical approaches. 

Task T4.1.4 

LFPy 2.0 is a relatively mature scientific software, ready to be used by the general scientific 
community. The recently implemented capability of LFPy 2.0 to calculate electro-encephalography 
(EEG) and magneto-encephalography (MEG) signals makes LFPy valuable for a new group of 
researchers who work on non-invasive human experiments. LFPy 2.0 will become an integrated part 
of the Brain Simulation Platform. 

7.2.3 Publications 

• Pesaran, Vinck, Einevoll, Sirota, Fries, Siegel, Truccolo, Schroeder & Srinivasan (2018). 
Investigating large-scale brain dynamics using field potential recordings: Analysis and 
interpretation. Nature Neuroscience, 21, 903–919. 

o Significance: This paper is a primer on the recording, analysis and interpretation of various 
types of electrical recordings, specifically recordings of extracellular potentials such as local 
field potentials and EEG signals. The paper describes both the principles of physics-type 
forward modelling as well as statistical analysis techniques. 

• Ness, Remme & Einevoll (2018). h-Type Membrane Current Shapes the Local Field Potential from 
Populations of Pyramidal Neurons. Journal of Neuroscience, 38(26), 6011–6024. 

o Significance: Several previous modelling studies have addressed how populations of neurons 
with passive dendrites give rise to recorded local field potentials. Here, the authors 
investigate the putative effects of sub-threshold active dendritic conductances on the 
generation of local field potentials from populations of pyramidal cells. It is found that in 
particular the so called h-current can have strong effects on the generated local field 
potential. 

• Luo, Macias, Ness, Einevoll, Zhang & Moss (2018). Neural timing of stimulus events with 
microsecond precision. PLoS Biology, 16(10), 1–22. 

o Significance: In this combined experimental and modelling study on the auditory system, the 
extracellular potential recorded in a midbrain nucleus is used to probe the temporal precision 
of sound stimuli processing in bats. A remarkable microsecond precision, thought to stem 
from synchronized neuronal firing in the nucleus, is observed.   

Total number of publications: 11 

7.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

• JUELICH will participate in the EITN Spring School in Computational Neuroscience 2019 (T4.2.1). 

• JUELICH will lead the third annual 2½ week Spring School on Advanced Neural Data Analysis 
(ANDA) for young scientists, which will feature a demonstration of the NetworkUnit library and 
potentially practical work based upon it (T4.5.1). 

• NetworkUnit has been featured at multiple demos at the German Neuroscience meeting in March 
2019 (T4.5.1). 

Total number of disseminations: 5 
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8. Key Result KR4.6: Parameter space confinement 
of mesocircuit model for the reproduction of 
experimental data 

8.1 Outputs 

8.1.1 Overview of Outputs 

Table 7: Overview of outputs for Key Result KR4.6 

Output  Component number(s) Component name(s) Additional information 

Spiking mesoscale cortical 
models with spatial 
organisation 

C2418 
4x4mm spatially 
organised model of a 
single area 

T4.2.1 
Contributes to KR4.6, 
KR4.7, and KR4.9 

Comparing activity 
dynamics of models and 
living brains 

C1574 
Structural and functional 
connectivity at different 
scales 

T4.5.1 

8.1.2 Spiking mesoscale cortical models with spatial 
organisation 

The developed mesocircuit model of 4x4mm extends the microcircuit model by Potjans & Diesmann 
(2014) and introduces distance-dependent connectivity. The model integrates anatomical and 
electrophysiological data and produces activity comparable to experimental measurements. To date, 
not enough detailed structural data is available to fully constrain the network parameters. We ran 
parameter scans within biologically plausible bounds to assess the resulting network activity and 
found network states that differ qualitatively. Results are published in Senk et al., 2018a. 

To visually explore spatio-temporal activity data as emerging in the 2D layers of the mesocircuit 
model, we implemented the interactive tool VIOLA (VIsualization Of Layer Activity). This joint work 
with WP7.3 is published in Senk et al., 2018b. 

We investigated the origin of spatio-temporal patterns in spiking activity with a simplified 1D model 
using linear stability analysis and published the results in Senk et al., 2018c. 

8.1.3 Comparing activity dynamics of models and living 
brains 

We have used phenomenological models of delay-coupled oscillators with increasing degree of 
topological complexity to identify underlying principles by which the spatio-temporal structure of 
the brain governs the phase lags between oscillatory activity at distant regions (Fig. 36). Besides in-
phase, we have shown that clustered delays can induce anti-phase synchronization for certain 
frequencies, while lags’ sign is determined by natural frequencies and inhomogeneous network 
interactions. Faster oscillators always phase lead, while stronger connected nodes lag behind the 
weaker during frequency depression, which consistently arises for in-silico results. 

We have also shown that the choice of surrogates does not affect the mean of the observed phase 
lags, but higher significance levels decrease their variance and might fail to detect the generally 
weaker coherence of the inter-hemispheric links. 
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Figure 37: In-phase (left) and anti-phase (right) synchronization between brain hemispheres 

Upper plots show sub-networks of 10 strongest regions in each hemisphere, with their internal and external links (left 
and right). Bottom plots are matrices of phase lags between brain regions ordered by strength within hemisphere, 
and the overall distribution of phase lags, using two different levels of significance. 

8.1.4 Overview of released components 

Table 8: Overview of major Component updates and releases related to Key Result KR4.6 

ID Component Name Contact Info on releases and major updates 

C2418 4x4mm spatially organised 
model of a single area Markus Diesmann Senk et al. 2018a 

8.2 Validation and Impact 
Task T4.2.1 

The mesocircuit model allows for systematic parameter investigations. We make use of simulations 
with parameter scans, visualization and analytical derivations to explore spatio-temporal features 
in the network activity. 

Task T4.5.1 

Our results uncover mechanisms through which the spatio-temporal structure of the brain renders 
phases to be distributed around 0 and π. 

8.2.1 Actual Use of Output(s) / Exploitation 

Task T4.2.1 

The mesocircuit model can be validated against experimental data (T4.5.1) as it covers the same 
surface area as the 4x4mm² Utah array and accounts for spiking activity and local field potentials. 

The microcircuit has meanwhile been used in 17 peer-reviewed publications and the respective 
article is cited by 71 peer-reviewed publications. We hope for a similar success for the mesocircuit 
model. For the publication of the executable model description we will use the latest technology as 
developed in T4.2.3 for the multi-area model (see KR4.7). 
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8.2.2 Potential Use of Output(s) 

Task T4.2.1 

Once the manuscript on the mesocircuit is accepted by a peer-reviewed journal, an open source 
repository will be opened as we did in SGA1 for the microcircuit model. We expect that the model 
will then be used by a larger number of researchers as a building block for more complex models 
and a test-bed for mean-field and field-theoretical approaches. 

The mesocircuit model is an essential milestone on the long-term roadmap towards a multi-area 
model with spatial resolution in the individual areas. Furthermore, the connectivity could be adapted 
to a specific brain area, e.g. motor cortex, to facilitate the comparison with experimental data (Task 
T4.5.1). 

8.2.3 Publications 

• Petkoski S, Palva JM and Jirsa VK. (2018) Phase-lags in large scale brain synchronization: 
Methodological considerations and in-silico analysis. PloS CB.  

o Significance: Functional connectivity and, in particular, phase coupling between distant 
brain regions may be fundamental in regulating neuronal processing and communication. We 
use a model of oscillatory dynamics superimposed on the space-time structure defined by the 
connectome. We show that stronger connected nodes phase lag behind the weaker and we 
derive the conditions for in- and anti-phase synchronization of brain hemispheres. 

• Senk J, Carde C, Hagen E, Kuhlen T, Diesmann M, Weyers B (2018b) VIOLA - A multi-purpose and 
web-based visualization tool for neuronal-network simulation output. Frontiers in 
Neuroinformatics 12:75 

o Significance: We implemented the interactive tool VIOLA (VIsualization Of Layer Activity) to 
visually explore spatio-temporal activity data as emerging in the 2D layers of the mesocircuit 
model. 

Total number of publications: 6 

8.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

Task 4.2.1 

A poster of the mesocircuit model was presented at the Bernstein Conference 2018: 
Senk J; Hagen E; van Albada SJ; Diesmann M (2018d) A mesoscopic layered cortical network model 
for spiking activity and local field potentials; Bernstein Conference 2018 (T28). 
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9. Key Result KR4.7: Release of multi-area model 
of macaque visual cortex, improved using new 
connectivity and activity data 

9.1 Outputs 

9.1.1 Overview of Outputs 

Table 9: Overview of outputs for Key Result KR4.7 

Output  Component number(s) Component name(s) Additional information 

Multi-area multi-layer 
spiking cortical models 

C730 
Multi-area model of 
cortical network at 
neuronal resolution 

T4.2.3 

C944 Full-density model of 
cortical microcircuit T4.2.3 

9.1.2 Multi-area multi-layer spiking cortical models 

JUELICH finished and published work on a multi-area layered spiking model of all vision-related areas 
in one hemisphere of macaque cortex (Schmidt et al., 2018a,b; C730). The model represents each 
area by a 1mm2 microcircuit with the full density of neurons and synapses, using leaky integrate-
and-fire neurons. It reproduces microscopic spiking activity in V1, and fMRI functional connectivity 
between areas in the resting state, predicated on the system being poised at the edge of stability 
(Fig. 37). 

Furthermore, JUELICH with UMAN completed a comparison of the cortical microcircuit model of 
Potjans and Diesmann (2014) between NEST and SpiNNaker (van Albada et al., 2018; C944). This 
work demonstrated that SpiNNaker is able to accurately simulate models of this type despite its 
fixed-point arithmetic, and lays the groundwork for porting even larger models to SpiNNaker. 
Another JUELICH publication (Maksimov et al., 2018) quantitatively and qualitatively characterizes 
excitatory-inhibitory balance, membrane potential and neural input stability, and local excitability 
of cortical networks, enabling computational neuroscientists to constrain their models accordingly. 

