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Algorithms, Cognitive Models and Computing Principles for 
the HBP Human Brain Atlas  

1. Introduction 

This Deliverable describes in details the work done between M18 and M30, and has two 
objectives. The first is to give an overview of the different models investigated in SP4 and 
how they relate to various other aspects of the HBP. The second is to provide the 
programme codes used to simulate most of these models. 

The models investigated in SP4 concern many different aspects of brain function and 
different scales. We summarize below the different modelling approaches considered in 
this Deliverable.  

A first class of models concern the investigation of brain cells, brain networks and brain 
signals at different scales. Here, models investigate the integrative properties of dendrites 
and the approaches followed are first to simplify the complex dendritic morphology of 
neurons into simplified models that capture the essence of dendritic integration and 
nonlinearities (such as dendritic spikes). Such models are conceived so that they are 
compatible with the hardware. Another important effort is to provide a set of models to 
simulate brain signals at different scales, first focusing on local signals such as the local 
field potential. The goal here is to provide such models for both detailed and simplified 
neuron representations. We also investigate population-level models, for which a simulator 
has been conceived and released for general use. 

A second main effort concerns the plasticity algorithms and their consequences in learning 
and memory paradigms. Several algorithms are described, including plasticity algorithms 
that explicitly use dendrites. We hope that appropriate modification of simulation 
programs (NEST) will allow the implementation of these algorithms. 

A third main field of modelling in SP4 focuses on large-scale models of cognitive functions. 
The different models investigated concern models of perception-action and spatial 
navigation, models of attentional processes, models of realistic network states and 
network models including glial cells. These models should be available in a format that 
should allow them to be included in the Brain Simulation and Neuromorphic Platforms.  

Finally, SP4 also investigates general principles of brain computation. The work described 
here is about computations in dendrites, computations in circuits, and general principles of 
computation inspired from biology and with possible applications in robotics. Retinal 
computations (at the population level) are also investigated with a goal to provide a 
working model of the retinal “input” to thalamocortical models.  

In all cases, the programme codes are made available as supplementary information to this 
Deliverable (to be posted to the Human Brain Atlas). Meanwhile, DIC have been filled in on 
the HBP collaboratory portal: 

 

Task	 Partner	 Data	set	 DIC	name	

4.1.1 HUJI Reducing	complexity	of	single	
neuron	models	

Simplifed	neuron	model	

4.1.1 CNRS Model	of	dendritic	integration	
with	excitable	dendrites	

Model	of	dendritic	integration	with	excitable	
dendrites	
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4.1.1 EPFL Derive	simplified	neuron	and	
neural	circuit	models	from	
biophysically	morphologically	
detailed	models	

Fitting	Generalized	Integrate-and-FIre	models	

4.1.2 CNRS Modelling	brain	signals	at	
different	scales,	from	single	
neuron	activity	to	local	field	
potential	

simplified	models	of	local	field	potential	

4.1.2 UMB Modelling		of	the	effect	of	
subthreshold	active	dendritic	
conductances	in	shaping	the	
cortical	LFP	

Links	given	

4.1.3 ULEEDS Simulator	MINDS:	Mechanistic	
Models	of	Cognition	Linked	to	
the	Neural	Substrate	by	
Population	Density	Methods		

MIIND	code	repository	

4.2.1 UBERN ALGO	STDPpredictive,	ALGO	
STDPbackprop	

ALGO	STDPpredictive,	ALGO	STDPbackprop	

4.2.1 EPFL-LCN ALGO	STDPorchestrated		 ALGO	STDPorchestrated		

4.2.1 WIS ALGO	LT-memory:	Neural	
network	modeling	of	memory	

Link	to	paper	

4.2.2 EPFL-LCN Unsupervised	learning	rules	and	
emergent	connectivity:	ALGO	
STDP-structural	

Not	published	yet	

4.2.3 SURREY MultilayerSpiker:	new	
supervised	learning	rule	for	
multilayer	spiking	neural	
networks	

Link	given,	just	published	

4.3.1 UPF Whole-cortex	dynamical	model	 	

4.3.1 UCL Models	of	navigation	and	spatial	
decision-making:	Navigation:	
roles	of	the	hippocampus	and	
basal	ganglia	in	navigation	

Rat	navigation	simulation	

4.3.1 INRIA Model	to	investigate	sensitivity	
of	V1	to	visual	orientation	

Pinwheel	V1	model	
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4.3.2 WIS Short	term	plasticity	model:	
neural	network	model	for	
memory	

	

4.3.3 CNRS Models	of	biologically	realistic	
network	states	

Models	of	biologically	realistic	network	states	

4.3.3 JUELICH Spiking	model	of	a	cortical	
microcircuit	to	investigate	how	
acetylcholine	(ACh)	influences	
cortical	network	dynamics	