The described microcircuit and multi-area models have a number of simplifications and limitations 
that JUELICH has started to address. In the microcircuit, the role of separate somatostatin (SOM), 
parvalbumin (PV), and vasoactive intestinal peptide-expressing (VIP) interneuron populations and 
their specific connectivity are being investigated. With the help of this refinement, JUELICH has 
started to model cell-type-specific neuromodulation by acetylcholine in the microcircuit. In the 
context of CDP4, the multi-area model is being extended with motor-related cortical areas, which 
will enable visuo-motor interactions to be investigated. The cortico-cortical connectivity is taken 
from axonal tracing data from the CoCoMac database and complemented with predictive 
connectomics. A motor cortex microcircuit model taking into account its specific architecture and 
connectivity is under development. In collaboration with TUGRAZ, JUELICH has started to bring 
together anatomical constraints with functional performance of cortical microcircuits using the 
learning-to-learn framework (Bellec et al., 2018). Finally, JUELICH has started collaborating with KU 
Leuven on modelling covert visual spatial attention and relating the model activity to V6/V6A 
recordings in macaque. 
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Figure 38: Dynamics of the multi-area model of macaque vision-related cortex 
A) Simulated inter-area functional connectivity. B) Resting-state fMRI functional connectivity, averaged across 6 
monkeys. C) Spectra of experimental and simulated V1 spiking activity.  D) Distribution of spike rates across single 
neurons in V1. Green and purple curves, statistics of experimental spiking data in phases with a low resp. high level 
of fluctuations in the population activity. Yellow curves, statistics for low- and high-fluctuation phases combined. 
Black curves, statistics for the simulated spiking activity of V1. Gray curves, statistics for 140 neurons randomly 
sampled from V1 in the model. 

9.1.3 Overview of released components 

Table 10: Overview of major Component updates and releases related to Key Result KR4.7 

ID Component Name Contact Info on releases and major updates 

C730 Multi-area model of cortical 
network at neuronal resolution Sacha van Albada Schmidt et al. 2018a,b 

C944 Full-density model of cortical 
microcircuit Sacha van Albada van Albada et al. 2018 

9.2 Validation and Impact 
Task T4.2.3 
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The multi-area model of macaque vision-related cortex serves as a platform for further model 
developments: refinements; extensions with further brain areas; application of the methods to build 
models of the cortex of other species; and incorporation of functional properties to yield models 
that can solve behavioural tasks. Current efforts in this direction include modelling of human cortex 
in DFG SPP 2041; extension with motor areas in the context of CDP4; and combination of the learning-
to-learn framework (Maass, SP9) with anatomical constraints of the cortical microcircuit. The multi-
area model further serves as a key use-case for HPC and as a key planned use case for SpiNNaker. 
The microcircuit model serves as a use-case for the BrainScaleS hardware. 

9.2.1 Actual Use of Output(s) / Exploitation 

Task T4.2.3 

An executable formal model description of the multi-area model of all vision-related areas of 
macaque cortex (Schmidt et al., 2018a,b) was made available on GitHub (https://inm-
6.github.io/multi-area-model/), enabling others to build on the code. So far, it is watched by 2 
external users, starred by 9 external users, and forked by 6 external users (outside JUELICH INM-6). 
The total number of external users interacting with the repository so far is 16. This includes people 
both inside and outside the HBP. 

A tutorial video was published on YouTube (https://www.youtube.com/watch?v=YsH3BcyZBcU), 
available also in the HBP Education channel (https://www.youtube.com/watch?v=NGAqe78vmHY) 
and via the NEST simulator website (http://www.nest-simulator.org/), and has already received 
>1200 views. The videos have so far received 27 up-votes and no down-votes. 

The publications on the multi-area model (Schmidt et al., 2018a,b; Schmidt et al., arXiv 2015) have 
been cited 25 times to date. The NEST-SpiNNaker comparison of the microcircuit model (van Albada 
et al. 2018) has been cited 10 times to date. The publication was already viewed 18,262 times and 
ranks in the top 2% of papers viewed in the journal. 

9.2.2 Potential Use of Output(s) 

Task T4.2.3 

Estimated Technology Readiness Level (TRL) is 4 for the multi-area model and 8 for the microcircuit 
model. 

Besides the uses already started or planned, mentioned above, the multi-area model could form a 
“growth nucleus” for increasingly integrated and validated models of the primate brain, including 
sub-cortical structures such as thalamus and basal ganglia, and validated on a wider range of 
experimental data, from spiking data to LFP, EEG, and fMRI, to support an integrated multi-scale 
understanding of the brain. 

9.2.3 Publications 

• Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ (2018a) Multi-scale account of the 
network structure of macaque visual cortex, Brain Struct Func 223(3):1409-1435. 

o Significance: This publication describes the first derivation of an area-, layer-, and 
population-resolved connectivity map for all vision-related areas in one hemisphere of 
macaque cerebral cortex, which can serve to define neural network models for simulation. 

• Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, van Albada SJ (2018b) A multi-scale layer- 
resolved spiking network model of resting-state dynamics in macaque visual cortical areas, PLoS 
CB 14:e1006359. 

o Significance: In this work, the connectivity map from Schmidt et al., 2018a is used as the 
basis for spiking neural network simulations of all vision-related areas in one hemisphere of 
macaque cortex, forming the first neural network simulation of this scope using the full 

https://inm-6.github.io/multi-area-model/
https://inm-6.github.io/multi-area-model/
https://www.youtube.com/watch?v=YsH3BcyZBcU
https://www.youtube.com/watch?v=NGAqe78vmHY
http://www.nest-simulator.org/
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density of neurons and synapses. The network dynamics is shown to conform to multi-scale 
experimental findings, so that the model can serve as a platform for further models of 
mammalian cerebral cortex. 

• van Albada SJ, Rowley AG, Senk J, Hopkins M, Schmidt M, Stokes AB, Lester DR, Diesmann M, 
Furber SB (2018) Performance comparison of the digital neuromorphic hardware SpiNNaker and 
the neural network simulation software NEST for a full-scale cortical microcircuit model, Front 
Neurosci 12:291. 

o Significance: This paper describes the porting of a cortical microcircuit model with the full 
density of neurons and synapses to SpiNNaker and characterizes the performance of the 
neuromorphic hardware in comparison with NEST, thus guiding the development of SpiNNaker 
to make it available for large-scale neural network simulations with short biological time 
scales. 

Total number of publications: 3 

9.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

Task T4.2.3 

• The multi-area model was made available via GitHub and a corresponding tutorial video was 
posted on YouTube, as described above. 

• The publication van Albada et al., 2018 (Front Neurosci) on the  SpiNNaker-NEST comparison of 
the cortical microcircuit model of Potjans  & Diesmann (Cereb Cortex, 2014) was disseminated 
extensively, both locally and in the media (e.g. Frontiers Communications, TOP500, DNA India, 
HPCwire, Science Friday radio show, Science Node magazine, TheScienceBreaker, 
Forschungszentrum Jülich and  University of Manchester websites). As of January 2019, the paper 
was viewed more than 17,000 times and it ranks among the 2% most viewed papers in the 
respective journal. 

• The microcircuit and multi-area models were presented at various conferences and workshops 
(e.g. Netherlands Institute for Neuroscience, Amsterdam; 13th Neural Coding Conference, 
Torino; CNS 2018 (Seattle) and Bernstein conference 2018 (Berlin) workshops; SBMT 15th Annual 
Congress, Los Angeles; SpiNNaker 1 million event, video here; RWTH Aachen University; KTH 
Stockholm; Brain Research Center, Bar-Ilan University; Universidad de Chile, Santiago; Road to 
Reality Symposium, video here; workshops in Ischia and Sao Paulo) 

  

https://video.manchester.ac.uk/faculties/de9a2b394122e0a46b94a3df893620a9/12ed4095-5d2d-487d-9519-c8041bc03a6e/
https://www.youtube.com/watch?v=qsXuL5einxg&feature=youtu.be&fbclid=IwAR0-I-QVjxkZNtSg3sTep_gvm6CEdJv_orq2d_X0gHkSfG3mAtLg0aZb8-I
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10. Key Result KR4.8: Release of draft 
implementation of generic network model with 
glial contribution 

10.1 Outputs 

10.1.1 Overview of Outputs 

Table 11: Overview of outputs for Key Result KR4.8 

Output  Component number(s) Component name(s) Additional information 

Neuronal-glial network 
model C2359 

Prototype spiking 
neuronal network model, 
including simplified 
version of the astrocyte-
neuron interaction model 
to explain in vitro cell 
culture data  

T4.2.2 

Order reduction for 
network models C2358 

Simplified, generic 
astrocyte-neuron 
interaction model, with 
built-in model order 
reduction  

T4.2.2 

10.1.2 Neuronal-glial network model 

Understanding the role of glial cells in brain functions is of fundamental interest to neuroscience 
and theoretical neuroscience. This includes the regulation of information propagation by astroglial 
cells. We implement key mechanisms of astrocytes modulating the information propagation in 
generic neuronal network models (C2359). The astrocyte component of interest is the so-called ‘Slow 
Inward Current’ (SIC), an excitatory current via post-synaptic NMDA receptors (Pirttimaki et al., 
2017; Manninen et al., 2019). We additionally constrain the astrocyte influences using unpublished 
data on astrocyte locations and morphologies, produced by SP1 (DeFelipe group). The first version 
of the model is implemented to test the role of SIC on information propagation and network 
synchronization. The generic neuronal network model with glial contribution will be extended to 
Potjans-Diesmann model (Potjans and Diesmann, 2014) which maps the realistic distribution of 
excitatory and inhibitory neurons across cortical layers as well as the connectivity within and 
between layers. 

10.1.3 Order reduction for network models 

The current trend in theoretical and computational neuroscience is to incorporate multiple physical 
levels of the brain into mathematical models, which often results in large networks of 
interconnected neurons and other brain cells, i.e. high-dimensional numerical models that 
correspond to equally high computational demand. Model order reduction methods, adapted from 
control and systems theory, have not been extensively used in the field. We performed bench-
marking of five different variants of POD (Proper Orthogonal Decomposition) and DEIM (Discrete 
Empirical Interpolation Method) methods. As a test case, we used a network of 50 compartmental 
Hodgkin-Huxley cells, based on a neuron model with dendritic and somatic compartment (Pinsky and 
Rinzel, 1994), resulting in a system of 500 coupled non-linear ordinary differential equations. The 
results showed that the reduced order model consumes a smaller amount of computational resources 
than the original model (Fig. 38, Lehtimäki et al., submitted; C2358). The population behaviour of 
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the reduced model starts to change with lower dimensions. We conclude that the work shows the 
potential benefits of the POD+DEIM method, while also giving insights into the limitations of the 
method. 

 

Figure 39: Reduction of simulation time with different POD and DEIM dimension 
(POD dimensions: Green 480; Yellow 460; Red 420). 

10.1.4 Overview of released components 

Table 12: Overview of major Component updates and releases related to Key Result KR4.8 

ID Component Name Contact Info on releases and major updates 

C2358 
Simplified generic astrocyte-
neuron interaction model with 
built-in model order reduction 

Marja-Leena Linne Lehtimäki et al. (submitted publication) 

10.2 Validation and Impact 
Task T4.2.2 

The neuronal-glial network model will have an impact on understanding the influence of glial cells 
in information propagation in the brain (scientific impact). Order reduction for network models 
provides an alternative approach to simplify models and has a potential to impact the development 
of neural simulators. 

10.2.1 Actual Use of Output(s) / Exploitation 

Task T4.2.2 

Neuronal-glial network model (output 1) and order reduction for network models (output 2) are used 
by SP6 Simulation Platform, and other platform developers such as NEST and SpiNNaker (network 
models with glial influence; MS4.2.2.). None of these tools currently have the capacity to incorporate 
the influence from glial cells. The bioscience community outside the HBP is also very interested in 
applying the models developed by us to their work. The models developed will also be used in the 
EU Era-Net Neuron project on understanding the causes of schizophrenia. 
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10.2.2 Potential Use of Output(s) 

Task T4.2.2 

We are in the specification and implementation phase, in which we are testing various 
implementational approaches and methodologies for both the glial modelling and model order 
reduction. We expect a large exploitation of the components. 

10.2.3 Publications 

• Manninen T, Havela R, Linne ML (2019) Computational models of astrocytes and astrocyte-neuron 
interactions: Categorization, analysis, and future perspectives, Computational Glioscience, 
editors M. De Pitta and H. Berry, Springer. (Neuronal-glial network model) 

o Significance: The study provides detailed analysis of existing computational models of 
astrocytes. This analysis forms the basis for selecting the biological mechanisms linking 
astrocytes to neuronal networks functions. HBP SGA2 T4.2.2 is using these results to create 
new modules for the generic astrocyte-neuron network models. 

Total number of publications: 3 

10.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

Task T4.2.2 

The results have been disseminated in the following meetings: 

• Organization for Computational Neuroscience Conference (Seattle, USA, July 2018); 

• Society for Neuroscience (San Diego, USA, November 2018); 

• 3rd HBP Student Conference (Ghent, Belgium, February 2019; best poster prize). 

11. Key Result KR4.9: Release of draft multi-layered 
cortical network model with spatially organised 
connectivity 

11.1 Outputs 

11.1.1 Overview of Outputs 

Table 13: Overview of outputs for Key Result KR4.9 

Output  Component number(s) Component name(s) Additional information 

Mesocircuit model C2418 
4x4mm spatially 
organised model of a 
single area 

T4.2.1 
Contributes to KR4.6, 
KR4.7, and KR4.9 
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11.1.2 Mesocircuit model 

We released the implementation of the mesocircuit model corresponding to Senk et al., 2018a 
internally in the HBP Collaboratory. The model accounts for spiking activity and local field 
potentials. 

11.1.3 Overview of released components 

Table 14: Overview of major Component updates and releases related to Key Result KR4.9 

ID Component Name Contact Info on releases and major updates 

C2418 4x4mm spatially organised 
model of a single area Markus Diesmann Senk et al. 2018a 

11.2 Validation and Impact 
The mesocircuit model allows for systematic parameter investigations. We make use of simulations 
with parameter scans, visualization and analytical derivations to explore spatio-temporal features 
in the network activity. 

11.2.1 Actual Use of Output(s) / Exploitation 

See KR4.5 

11.2.2 Potential Use of Output(s) 

See KR4.5 

11.2.3 Publications 

• Upscaling of the spiking cortical microcircuit model by Potjans & Diesmann (2014) to the 
mesocircuit model, parameter investigation and forward modelling of local field potentials: Senk 
J, Hagen E, van Albada S, Diesmann M (2018a), Reconciliation of weak pair-wise spike-train 
correlations and highly coherent local field potentials across space. ArXiv:1805.10235 

o Significance: The developed mesocircuit model of 4x4 mm² extends the microcircuit model 
by Potjans & Diesmann (2014) and introduces distance-dependent connectivity. The model 
integrates anatomical and electrophysiological data and produces activity comparable to 
experimental measurements. To date, not enough detailed structural data is available to 
fully constrain the network parameters. We ran parameter scans within biologically plausible 
bounds to assess the resulting network activity and found network states that differ 
qualitatively. 

Total number of publications: 1 

11.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

See KR4.6. 
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12. Key Result KR4.10: Demonstration that brain 
personalised network models have predictive 
value for epileptogenic zones of individual 
patients 

12.1 Outputs 

12.1.1 Overview of Outputs 

Table 15: Overview of outputs for Key Result KR4.10 

Output  Component number(s) Component name(s) Additional information 

Human brain function from 
structure 

C1861 Improving identification 
of the epileptogenic zone 

T4.5.3 

C1862 
Personalised brain 
models for predicting 
seizure propagation 

12.1.2 Human brain function from structure 

Task T4.5.3 

Within this task, AMU group has worked on minimally invasive network interventions for stopping the 
seizure propagation in epileptic patients, and on explaining specific seizure onset pattern observed 
on a depth electrode in some epileptic patients. To do this, we have built human whole-brain 
network models based on personalized DTI-derived connectome data using Epileptor neural mass 
model and its extension for wave propagation for the study of epileptic activity, as well as 2D 
oscillator close to Hopf bifurcation for the study of healthy activity propagation.  

The extended Epileptor has been used to demonstrate by means of numerical simulation that the 
features of the so-called theta-alpha activity at seizure onset pattern observed on a depth electrode 
in a specific epileptic patient can be plausibly explained by the seizure propagation across an 
individual folded cortical surface. The results also indicate that the spectral content and dynamical 
features might differ in the source space of the cortical gray matter activity and among the 
intracranial sensors, questioning the previous approaches to classification of seizure onset patterns 
done in the sensor space, both based on spectral content and on dynamical features. 

With respect to the network interventions, we have studied two approaches: 1) the most invasive 
lesion of the direct links to the epileptogenic zone (EZ), and 2) targeting nodes or links outside the 
EZ (Fig. 39). For the former, linear stability analysis was applied to the reduced Epileptor, 
uncovering significant reduction of the necessary lesions needed to stop the seizure compared to 
other possible strategies. In addition, the importance of the individualized connectome was also 
demonstrated. The second approach is relevant for a considerable number of patients who have EZs 
that are distributed across multiple brain regions and may involve eloquent areas that cannot be 
removed due to the risk of neurological complications. Based on the clinically identified EZ, we 
employ modularity analysis to identify target brain regions and fiber tracts involved in seizure 
propagation. In addition, we assess safety via electrical stimulation for pre- and post-surgical 
condition to quantify the impact on the signal transmission properties of the network. 
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Figure 40: Minimally invasive resections for epileptic patients. 
Top: scheme of standard resection (removal of the entire EZ) versus lesioning minimal number of links (left) and the 
epileptic activity before and after the intervention (right). Bottom: TZs derived from the modularity analysis when 
setting EZs to inoperable zones. The brain network is divided into seven modules and the EZ (nodes 61 and 64, large 
circles), based on which three nodes (triangles) and eight edges (dotted lines) are derived as target nodes and edges. 
Anatomical locations and list of the newly obtained TZs are shown on the bottom right.  

12.2 Validation and Impact 
The newly developed resections techniques should lead to much less invasive surgical procedures for 
epileptic patients, compared to the current procedures. Moreover, they can be applied to patients 
who have EZs involving areas that cannot be removed due to the risk of neurological complications. 
For the latter, a safety assessment procedure involving electrical stimulation has also been 
developed. 

12.2.1 Actual Use of Output(s) / Exploitation 

The results will be used by the computational and theoretical neuroscience community, as well by 
clinicians working with epileptic patients.  

12.2.2 Potential Use of Output(s) 

The proposed procedures have clinical application potential for performing surgical procedures on 
epileptic patients. 
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12.2.3 Publications 

• Olmi S, Petkoski S, Guye M, Bartolomei F, & Jirsa V (2019). Controlling seizure propagation in 
large-scale brain networks. PLoS computational biology, 15(2), e1006805. 

o Significance: Epilepsy is characterized by perturbed dynamics that originate in a local 
network before spreading to other brain regions. For patient-specific brain network models 
of epilepsy we developed a seizure control strategy that is significantly less invasive than 
traditional surgery. Being entirely based on structural data, our approach allows creation of 
a brain model based on purely non-invasive data prior to any surgery. 

Total number of publications: 3 

12.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

• Poster presentation and a tutorial at SfN meeting 2018, San Diego, USA.  

• Tutorial at ICT 2018, Wien, Austria. 

• Poster presentation at a Brain Initiative Investigators meeting, Rockville, USA.  

13. Key Result KR4.11: Demonstration of 
explanatory value of large-scale brain network 
mouse models with impaired connectivity and 
dysfunctional network 

13.1 Outputs 

13.1.1 Overview of Outputs 

Table 16: Overview of outputs for Key Result KR4.11 

Output  Component number(s) Component name(s) Additional information 

Mouse brain function from 
structure 

C1606 Mouse stroke brain 
network model T4.5.2 

C2495 

Compare experimental 
and theoretical data: 
mouse resting state 
functional connectivity 

 

C998 Allen Mouse Brain Atlas-
based brain network T4.5.2 

13.1.2 Mouse brain function from structure 

Task T4.5.2 

AMU has continued the work on a Mouse Brain Model for simulating the rehabilitation experiment 
defined in CDP1: calcium analysis for 5 mice during 5 weeks (one week before stroke, and 4 weeks 
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of rehabilitation on the M platform). The brain network model for the resting state activity is built 
using the open source tracer dataset of the Allen Institute that was implemented into The Virtual 
Brain (TVB), thus allowing detailed Structural Connectivity (SC) to be obtained. Experimental 
calcium data are used in a close loop validation system to model the cortical activity of the mouse, 
as reflected in the Functional Connectivity (FC) between distant brain regions. Compared to the 
SGA1 results, the experiment also contains the activity of several regions in the healthy hemisphere, 
thus allowing better modelling of the dynamical network reorganization during stroke and recovery 
(Fig. 40). 

 

Figure 41: Comparison of empirical versus simulated FC. 
Time-series, phase coherence and FC from calcium imaging empirical data (left), and FC from the model and cross-
correlation between the model and the data (right). Relative changes of the FC are shown at stroke and after the 
rehabilitation compared to the healthy control for frequency band f=2.5-5Hz. 