Not	published	yet	

4.3.3 UPF Cortical	model	of	wake	and	
sleep		

	

4.3.4 TUT Astrocyte-neuron	interaction	
(ANI)	model	

Astrocyte-neuron	interaction	model	

4.4.1 TUGRAZ Cortical	microcircuits	through	
STDP	and	rewiring	(spine	
dynamics)	principles	

Matlab	code	for	synaptic	sampling	

4.4.2 UGENT Embodied	computation	(or	
morphological	computation)	

Reward-modulated	Hebbian	Learning	
embodiment	

Embodied	gait	generation	quadruped	

Mixture	of	ESN	experts	

4.4.2 TUGRAZ Tool	for	autonomous	learning	of	
working	memory,	input	
prediction,	and	sequence	
learning	through	STDP	in	a	
generic	cortical	microcircuit	
motif	

Matlab	code	for	autonomous	learning	of	working	
memory	

4.4.3 UPMC Closed-loop	analysis	of	
population	coding:	model	can	be	
used	to	provide	realistic	spiking	
input	from	the	retina	to	models	
of	the	thalamo-cortical	network	
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2. WP4.1 Bridging Scales 

2.1 Task 4.1.1 Derive simplified neuron and neural circuit models 
from biophysically morphologically detailed models 

2.1.1 2.1.1 I. Segev (HUJI) _ Reducing complexity of single neuron models 

2.1.1.1 Introduction 

The aim of this task is to develop systematic methods for reducing the complexity of single 
neuron models (often consisting of hundreds/thousands of compartments per neuron) into 
simplified models (consisting of several tens of compartments), while preserving the 
essential I/O properties of the detailed model. This is part of “Bridging scales” effort 
within SP4; the reduced models are then accessible for large-scale network modelling 
(WP6.1 and WP6.2) and for building neuromorphic models of neurons – consisting of 
dendrites and synapses (WP9.1). Below is a description of two newly developed reduction 
algorithms and a summary of their related results. 

2.1.1.2 Model Description 

(i) An “Equivalent cylinder”, preserving transfer resistance from any original synapse 
to the soma. 

The first novel reduction model approach proposed hereby is based on the following 
concept: Given a detailed (3D reconstructed and physiologically characterized) neuron 
(e.g., our newly rare set of data of L2/3 pyramidal neurons from human temporal cortex, 
Fig. 1), one starts with the detailed passive cable model of this cell (Eyal et al., 
submitted). The performance of this model (its response to a variety of synaptic inputs and 
somatic current injections) serves as a benchmark for the quality of the reduced model. 
Next, the input resistance at the soma (Rsoma) and the transfer resistance from all 
dendritic terminals, i, to soma (Ri,soma = V soma/Ii) is computed analytically; seeking for 
the minimal Ri,soma (the branch with maximal voltage attenuation to the soma). Then an 
un-branched uniform cable is constructed that preserves two constraints; 1. The input 
resistance at one end of this cylindrical model is Rsoma, whereas the transfer resistance 
from the other cylindrical end to the soma is the minimal Ri,soma, as computed in the 
detailed modelled neuron (Fig. 2 below). This provides a unique cylindrical model (entitled 
“Eq_Cyl”) for the detailed dendritic model. Note that for each input frequency (ω) there is 
unique cylinder that preserves both Zsoma(ω) and Zi,soma(ω), the input impedance at the 
soma and the minimal transfer impedance to the soma, respectively. Finally, the location 
of synapse i of the detailed model is mapped into the reduced cylinder such that Ri,soma is 
preserved in the two models (the detailed and the cylindrical). The idea is that by 
preserving the somatic input resistance and the transfer resistance from synaptic location 
to the soma in both models, the reduced model will closely approximate the synaptic I/O 
properties of the detailed model. Initial success of this approach is depicted in Figure 2. 
This work is in preparation for publication.  

(i) Simplified branched tree that preserves the number of independent nonlinear 
dendritic subunits (“Neuron_Reduce”). 

We have also started to develop an additional approach to tackle the case of reducing 
model complexity of neurons consisting of highly non-linear dendritic trees (e.g., 
generating local NMDA spikes at multiple dendritic branches). In this case, the idea for 
reduction is to first characterize how many independent nonlinear dendritic subunits exist 
in the full (detailed) tree (say 10 such independent subunits, see Fig. 3); then reduce the 
model to a branched tree containing these same number of nonlinear dendritic branches 
and general morphology of these nonlinear subunits (see Fig. 3). This reduction scheme is 
presently under its initial steps of exploration. 
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2.1.1.3 Model Data 

The model reduction ideas presented above were conceived by Idan Segev and 
implemented computationally by three students involved under T4.1.1 from Segev’s team. 