13.2 Validation and Impact 

13.2.1 Actual Use of Output(s) / Exploitation 

The model is built as part of our collaboration in CDP1. It is used by experimental neuroscientists 
who conduct experiments in rodent stroke models and calcium imaging. It has also a wider 
application for the computational neuroscientists working on rodent whole-brain modelling.  

13.2.2 Potential Use of Output(s) 

In line with CDP1’s objectives, we plan to integrate both the model’s output and the experiment 
within the Neurorobotic Platform, thus building a closed-loop for validation of different hypotheses 
in stroke research.   

Additionally, it could be used for novel and improved strategies for rehabilitation after stroke.  

13.2.3 Measures to Increase Impact of Output(s): 
Dissemination 

• Poster presentation at a Brain Initiative Investigators meeting, Rockville, USA.  

• Oral presentation at Stroke meeting in Florence, Italy 



   
 

 
D4.7.1 (D27.1 D18) SGA2 M12 ACCEPTED 201005.docx PU = Public 15-Oct-2020 Page 64 / 83 

 

• Oral presentation at lab retreat, INS retreat 2018.  

14. SP4 Tasks contributing to other SPs or to CDPs 
The following Key Results contribute to tasks relevant to work done in SP4, without being mapped 
to any Key Result in SP4. These Key Results are part of other SPs or of CDPs that involve SP4. 

15. Key Result KR3.3: Acquisition of brain imaging 
and electrophysiological recording, models of 
multisensory integration and spatial memory 
and navigation, and brain-inspired robots (i.e. 
visual-tactile rodent-like robot and a humanoid 
robot) 

15.1 Outputs 

15.1.1 Overview of Outputs 

Table 17: Overview of outputs for Key Result KR3.3 

Output  Component number(s) Component name(s) Additional information 

Models of spatial memory 

C984 

Hippocampal and striatal 
model of navigation, 
extended to planning and 
memory 

T4.4.4 

C2408 

Simulated spatial neural 
firing patterns in freely 
moving rodents during 
spatial navigation and 
planning, for comparison 
with electrophysiological 
data 

C2409 
High-level (firing rate) 
model of visuo-spatial 
episodic memory 

C2500 

High-level model of 
spatial navigation for 
guiding autonomous 
agents 

15.1.2 Models of spatial memory 

C984 from SGA1, continued as C2500 in SGA2 
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We developed a network model of firing-rate coded neurons in hippocampus and striatum which 
performs spatial navigation (C984). This model is used to investigate the different learning rules 
(temporal difference in striatum, incidental in hippocampus) and representations (e.g. 
sensory/action in striatum, and place cells etc. in hippocampus) involved in spatial navigation, and 
how they combine to guide action. The output is behaviour in classic navigation tasks used in 
rodents, neural firing characteristics, effects of lesions and behaviour. These outputs are compared 
with data from the literature. In C2500 this model is extended to general (non-spatial) decision-
making and planning, and compared with classic tasks such as the ‘two-step task’ (Daw, Gershman, 
Seymour et al., 2011). The manuscript is being prepared for publication (Geerts, Chersi, Stachenfeld, 
Burgess, in preparation). 

C2408 

We are developing a simulation of the neural firing patterns in freely moving rodents during spatial 
navigation, to examine how self-motion information and environmental sensory information are 
combined in neural representations of self-location. This model is based on the principals of 
Simultaneous Localisation and Mapping (SLAM) in robotics. The outputs (neural firing patterns) 
are compared with electrophysiological data in situations where the influences on neural firing of 
self-motion and environmental inputs can be separated (with SP3 Episense, Cacucci lab, recently 
published: Chen et al., Nature Comms, 2019 10: 630). A manuscript is being prepared for publication 
(Evans & Burgess, in preparation). 

C2409 

We have developed a model of the neural representations of spatial scenes in population firing rates 
in medial temporal, retrosplenial and medial parietal areas, simulating encoding of locations of 
objects encountered within familiar environments, and retrieval of the spatial context of these 
events into visuo-spatial imagery. The initial sets of simulations are compared to classic data from 
the literature, and have recently been published (Bicanski & Burgess, eLife 2018; 7:e33752, Fig. 41). 

 

Figure 42: Model summary of the BB model 
(Bicanski and Burgess, ELife 2018). Parietal representations (PWb/o) encode the egocentric position of extended 
boundaries and objects relative to an agent. These are transformed on retrosplenial cortex (RSC, modulated by head 
direction (HD) signals) to yield allocentric representations in the medial temporal lobe (boundary/object vector cells; 
BVCs/OVCs). These representations are associated with the positional code of place cells and grid cells.  

15.2 Validation and Impact 

15.2.1 Actual Use of Output(s) / Exploitation 

Modelling in C2500 helped to design the experimental conditions used in SP3 Episense (Cacucci) – 
published in Chen et al., Nature Comms (2019) 10: 630. 
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15.2.2 Potential Use of Output(s) 

C2408 will be used for comparison with electrophysiological data by SP3 Episense (Cacucci) and will 
be entered into the Neural Activity Resource  

C2500 can be used to guide more detailed implementations on neurorobotic or neuromorphic 
platforms. 

15.2.3 Publications 

• Chen G, Lu Y, King JA, Cacucci F, Burgess N (2019) Differential influences of environment and 
self-motion on place and grid cell firing. Nature Comms. 10: 630. 

o Significance: Using a sophisticated virtual reality setup for mice the authors  show for the 
first time that while mice are navigating, place cells represent the mouse location 
predominantly using environmental sensory cues while grid cells are more strongly driven by 
self motion. 

• Bicanski A, Burgess N. (2018) A neural-level model of spatial memory and imagery, Elife, 2018 
Sep 4;7:e33752. 

o Significance: A systems-level account of spatial memory (for both encoding and recall/visuo-
spatial imagery) is presented for the first time. We can account for the function and 
interaction of all major spatially selective cell types (place cells, grid cells, head-direction 
cells, boundary, and predicting object vector cells) in one model. 

• Bicanski A, Burgess N. A Computational Model of Visual Recognition Memory via Grid Cells. 
Current Biology – in press 

o Significance: The authors present a novel explanation for the hitherto puzzling existence of 
visual grid cells. In part analogous to grid cells in navigation studies, visual grid cells are 
hypothesized to calculate movement vectors for the focus of gaze (i.e. for saccades). The 
relative distances between any two features of a stimulus are embodied in corresponding 
pairs of grid cell population vectors, allowing the model to sample features in sequence and 
to accumulate evidence for stimulus identity.  

Total number of publications: 3 

15.2.4 Measures to Increase Impact of Output(s): 
Dissemination 

Results from C2408 were presented by Dr. Talfan Evans at Cosyne 2019  

16. Work carried out by the National Research 
Council (partner Pezzulo) under CDP7 

16.1 Development of novel computational approaches to 
spatial navigation 

Our research activities focus on the development of novel computational approaches to 1) 
understand goal-directed spatial cognition and hierarchical planning during navigation, and 2) to 
analyze the neuronal underpinnings of these abilities in rodents and humans, in particular in relation 
to the role of the hippocampus and surrounding structures.  
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The main hypothesis under scrutiny is that hippocampal- (and map-) based spatial cognition and 
planning can be modeled in terms of probabilistic inference using generative models (Pezzulo et al., 
2014 and 2017). More specifically, we hypothesize that 1) the hippocampus (HC) / medial temporal 
lobe (MTL) acts as a compressed and hierarchically organised map for spatial navigation and 2) it 
interacts with prospective goal and sub-goal codes (PFC) to derive hierarchical plans.  

In a first research stream (T4.5.4), we developed novel computational methods for the data analysis 
of HC / MTL neural codes (to be provided by our CDP7 partners: Pennartz, Spiers and Summerfield) 
to test the idea that they encode latent (hierarchical) structure that may support hierarchical 
planning. We leveraged on two existing methods, one (developed in our lab) based on algorithmic 
complexity theory (Donnarumma et al. 2016) and one based on the notion “successor 
representations” in reinforcement learning (Stachenfeld et al., 2017), to realize a novel integrated 
approach to test hierarchical spatial structure in neural codes (paper in preparation).  

In a second research stream (T4.3.4), we developed a novel computational model of how the neural 
circuit formed by the hippocampus and the ventral striatum supports spatial cognition (Stoianov et 
al., PLoS 2018, Fig. 42). Specifically, we compared the internal variables of a certain class of (model-
based) reinforcement learning model to neural data in the hippocampus (HC) and ventral striatum 
(vStr) and found that latent states emerging in the state-transition and state-value models of the 
model-based agent show key coding properties of HC and vStr neurons, respectively. The 
computational model was realized in collaboration with Cyriel Pennartz (partner of CDP7 and SP3) 
and his lab, and has led to a publication acknowledging HBP. 

In a third research stream (T4.4.6), we extended the computational approach of (Stoianov et al., 
PLoS 2018) to model the formation of hierarchical spatial codes and their usage for inference, 
prediction and planning during spatial navigation, using deep belief networks (manuscript in 
preparation). Furthermore, in collaboration with SSSA (SP10), we performed preliminary tests for 
the integration of our computational models for spatial navigation and planning in the Neurorobotic 
platform. We intend to extend them to novel scenarios (e.g. four-room scenario) that will be used 
by our partners in CDP7. 

 

Figure 43: Schematic of the computational model of the hippocampus-ventral striatum circuit. 
The computational model (a) mimics computations in the hippocampus and ventral striatum; (b) was tested in a Y-
maze rodent navigation scenario developed by Prof. Pennartz (SP3 and CDP7); (c) uses simulated grid cells as inputs 
and (d) implements goal-directed spatial navigation and planning in terms of probabilistic inference, which uses 
components whose functioning can be mapped to neural substrate of (a). (Stoianov et al., PLoS 2018). 

16.2 Validation and Impact 
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16.2.1 Actual Use of Output(s) / Exploitation 

Our tasks have mainly a scientific impact. The results produced by task T4.5.4 are being used for 
the design (and successive analysis) of rodent and human tasks by the other partners of CDP7 (Hugo 
Spiers at UCL, Cyriel Pennartz at the University of Amsterdam, Christopher Summerfield in Oxford). 
Furthermore, the results of task T4.3.4, in particular the computational model that we 
published https://doi.org/10.1371/journal.pcbi.1006316, are being used by our partner in SP10 SSSA 
(Scuola Superiore Sant'Anna, under the supervision of Egidio Falotico) to realize a robotic 
implementation of spatial navigation and planning within the neurorobotic platform. 