The experimental data we have used for our modelling task arrives both from the large set 
of reconstructed and physiologically characterized neocortical neurons from P14 rats, 
available in the Blue Brain Project portal (https://bbp.epfl.ch/nmc-portal/welcome) and 
from recently established rare data set on L2/3 pyramidal neurons from human temporal 
cortex (see Figure 1); the whole human data is available at 
(https://collab.humanbrainproject.eu/ - /collab/528/nav/4671). 

Algorithms and simulations are implemented under Neuron/Python framework. 

  

 
Figure 1: Sixty-one 3D reconstructed L2/3 pyramidal cells from human temporal 

cortex. 
These cells serve as the 3D database; about 15 of them also include somatic recordings. These latter cells 
are used for both building detailed compartmental models (T6.1.3) and for using reduction schemes 
(T41.1) as explained in the text. Adapted from Mohan et al., (2015). 

• Task 4.1.1 is handled by both Idan Segev and Alain Destexhe; the reduction algorithms 
developed hereby and the reduced models are aimed to serve to build large networks 
of neurons.  They are communicated to SP6, and Destexhe's lab examines the behavior 
of neurons under in vivo conditions (“high conductance state”), with an aim to obtain 
efficient units that include dendritic nonlinearities. Destexhe is also responsible to 
conceive models in a format compatible with neuromorphic hardware. 

• Data is based on BBP portal for rat cells (P14) and on recently established database on 
adult L2/3 Human pyramidal cells from the temporal cortex (following brain 
operation). This database, including the biophysical properties of the cells from in vitro 
experiments, stems from the collaboration with Huib Mansvelder and Christian deKock 
(Amsterdam, T2.1.4 VU VUMC, NL). Detailed 3D data on dendritic spines dimensions 
and densities from L2/3 human cells comes from post-mortem material, from Javier 
DeFelipe’s team (Madrid, T2.1.3 UPM, ES). Details could be found in Mohan et al., 
Cereb Cortex. 2015 Dec; 25(12):4839-53 (2015). 

• Neuron and Python are the essential simulation tools; they are used for reconciling 
anatomical and experimental data with detailed neuron models (the benchmark); then 
the same tools are used for the reduction schemes (and for checking the quality of the 
reduction) – as explained in the text attached hereby. 
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• As can be seen in Figs. 2&3 we have made significant progress in the last 6 months in 
examining the quality of our first reduction algorithm (Fig. 2) and also in developing a 
method for assessing the number of nonlinear dendritic subunits (e.g., in L2/3 human 
pyramidal cells, Fig. 3). 

• References 

Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, Lodder BN, Goriounova NA, 
Asamoah B, B Brakspear AB, Groot C, van der Sluis S, Testa-Silva G, Obermayer J, 
Boudewijns ZS, Narayanan RT, Baayen JC, Segev I, Mansvelder HD, de Kock CP (2015) 
Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of 
Adult Human Neocortex. Cereb Cortex, Dec;25(12):4839-53. doi: 
10.1093/cercor/bhv188. Epub 2015 Aug 28 

Guy E, Matthijs B., Testa-Silva G, Deitcher Y, Lodder C., Benavides-Piccione R, Morales 
J, DeFelipe J, de Kock  (Submitted). Unique Membrane Properties and Enhanced 
Computational Capabilities of Human Neurons.  

2.1.1.4 Model Results 

Results for the quality of reduction using the “equivalent transfer resistance” approach 
(the “Eq_Cyl” scheme) is shown in Figure 2. At left top (A) the classical reduction scheme 
proposed by W. Rall, whereby the original tree (red) is reduced to an “equivalent cable” 
(with variable diameter). In this reduction scheme the total membrane area of the reduced 
cable is identical to that of the full tree. In B, our new “equivalent cylinder” scheme is 
depicted. In this scheme the transfer resistance (or impedance, for a given frequency ω) 
from any synapse (i) to the soma is preserved. At right, the quality of these reduction 
schemes could be assessed when compared to the performance of the full tree (top). In 
this case the original detailed tree received 4,000 excitatory and 500 inhibitory synapses 
that were randomly activated and uniformly distributed over the dendritic tree (resulting 
in the firing of the black spikes at top). The newly reduced scheme (red traces) replicated 
closely the original firing pattern (and number) of spikes in the detailed model whereas 
the classical Rall model failed to do so. 

 

Figure 2: Reduction scheme for complex neuron models (“Eq_Cyl”). 
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A. The classical “Rall’s equaivalent cable” (not a cylinder) approach that preserves the total dendritic area 
of the full tree. B. The new scheme proposed here (the Eq_Cyl”), preserving in a single equivalent 
cylindrical cable, the transfer resistance from all original synapses to the soma. This “equivalent cylinder” 
could be constructed for different frequencies (w) whose transfer impedance (rather than transfer 
resistance) is preserved between the complete tree and the reduced cylinder. Right. The success of our 
reduced model (red traces) in preserving the firing pattern of the full model (blue traces) is shown; it can 
be appreciated that this reduction scheme (namely the “Eq_Cyl”) approach performs much better than 
Rall’s “equivalent cable” approach (green traces).   