16.2.2 Publications 

• Stoianov IP, Pennartz CM, Lansink CS, Pezzulo G. (2018) Model-based spatial navigation in the 
hippocampus-ventral striatum circuit: A computational analysis, PLoS computational biology, 
14(9):e1006316. https://doi.org/10.1371/journal.pcbi.1006316.  

o Significance: This paper introduces a novel computational model of goal-directed spatial 
navigation. Our systems-level model reproduces rodent data during a cue conditioning task, 
at both behavioural and neuronal levels. It contributes to clarify the ways the hippocampus-
ventral striatum circuit contributes to goal-directed spatial decisions. 

17. Conclusion and Outlook 
In conclusion, this interim report of SGA2 shows that there is good progress made in all models 
developed in SP4, and there is a large number of publications resulting from this work. The code of 
many of the models are already publicly available, and it is our plan to make all codes available in 
open access once the corresponding papers are accepted for publication. 

Interaction of SP4 models with the HBP platforms is high, and many models also interact with the 
neuroscience data produced in HBP. As requested by the reviewers, SP4 should be more tightly 
integrated with the neuroscience part of the HBP (SP1 to SP3), and we are making constant effort 
to achieve such an integration. We will report about this integration next year. 
  

https://webmail.cnrs.fr/owa/redir.aspx?C=IKdh82YfugG3RUfhESLiTG8qaHqEz-8eZKk0-oBOhgf-cnS_tq7WCA..&URL=https%3a%2f%2fdoi.org%2f10.1371%2fjournal.pcbi.1006316
https://doi.org/10.1371/journal.pcbi.1006316
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Annex A: Component Details 
Table 18: Component details contributing to Key Result KR4.1 

ID Component Name Type Contact Additional information 

C951 Complex to Simplified 
Models Model Guy Eyal T4.1.1 (Simplified dendritic 

models) 

C2453 Input-output "correlation" 
transfer properties in 
simplified, "ball-and-stick", 
multi-compartmental 
models 

Model Michele Giugliano 
T4.1.2 (Input-Output Transfer 
function of detailed 
morphological models) 

C2454  Input-output "correlation" 
transfer properties in 
reconstructed multi-
compartmental models of 
rodent cortical neurons 

Model Michele Giugliano 

T4.1.2 
C2455 Input-output "correlation" 

transfer properties in 
reconstructed multi-
compartmental models of 
human cortical neurons 

Model Michele Giugliano 

C1030 Mean-field models of 
interacting populations of 
rate and spiking neurons 

Model Olivier Faugeras T4.1.3 (Mean-field and population 
models) 

C1031 Mean-field models of 
interacting spiking neurons 
with dendritic compartment 

Model Romain Veltz T4.1.3  

C2357 Slow-fast effects in mean-
fields models Model Etienne Tanré T4.1.3 

C1234 Model of calcium imaging 
signals Model Alain Destexhe T4.1.4 (Biophysical models of 

brain signals) 

C2742 Application of Mean-field 
simulations (MIIND) Model Marc De Kamps T4.1.3 

Table 19: Component details contributing to Key Result KR4.2 

ID Component Name Type Contact Additional information 

C66 Plasticity: STDP for 
structural plasticity Model Wulfram Gerstner T4.3.2 (Learning in networks of 

neurons) 

C1066 Plasticity models Model Wulfram Gerstner T4.3.1 (Plasticity Algorithms) 

C1025 Motor control model Model Jeanette H. 
Kotaleski T4.4.3 (Models of motor control) 

C2472 Plasticity: multifactor rule 
for deep networks Model Wulfram Gerstner T4.3.2 

C2420 Plasticity: prototype 
implementations of rules 
and testing within and 
without the SP9 platforms 

Model André Gruening 

T4.3.3 (Functional plasticity for 
multi-compartment neurons in a 
multi-scale simulation 
framework) 
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Table 20: Component details contributing to Key Result KR4.3 

ID Component Name Type Contact Additional information 

C1030 Mean-field models of 
interacting populations of 
rate and spiking neurons 

Model Olivier Faugeras T4.1.3 (Mean-field and population 
models) 

C1054 Population activity 
equations: finite-N mean-
field model for interacting 
populations 

Model Wulfram Gerstner T4.1.3 

C1235 Local-network model of 
spontaneous activity in 
cortex 

Model Alain Destexhe T4.4.1 (Models of spontaneous 
activity and sleep) 

C2296 Network model of the retina 
responding to complex 
stimuli 

Model Olivier Marre T4.4.2 (Models of low-level 
vision) 

C1859 Alteration of spontaneous 
activity and emergent 
dynamics under external 
stimuli 

Model Gustavo Deco T4.4.1 

C999 Macroscopic model of 
spontaneous human brain 
activity 

Model Gustavo Deco T4.4.1 

Table 21: Component details contributing to Key Result KR4.4 

ID Component Name Type Contact Additional information 

C1024 EITN Postdoctoral Fellows 
Programme Service Alain Destexhe T4.6.2 (EITN programme) 

Table 22: Component details contributing to Key Result KR4.5 

ID Component Name Type Contact Additional information 

C1680 
Python libraries for 
structured model validation 
tests 

Software Andrew Davison 
T4.5.1 (Comparing activity 
dynamics of models and living 
brains) 

C1863 

Concepts for comparison of 
massively-parallel 
electrophysiological 
experimental and model 
data 

Report Sonja Gruen T4.5.1 

C2418 4x4mm spatially organised 
model of a single area Model Markus Diesmann T4.2.1 (Spiking mesoscale cortical 

models with spatial organisation) 

C2339 

Hybrid Schemes for 
combining point-neuron 
network simulations in NEST 
with biophysically detailed 
NEURON simulations 

Model Gaute Einevoll T4.1.4 (Biophysical models of 
brain signals) 

C2340 

Biophysical modelling of 
population signals (LFP, 
ECoG, EEG, MEG, LMF), with 
detailed reconstructed 
neurons 

Model Gaute Einevoll T4.1.4 
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Table 23: Component details contributing to Key Result KR4.6 

ID Component Name Type Contact Additional information 

C2418 4x4mm spatially organised 
model of a single area Model Markus Diesmann T4.2.1 (Spiking mesoscale cortical 

models with spatial organisation) 

C1574 
Structural and functional 
connectivity at different 
scales 

Model Viktor Jirsa 
T4.5.1 (Comparing activity 
dynamics of models and living 
brains) 

Table 24: Component details contributing to Key Result KR4.7 

ID Component Name Type Contact Additional information 

C730 
Multi-area model of cortical 
network at neuronal 
resolution 

Model Sacha van Albada T4.2.3 (Multi-area multi-layer 
spiking cortical models) 

C944 Full-density model of 
cortical microcircuit Model Sacha van Albada T4.2.3 

Table 25: Component details contributing to Key Result KR4.8 

ID Component Name Type Contact Additional information 

C2358 

Simplified, generic 
astrocyte-neuron interaction 
model, with built-in model 
order reduction  

Model Marja-Leena Linne T4.2.2 (Network models including 
neuro-glial interactions) 

C2359 

Prototype spiking neuronal 
network model, including 
simplified version of the 
astrocyte-neuron interaction 
model to explain in vitro 
cell culture data  

Model Marja-Leena Linne T4.2.2 

Table 26: Component details contributing to Key Result KR4.9 

ID Component Name Type Contact Additional information 

C2418 4x4mm spatially organised 
model of a single area Model Markus Diesmann T4.2.1 (Spiking mesoscale cortical 

models with spatial organisation) 

Table 27: Component details contributing to Key Result KR4.10 

ID Component Name Type Contact Additional information 

C1861 Improving identification of 
the epileptogenic zone Model Viktor Jirsa T4.5.3 (Human brain function 

from structure) 

C1862 
Personalised brain models 
for predicting seizure 
propagation 

Model Viktor Jirsa T4.5.3 

Table 28: Component details contributing to Key Result KR4.11 

ID Component Name Type Contact Additional information 

C998 Allen Mouse Brain Atlas-
based brain network Model Viktor Jirsa T4.5.2 (Mouse brain function from 

structure) 

C1606 Mouse stroke brain network 
model Model Viktor Jirsa T4.5.2  

C2495 

Compare experimental and 
theoretical data: mouse 
resting state functional 
connectivity 

Model Viktor Jirsa  
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Table 29: Component details contributing to Key Result KR3.3 

ID Component Name Type Contact Additional information 

C984 

Hippocampal and striatal 
model of navigation, 
extended to planning and 
episodic memory 

Model Neil Burgess T4.4.4 (Models of spatial 
memory) 

C2408 

Simulated spatial neural 
firing patterns in freely 
moving rodents during 
spatial navigation and 
planning, for comparison 
with electrophysiological 
data 

Model Neil Burgess T4.4.4 

C2409 
High-level (firing rate) 
model of visuo-spatial 
episodic memory 

Model Neil Burgess T4.4.4 

C2500 
High-level model of spatial 
navigation for guiding 
autonomous agents 

Model Neil Burgess T4.4.4 
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Appendix I: Key Results in SGA2 Amendment 2 

Key Result Name Work Packages and Tasks Responsible 

KR4.1 Develop models of single-cell 
and population levels T4.1.1, T4.1.2, T4.1.3, T4.1.4 Alain Destexhe 

KR4.2 
Plausible biological models of 
plasticity for large networks with 
non-trivial functionality 

T4.3.1, T4.3.2, T4.3.3, T4.4.3 Wulfram Gerstner 

KR4.3 Develop models of brain activity 
and function T4.1.3, T4.4.1 Moritz Helias (in-kind) 

KR4.4 SP4 EITN Postdoctoral Fellows 
Programme T4.6.2 Alain Destexhe 

KR4.5 Validation of spiking network 
model against experimental data 

T4.1.1, T4.1.2, T4.1.3, T4.1.4 

T4.2.1, T4.5.1 

Alain Destexhe, Markus 
Diesmann, Sonja 
Gruen 

KR4.6 

Parameter space confinement of 
mesocircuit model for the 
reproduction of experimental 
data 

T4.2.1 Markus Diesmann 

KR4.7 

Release of multi-area model of 
macaque visual cortex, improved 
using new connectivity and 
activity data 

T4.2.3 Sacha van Albada 

KR4.8 
Release of draft implementation 
of generic network model with 
glial contribution 

T4.2.2 Marja-Leena Linne 

KR4.9 
Release of draft multi-layered 
cortical network model with 
spatially organised connectivity 

T4.2.1 Markus Diesmann 

KR4.10 

Demonstration that brain 
personalized network models 
have predictive value for 
epileptogenic zones of individual 
patients 

T4.5.3 Viktor Jirsa 

KR4.11 

Demonstration of explanatory 
value of large-scale brain 
network mouse models with 
impaired connectivity and 
dysfunctional network 

T4.5.2 Viktor Jirsa 

KR3.3 

Acquisition of brain imaging and 
electrophysiological recording, 
models of multisensory 
integration and spatial memory 
and navigation, and brain-
inspired robots (i.e. visual-
tactile rodent-like robot and a 
humanoid robot) 

T4.4.4 Neil Burgess 
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Appendix II: Milestones Status 
Note that the milestones (4.1.3/4.3.1/4.4.3, in red) which have been achieved after the first 
submission of the deliverable will be reported in the Month 18 report. 

Work 
Package Milestone Milestone title Status Achievement 

date 

WP21 MS170 
MS4.1.1 “Neuroreduce” an open source automated 
reduction scheme for any complex neuron model 
(T4.1.1) 

Achieved 30.09.18 
(M06) 

WP21 MS171 MS4.1.2 Find the good scalings for synaptic connections 
in order to have a mean field limit.(T4.1.3) Achieved 26.04.19 

(M13) 

WP21 MS172 
MS4.1.3 Open source refined model for NMDA-
receptors, including local dendritic NMDA spike model 
(T4.1.1) 

Achieved 16.05.19 
(M14)  

WP21 MS173 MS4.1.4 Public release as software of models realised 
with MIIND with announcement.(T4.1.3) Achieved 04.03.19 

(M12) 

WP21 MS174 MS4.1.5 Separate the time scales in models of networks 
of spiking neurons (T4.1.3)  

Report to 
M24   

WP21 MS175 MS4.1.6 Thermodynamic limit for networks with 
correlated Gaussian synaptic weights (T4.1.2) Achieved 29.01.19 

(M10) 

WP22 MS184 MS4.2.1 Comparative analysis of model order reduction 
techniques (T4.2.2) Achieved 31.03.19 

(M12) 

WP22 MS457 MS4.2.4 Internal release of first draft of spatially 
organised connectivity (T4.2.1) Achieved 25.05.18 

(M02) 

WP22 MS458 
MS4.2.5 Internal release of draft forward model 
predicting LFP on basis of spatially organised spiking 
model (T4.2.1) 

Achieved 25.05.18 
(M02) 

WP23 MS187 MS4.3.1 Report on neural networks that perform 
hierarchical memory retrieval part 1 (T4.3.2) Achieved 18.07.19 

(M16) 

WP23 MS188 MS4.3.2 Two three-factor rules implemented on 
Spinnaker and BrainScaleS (T4.3.3) 

Report to 
M24   

WP23 MS196 MS4.3.7 A computational demo of hierarchical 
navigational planning (T4.3.4) Achieved 17.09.18 

(M06) 

WP24 MS193 MS4.4.1 Intermediate report on the network model of 
retinal processing (T4.4.2) Achieved 17.10.18 

(M07) 

WP24 MS194 
MS4.4.2 Report on model implementation and testing 
of a visual task which depends on a top-down 
contribution (T4.4.2) 

Achieved 15.06.18 
(M03) 

WP24 MS195 MS4.4.3 Simulation of hippocampal and striatal 
contributions to spatial navigation (T4.4.4) Achieved 25.07.19 

(M16) 

WP25 MS206 
MS4.5.1 Successful characterization of resting state as 
described by functional connectivity for the mouse 
before stroke (T4.5.2) 

Achieved 25.02.19 
(M11) 

WP25 MS207 
MS4.5.2 Successful reconstruction of structural epilepsy 
patient data (N > 15) and creation of patient-specific 
brain network models 

Achieved 07.01.19 
(M10) 
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Appendix III: Contributions, Data used and Platform 

Task 
Key tasks in other SPs to 

which SP4 current activities 
will directly contribute. 

Datasets (from SPs 1, 2 and 3) used in 
the development of the theoretical 

model, and are envision to use in SGA2-
Year2. 

HBP platforms 
activities (and related 
WP or task number) 

which are needed for 
the models. 

T4.1.1 SP1 Mouse Brain Organisation 
and Interspecies Comparisons 
It provide models for SP1 : 
Models of NMDA synapses and 
of local dendritic NMDA spikes 
; to be used for developing 
realistic nonlinear detailed 
models of cortical and 
hippocampal neurons. 

Data from:  
T1.5.3 Comparative physiology of mouse 
and human neocortical pyramidal neurons 
and interneurons in different layers - 3D 
reconstructed Human L2/3 pyramidal 
cells (Huib Mansvelder lab., Amsterdam);  
WP1.4 Molecular, structural and 
functional integration of data in brain 
circuits - Detailed reconstruction of 
dendritic spines (for both mouse and 
human L2/3 cortical pyramidal cells)  

SP6 Brain Simulation 
Platform 

T4.1.2 WP3.2 Sleep/wake transitions 
and slow-wave activity 
WP3.4 Neural mechanisms of 
consciousness: experiments, 
modelling, quantitative 
measures 

Data from: 
T1.2.2 Functional in vivo interaction data 
between synaptic proteins of the 
neuroligin and the neuroxin families, and 
their use for the computational modelling 
of trans-synaptic signalling 
T2.2.2 Neuronal mechanism transforming 
a visual stimulus into an eye movement 
plan 
T2.2.5 Linking human neocortical 
microcircuits to human cognition 
 
SGA2-Year 2 : Same data are planned to 
be use and data released in SGA1 by the 
EPFL-BBP 

SP6 Brain Simulation 
Platform 
WP6.3 Software tools 
and model 
reconstruction 
workflows 
WP6.4 Platform services 

T4.1.3 WP1.3 Whole Brain 
CDP1 Mouse whole Brain 
Model & Related Atlas 
T3.2.3 Multiscale study of 
spontaneous activity in 
physiological and pathological 
models of the cerebral cortex 
T3.2.1 Modelling and analysis 
of heterogeneous cortical 
spontaneous activity across 
brain states 
MIIND on JURON 

None SP6 Brain Simulation 
Platform 

T4.1.4 SP6 Brain Simulation Platform 
T6.3.6 Subcellular level tools 
CDP1 Mouse Whle Brain model 
& Related Atlas 
SP3 Systems and Cognitive 
Neuroscience (about spiking 
NN models) 

None  
SGA2-Year 2:  
Data from Mavi Sanchez Vives 
(simultaneaous LFP and intracellular 
recordings) 

No platform is needed 
because T4.1.4 provides 
tools, but they could be 
useful to platforms. 
e.g. in SP6, to calculate 
LFPs from detailed 
models (LFPy), or in 
neuromorphic 
simulations to calculate 
LFPs solely from the 
spikes produced by the 
hardware, using a 
phenomenological LFP 
model (ph-LFP). 
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Task 
Key tasks in other SPs to 

which SP4 current activities 
will directly contribute. 

Datasets (from SPs 1, 2 and 3) used in 
the development of the theoretical 

model, and are envision to use in SGA2-
Year2. 

HBP platforms 
activities (and related 
WP or task number) 

which are needed for 
the models. 

T4.2.1 T5.7.1 Elephant,  
T6.3.3 Simulation engines 
(NEST), 
T7.3.5 Optimized network 
construction on exascale 
architectures. 

None 
SGA2-Year2:  
T2.2.1 A common computational 
architecture for eye and arm movement 
control - data from visual cortex 

NEST: 
T6.3.3 Simulation 
engines (NEST) 
WP7.3 Exascale 
simulator and 
visualization technology 
T7.4.5 NEST user 
experience and 
sustainability) 
HPAC:  
(WP7.1, WP7.2, WP7.4, 
WP7.5, WP7.6), 
ELEPHANT (T5.7.1),  

T4.2.2 WP7.3 Exascale simulator and 
visualization technology 
T6.2.4 Models of basal ganglia 

SGA2-Year 2: 
T1.2.1 High-resolution reconstruction of 
striatal and cerebellar neurons: dendritic 
arbors and axon initial segments 

NEST:  
T6.3.3 Simulation 
engines (NEST) 
WP7.3 Exascale 
simulator and 
visualization technology 
MOR (Model Order 
Reduction) 

T4.2.3 T6.3.3 Simulation engines 
(NEST) 
WP7.3 Exascale simulator and 
visualization technology 
WP9.3 SpiNNaker systems 

Data from: 
T2.5.7 Attentional modulation of sensory 
processing in monkey and human - 
Monkey electrophysiology data from 
parietal cortical areas V6/V6A 

NEST: 
T6.3.3 Simulation 
engines (NEST) 
WP7.3 Exascale 
simulator and 
visualization technology 
T7.4.5 NEST user 
experience and 
sustainability) 
HPAC:  
(WP7.1, WP7.2, WP7.4, 
WP7.5, WP7.6), 
Elephant (T5.7.1),  
SpiNNaker systems 
(WP9.3), 
BrainScaleS systems 
(WP9.2) 

T4.3.1 WP9.2 BrainScaleS systems 
WP9.3 SpiNNaker systems 
CDP5 The Virtual Brain 

None NEST:  
T6.3.3 Simulation 
engines (NEST) 

T4.3.2 WP9.2 BrainScaleS systems 
WP9.3 SpiNNaker systems 
CDP5 The Virtual Brain 

None NEST:  
T6.3.3 Simulation 
engines (NEST) 

T4.3.3 WP9.2 BrainScaleS systems 
WP9.3 SpiNNaker systems  
CDP5 Biological Deep Learning 

None WP9.2 BrainScaleS 
systems 
WP9.3 SpiNNaker 
systems  
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Task 
Key tasks in other SPs to 

which SP4 current activities 
will directly contribute. 

Datasets (from SPs 1, 2 and 3) used in 
the development of the theoretical 

model, and are envision to use in SGA2-
Year2. 

HBP platforms 
activities (and related 
WP or task number) 

which are needed for 
the models. 

T4.3.4 T3.3.6 Navigation and 
planning in hierarchical 
environments  

Data from: 
T3.3.6 Navigation and planning in 
hierarchical environments - rodent data 

The neurorobotic 
platform: 
T10.2.3 Decision making 
and spatial 
representation 

T4.4.1 CDP1-SGA2-UC2: Mouse 
network model for the activity 
before and after stroke 
WP3.4 Neural mechanisms of 
consciousness: experiments, 
modelling, quantitative 
measures 
T3.4.2 Exploration of 
measures and mechanisms of 
consciousness in multilevel 
model simulations 
T3.4.3 From focal stroke to 
cortical islands: the impact of 
lesions on brain complexity 
and consciousness 
T3.4.4 Brain structure-
function dynamical 
interactions in pathological, 
pharmacological and 
physiological modulation of 
consciousness 
WP3.2 Sleep/wake transitions 
and slow-wave activity 
T3.2.2 Multiscale mapping of 
cortical activity, reactivity 
and effective connectivity 
across states in humans 
T3.2.3 Multiscale study of 
spontaneous activity in 
physiological and pathological 
models of the cerebral cortex 
CDP8 The Virtual Brain. 

SGA2-Year 1: 
- ARCHI dataset (resting-state fMRI) 
(Bertrand Thirion, NeuroSpin, SP2).  
We employed this dataset in the paper 
accepted two weeks ago 
(https://www.sciencedirect.com/science
/article/pii/S1053811919305889) 
- Individual Brain Charting: ARCHI 
standard (Bertrand Thirion, NeuroSpin, 
SP2) 
https://kg.humanbrainproject.eu/instanc
es/Dataset/a0a27e55525511d7c1765bf5c1
f4d916  
- Fluorescence cortical recording of 
mouse activity after stroke (Francesco 
Pavone, LENS, CDP1, SP1) 
https://kg.humanbrainproject.eu/instanc
es/Dataset/4730b8c4ae603587a04b4c436
2869f91  
- Cortical recordings from anesthetized 
Fmr1KO mice (Maria Victoria Sánchez-
Vives, IDIBAPS, SP3, T3.4.4 Brain 
structure-function dynamical interactions 
in pathological, pharmacological and 
physiological modulation of 
consciousness) 
 
SGA2 Year-2 also: 
- EEG data in sleep and anesthesia 
(Steven Laureys, SP3) 

CDP8 – The virtual Brain 
T5.10.1 (SGA2) Interface 
between HBP and TVB 
T5.5.3 (SGA2) 
Knowledge Graph 

T4.4.2 T2.2.1 A common 
computational architecture 
for eye and arm movement 
control 
T2.2.3 Predicting behavioural 
symptoms of unilateral spatial 
hemineglect patients from 
lesioned visuo-motor 
integration model 
T2.2.4 Learning eye 
movement and grasping 
control using deep learning 
networks with brain-
constrained architectures  
T2.5.6 Comparative mapping 
of visuo-motor cortex in 
monkey and human 
T3.1.3 Feedback circuits, and 
apical amplification 

None SP9 Neuromorphic 
Computing Platform 
SP10 Neurobotics 
Platform 

https://www.sciencedirect.com/science/article/pii/S1053811919305889
https://www.sciencedirect.com/science/article/pii/S1053811919305889
https://kg.humanbrainproject.eu/instances/Dataset/a0a27e55525511d7c1765bf5c1f4d916
https://kg.humanbrainproject.eu/instances/Dataset/a0a27e55525511d7c1765bf5c1f4d916
https://kg.humanbrainproject.eu/instances/Dataset/a0a27e55525511d7c1765bf5c1f4d916
https://kg.humanbrainproject.eu/instances/Dataset/4730b8c4ae603587a04b4c4362869f91
https://kg.humanbrainproject.eu/instances/Dataset/4730b8c4ae603587a04b4c4362869f91
https://kg.humanbrainproject.eu/instances/Dataset/4730b8c4ae603587a04b4c4362869f91
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Task 
Key tasks in other SPs to 

which SP4 current activities 
will directly contribute. 

Datasets (from SPs 1, 2 and 3) used in 
the development of the theoretical 

model, and are envision to use in SGA2-
Year2. 

HBP platforms 
activities (and related 
WP or task number) 

which are needed for 
the models. 

WP3.1 Context-sensitive vision 
and recognition 
SP9 Neuromorphic Computing 
Platform 
SP10 Neurorobotics  

T4.4.3 T6.2.4 Models of basal ganglia Data from: 
T1.2.4 Structure and function of the 
interneurons of the microcircuits within 
the basal ganglia 

SP10 Neurorobotics 
Platform 

T4.4.4 T3.3.2 Rodent physiology: self 
motion and visual integration 

Data from: 
SP3 (relating to Chen et al., 2019, and 
future experiments). This will be 
deposited in CSCS 
(https://www.cscs.ch/user-
lab/allocation-schemes/ ) ‘Mice-virtual-
reality-data-UCL’. 

SP6 Brain Simulation 
Platform 
NEURON simulator 
Neuroscience Gateway 
project 

T4.4.5 CDP4 - Visuo-motor 
integration 

None T5.5.1 Collaboratory 
T5.5.2 Reproducible 
Scientific Workflows 

T4.4.6 T10.2.3 Decision making and 
spatial representation 

None The Neurorobotic 
Platform: 
T10.2.3 Decision making 
and spatial 
representation 

T4.5.1 WP3.2 Sleep/wake transitions 
and slow-wave activity 
T3.2.1 Modelling and analysis 
of heterogeneous cortical 
spontaneous activity across 
brain states 
T3.2.5 High-efficiency multi-
scale software pipeline for 
analysis and simulation of 
experimental slow waves and 
wakefulness transition. 

Data from:  
various test data generated by the 
involved partners in SP3, and 
corresponding simulations of the NEST 
and DPSNN simulators.  

T5.7.1 Elefant 
T5.7.2 Neural Activity 
Resource 
T6.4.1 Simulation 
engines apps for the 
platform. 

https://www.cscs.ch/user-lab/allocation-schemes/
https://www.cscs.ch/user-lab/allocation-schemes/
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Task 
Key tasks in other SPs to 

which SP4 current activities 
will directly contribute. 

Datasets (from SPs 1, 2 and 3) used in 
the development of the theoretical 

model, and are envision to use in SGA2-
Year2. 

HBP platforms 
activities (and related 
WP or task number) 

which are needed for 
the models. 

T4.5.2 T1.3.1 Whole brain 
distribution of various cell 
types 
SP10 Neurorobotics Platform 

Data from: 
T1.3.1 Whole brain distribution of various 
cell types 
 
SGA2-Year 2: 
The same data should be used and 
probably from 
T1.3.2 Technological development in both 
imaging and data analysis 

SP10 Neurorobotics 
Platform 

T4.5.3 T2.6.1 Multimodal 
integrationto build the HBP 
atlas 
T4.5.1 Comparing activity 
dynamics of models and living 
brains 
T5.4.3 Development of 3D 
High-Volumetric Interactive 
Atlas Viewer  
T8.7.4 Simulating Human 
Brains  
WP7.2 Data federation and 
data-intensive computing 
technology 
CDP3 Multi-Level Human Brain 
Atlas 
CDP8 The Virtual Brain 

Data from: 
T2.6.1 Multimodal integration to build the 
HBP atlas 
 
SGA2-Year 2: 
The same data will be used in the SGA2 
remaining period. 

SP5 Neuroinformtacis 
Platfom 
WP7.2 Data federation 
and data-intensive 
computing technology 
WP8.7 The 
Neurodegenerative 
Virtual Brain (TVD-NDD) 
T8.7.4 Simulating 
human brains 

T4.5.4 T2.2.6 Goal-directed 
navigation in the classic AI 
four rooms task (fMRI) (CEoI) 
T2.2.7 Goal-directed 
navigation in a hierarchical 
sequential decision task (fMRI) 

None 
SGA2-Year 2: 
T2.2.6 Goal-directed navigation in the 
classic AI four rooms task (fMRI) (CEoI) 
T2.2.7 Goal-directed navigation in a 
hierarchical sequential decision task 
(fMRI) 

The neurorobotic 
platform:  
T10.2.3 Decision making 
and spatial 
representation 
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Appendix IV: List of Publications in SGA2 
Note that the publications of SGA2 Year 2 (in red and italics) will be reported in the Month 18 report 

KR4.1 

1) de Kamps M, Lepperød M, Lai YM (2019) Computational geometry for modeling neural 
populations: From visualization to simulation. PLoS Comput Biol 15(3): e1006729. 
https://doi.org/10.1371/journal.pcbi.1006729 

2) Gorski T, Veltz R, Galtier M, Fragnaud H, Goldman JS, Teleńczuk B and Destexhe A, 2018. 
Dendritic sodium spikes endow neurons with inverse firing rate response to correlated synaptic 
activity. Journal of computational neuroscience, 45(3), pp.223-234.  

3) di Volo M, Romagnoni A, Capone C, Destexhe A,  Biologically realistic mean field models of 
conductance-based spiking neurons with adaptation, Neural Computation 31: 653-680, 2019.  

4) Telenczuk M, Brette R, Destexhe A. and Telenczuk B. Contribution of the axon initial segment to 
action potentials recorded extracellularly.  eNeuro 5: 0068-18, 2018. 

5) Fournier N, Tanré E, and Veltz R. “On a Toy Network of Neurons Interacting through Their 
Dendrites,” February 12, 2018. https://arxiv.org/abs/1802.04118. Annales de l'Institut Henri 
Poincaré, Probabilités et Statistiques, in revision.  

6) Goriounova NA, Heyer DB, Wilbers R, Verhoog MB, Giugliano M, Verbist C, Obermayer J, Kerkhofs 
A, Smeding H, Verberne M, Idema S, Baayen JC, Pieneman AW, de Kock CPJ, Klein M, Mansvelder 
HD (2018) Large and fast human pyramidal neurons associate with intelligence, eLife 7:e41714, 
https://doi.org/10.7554/eLife.41714  

7) Pampaloni NP, Lottner M, Giugliano M, Matruglio A, D’Amico F, Prato M, Garrido JA, Ballerini L, 
Scaini D (2017) Single-layer graphene modulates neuronal communication and membrane ion 
channels expression via its cation−π interactions, Nature Nanotechnology, 13:755–64, 
https://doi.org/10.1038/s41565-018-0163-6  

8) Cormier Q, Tanré E, Veltz R. Long time behavior of a mean-field model of interacting neurons. 
Stoch Process their Appl. July 2019. doi:10.1016/j.spa.2019.07.010 

9) Olivier Faugeras, James MacLaurin, Etienne Tanré The meanfield limit of a network of Hopfield 
neurons with correlated synaptic weights https://arxiv.org/abs/1901.10248 

10) Olivier Faugeras, Émilie Soret, Etienne Tanré Asymptotic behaviour of a network of neurons with 
random linear interactions https://hal.inria.fr/hal-01986927 

KR4.2 

1) Willem A.M. Wybo, Benjamin Torben-Nielsen,Thomas Nevian, Marc-Oliver Gewaltig (2019). 
Electrical Compartmentalization in Neurons. Cell Reports 26, 1759–1773, 
https://doi.org/10.1016/j.celrep.2019.01.074. 

2) M. Llera-Montero, J. Sacramento, R.P. Costa. 
Computational roles of plastic probabilistic synapses. Current opinion in Neurobiology 54:90-97, 
2019 https://doi.org/10.1016/j.conb.2018.09.002 

3) Luziwei Leng, R. Martel, O. Breitwieser, I. Bytschok, W. Senn, J. Schemmel, K. Meier & M.A. 
Petrovici . Spiking neurons with short-term synaptic plasticity form superior generative 
networks. Nature Scientific Reports 8: 10651, 2018 DOI 

4) Work on eligibility traces and 3-factor learning rules has been published as a review paper in 
Pubin Frontiers: Gerstner et al. (2018) PLUS id 1348, Front. Neural Circuits, 12:53 doi: 
10.3389/fncir.2018.00053; C1066 and C2472 

5) Deger et al. (2018), Journal of Cerebral Cortex, Volume 28, Pages 1396–1415, 
https://doi.org/10.1093/cercor/bhx339, PLUS id 1037 (C66) 

6) Front. Neural Circuits, 12:53 doi: 10.3389/fncir.2018.00053 

https://doi.org/10.1371/journal.pcbi.1006729
https://arxiv.org/abs/1802.04118
https://doi.org/10.7554/eLife.41714
https://doi.org/10.1038/s41565-018-0163-6
https://arxiv.org/abs/1901.10248
https://hal.inria.fr/hal-01986927
https://doi.org/10.1016/j.celrep.2019.01.074
https://doi.org/10.1016/j.conb.2018.09.002
https://www.nature.com/srep/
http://dx.doi.org/10.1038/s41598-018-28999-2
https://doi.org/10.1093/cercor/bhx339
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7) Suryanarayana SM, Hellgren Kotaleski J, Grillner S, Gurney KN. Roles for globus pallidus externa 
revealed in a computational model of action selection in the basal ganglia. Neural Networks. 
2019;109:113-36; model deposited at 
https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=249408#tabs-1 

8) M. Katkov, S. Romani & M. Tsodyks. Memory Retrieval from First Principles. Neuron, 94:1027-
1032 (2017).  

9) M. Naim, M. Katkov & M. Tsodyks. Fundamental Law of Memory Recall. bioArxiv, 2018.  

KR4.3 

1) Schuecker, Goedeke, Helias (2018) Optimal Sequence Memory in Driven Random Networks. Phys 
Rev X 8, 041029 

2) Kuehn, Helias (2018) Expansion of the effective action around non-Gaussian theories. J Phys A 
Math Theor 51(17) 375004 

3) Owaki, T, Vidal-Naquet, M, Nam, Y, Uchida, G, Sato, T, Câteau, H, Shimon Ullman, S and Manabu 
Tanifuji, M.  Searching for visual features that explain response variance of face neurons in 
inferior temporal cortex.  PLoS one, 13, 1-27, 2018  

4) Ullman, S. Using neuroscience to develop artificial intelligence. Science, 363 (6428), 692-693, 
2019  

KR4.4 

1) https://www.biorxiv.org/content/10.1101/565127v1 

2) Nghiem, T. A. E., Tort-Colet, N., Gorski, T., Ferrari, U., Moghimyfiroozabad, S., Goldman, J. S? 
& Destexhe, A. (2018). Cholinergic switch between two different types of slow waves in cerebral 
cortex. bioRxiv, 430405. 

3) Volo, Matteo di, Alberto Romagnoni, Cristiano Capone, and Alain Destexhe. 2018. “Mean-Field 
Model for the Dynamics of Conductance-Based Networks of Excitatory and Inhibitory Spiking 
Neurons with Adaptation.” bioRxiv. https://doi.org/10.1101/352393. 

KR4.5 

1) Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018). Rigorous Neural 
Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of 
Simulation Results in the Absence of Experimental Validation Data. Frontiers in Neuroinformatics 
12, 81. 

2) Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M. (2018). 
Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level 
of Network Activity Data. Frontiers in Neuroinformatics 12, 90. 

3) Hagen, Næss, Ness & Einevoll (2018). Multimodal modeling of neural network activity: computing 
LFP, ECoG, EEG and MEG signals with LFPy2.0. Front Neuroinform, 12(92). 

4) Skaar, Stasik, Hagen, Ness & Einevoll (2019). Estimation of neural network model parameters 
from local field potentials (LFPs). bioRxiv (submitted to Journal of Neuroscience) 

5) Pesaran, Vinck, Einevoll, Sirota, Fries, Siegel, Truccolo, Schroeder & Srinivasan (2018). 
Investigating large-scale brain dynamics using field potential recordings: Analysis and 
interpretation. Nature Neuroscience, 21, 903–919. 

6) Ness, Remme & Einevoll (2018). h-Type Membrane Current Shapes the Local Field Potential from 
Populations of Pyramidal Neurons. Journal of Neuroscience, 38(26), 6011–6024. 

7) Buccino, Kordovan, Ness, Merkt, Häfliger, Fyhn, … Einevoll (2018). Combining biophysical 
modeling and deep learning for multi-electrode array neuron localization and classification. 
Journal of Neurophysiology, 120, 1212–1232. 

8) Luo, Macias, Ness, Einevoll, Zhang & Moss (2018). Neural timing of stimulus events with 
microsecond precision. PLoS Biology, 16(10), 1–22. 

https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=249408#tabs-1
https://www.biorxiv.org/content/10.1101/565127v1
http://paperpile.com/b/YJ3UvQ/En4L
http://paperpile.com/b/YJ3UvQ/En4L
http://dx.doi.org/10.1101/352393
http://dx.doi.org/10.1101/352393
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9) Mäki-Marttunen, Krull, Bettella, Hagen, Næss, Ness, … Einevoll (2019). Alterations in 
Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cerebral 
Cortex 29(2), 875–891.  

10) Buccino, Kuchta, Jæger, Ness, Berthet, Mardal, Cauwenberghs & Tveito (2019). How does the 
presence of neural probes affect extracellular potentials? Journal of Neural Engineering 

KR4.6 

1) Upscaling of the spiking cortical microcircuit model by Potjans & Diesmann (2014) 
to the mesocircuit model, parameter investigation and forward-modeling of local field 
potentials. 

2) Senk, J.; Hagen, E.; van Albada, S.; Diesmann, M. (2018a) Reconciliation of weak pair-wise spike-
train correlations and highly coherent local field potentials across space. arXiv:1805.10235 

3) Interactive visualization with VIOLA: Senk, J; Carde, C.; Hagen, E.; Kuhlen, T.; Diesmann, M; 
Weyers, B (2018b) VIOLA - A multi-purpose and web-based visualization tool for neuronal-network 
simulation output. Frontiers in Neuroinformatics 12:75 

4) Analytical conditions for spatiotemporal patterns in spiking activity: Senk, J; Korvasová, K.; 
Schuecker, J.; Hagen, E.; Tetzlaff, T.; Diesmann, M.; Helias, M. (2018c) Conditions for traveling 
waves in spiking neural networks. arXiv:1801.06046 

5) Phase-lags in large scale brain synchronization: Methodological considerations and in-silico 
analysis. Plos CB 2018. Petkoski et al. 

6) Petkoski S, Jirsa VK. Transmission time delays organize the brain network synchronization. 
Philos Trans R Soc A Math Phys Eng Sci. 2019;377(2153):20180132. doi:10.1098/rsta.2018.0132 

KR4.7 

1) Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ. Multi-scale account of the network 
structure of macaque visual cortex (2018a) Brain Struct Func 223(3):1409-1435. 

2) Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, van Albada SJ. A multi-scale layer- resolved 
spiking network model of resting-state dynamics in macaque visual cortical areas (2018b) PLoS 
CB 14:e1006359. 

3) van Albada SJ, Rowley AG, Senk J, Hopkins M, Schmidt M, Stokes AB, Lester DR, Diesmann M, 
Furber SB. Performance comparison of the digital neuromorphic hardware SpiNNaker and the 
neural network simulation software NEST for a full-scale cortical microcircuit model (2018) Front 
Neurosci 12:291. 

KR4.8 

1) T. Manninen, R. Havela, M.-L. Linne (2019). Computational models of astrocytes and astrocyte-
neuron interactions: Categorization, analysis, and future perspectives. Computational 
Glioscience, editors M. De Pitta and H. Berry, Springer. (Output: Neuronal-glial network model) 

2) Manninen T, Saudargiene A, Linne M-L. A novel excitability-physicochemical model for astrocyte-
neuron interactions in long-term plasticity in mouse neocortex. Submitted to PLoS Computational 
Biology). (Output: Neuronal-glial network model) 

3) Lehtimäki M, Paunonen L, Linne M-L. Model reduction of a biophysical network model. Submitted 
to Proceedings of the IEEE Conference on Decision & Control. (Output: Order reduction for 
network models) 

KR4.9 

KR4.10 

1) Controlling seizure propagation in large-scale brain networks. Plos CB [in press]. Olmi et al. 

2) An S, Bartolomei F, Guye M, Jirsa V. Optimization of surgical intervention outside the 
epileptogenic zone in the Virtual Epileptic Patient (VEP). PLoS Comput Biol. 
2019;15(6):e1007051. doi:10.1371/journal.pcbi.1007051 
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3) Computational modeling of seizure spread on a cortical surface explains the theta-alpha 
electrographic pattern. Sip et al [in review] 

KR3.3 

1) Chen G, Lu Y, King JA, Cacucci F, Burgess N (2019) Differential influences of environment and 
self-motion on place and grid cell firing. Nature Comms. 10: 630. 

2) Bicanski A, Burgess N. A neural-level model of spatial memory and imagery. Elife. 2018 Sep 
4;7:e33752. 

3) Bicanski A, Burgess N. A Computational Model of Visual Recognition Memory via Grid Cells. 
Current Biology – in press 

CDP7 

1) Stoianov IP, Pennartz CM, Lansink CS, Pezzulo G. Model-based spatial navigation in the 
hippocampus-ventral striatum circuit: A computational analysis. PLoS computational biology. 
2018 14(9):e1006316. https://doi.org/10.1371/journal.pcbi.1006316. 

https://doi.org/10.1371/journal.pcbi.1006316
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