 

Figure 3: Steps in reducing 3D reconstructed and physiologically characterized 
nonlinear dendritic tree into a simplified model (“Neuron_reduce”). 

A. A stained L2/3 pyramidal cells from a slice of human temporal cortex following brain operation. B. Same 
neuron is modelled in details, and the putative number of independent NMDA spikes (based on EPSP’s 
obtained from pair recordings and NMDA properties obtained from intracellular patch recordings from 
these cells (not shown). Red terminals denote BNDA spikes that could be generated simultaneously and are 
independent of each other. C. A reduced model consisting of the overall morphology/distribution of the 
NMDA generating dendritic subunits, neglecting the many hundreds of compartments used for 
reconstructing the full tree shown in A&B. The quality of this reduction compared to the performance of 
the full model is under examination. 

2.1.1.5 Provenance 

NA 

2.1.2 A. Destexhe (CNRS) _ Model of dendritic integration with excitable 
dendrites 

2.1.2.1 Introduction 

In order to investigate the role of signal integration in dendritic trees for large networks of 
neurons it is crucial to construct simplified models of dendrites. 

Detailed multi-compartmental Hodgkin-Huxley type models of neuron are computationally 
challenging and therefore inconvenient for constructing larger networks. On the other 
hand leaky integrate-and-fire model are faster, but they cannot reflect the diversity of 
neuronal spiking patterns. 

A	 B	 C	
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In order overcome this problem we use the Adaptive Exponential (AdEx) model. The major 
advantage of AdEx model is its compatibility with the existing neuromorphic hardware, 
which is being developed in the SP9 platform. 

Constructing a simplified model of excitable dendrites using the AdEx model is part of the 
4.1.1 task. 

2.1.2.2 Model Description 

The AdEx model has arisen as a synthesis of two improvements: 

1) the replacement of a fixed firing threshold of leaky integrate-and-fire by spike-
triggering depolarizing exponential current 

2) introducing neuronal adaptation by additional current governed by its own differential 
equation  

The voltage in a single compartment changes according to: 

 

where cm is the specific membrane capacitance, gL - the leak conductance, VT – the spike 
threshold, ΔT – a slope factor. w is an adaptation current governed by the equation 

 

When the potential is near threshold VT depolarizing exponential current is able to surpass 
all other currents and the potential quickly tends to infinity. Whenever potential crosses 
detection value Vdet we reset potential and adaptation current 

 

Parameter a represents the sub threshold adaptation and parameter b – spike-triggered 
adaptation. 

For our multi-compartmental model, the voltage changes according to 

 

where d is the diameter of the dendritic segment and ri is the specific intracellular 
resistance. 

For our simulations we have constructed a ball and stick neuron with nc dendritic 
compartments. Each compartment is of AdEx type.  

The synapses were located on the dendritic compartments and were of two types: 
excitatory AMPA synapses (Ee = 0mV ) and inhibitory GABA A synapses (Ei = −75mV ). 
Synaptic inputs were given by time-dependent conductance ge(t) and gi(t). On each 
compartment we have placed ns,exc excitatory synapses and ns,inh inhibitory synapses. 

To simulate synaptic noise, for each synapse we have generated Ornstein-Uhlenbeck 
processes: 

 



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 18 / 151 
  

where τ and σ are positive and dW is a Wiener process. These processes were then used as 
a fluctuating firing rates for inhomogeneous Poisson processes. Then each spike generated 
in Poisson process was translated into change of conductance. The spike trains could be 
then correlated according to the level of Ornstein-Uhlenbeck processes 

 
where C is a correlating matrix of dimension nc × ns  

 

where 

 

are square matrices of dimension ns × ns and 

 

where cl,  cg � [0,1]. 

2.1.2.3 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 

T4.1.1 UNIC/EITN, Alain Dextexhe 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

The model is available at ... 

• Description of algorithms/models/principles: 

o Format, language if applicable. 

Python 

o Name of DICs/software catalogue/or HBP github project entries. 

... 

• Description of data: 

o Species, sex, age, number of specimen/subjects. 

N/A. 

o Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of 
entities, e.g. morphological characterisation of basket cells of the 
hippocampus. 

N/A. 

• Completeness of data/algorithms/models: 

The model is progressing as planned and its development is still on going. 

• Data Quality and Value: 
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o Verification of data quality. 

We have tasted the code comparing output data with analytical estimations (e.g. velocity 
of the dendritic spike) 

o Your subjective analysis of the value of the data/algorithms for the users. 

The parameters used in the program are well described in the comments. The output data 
is stored in easy to access npy. files and is visualized in a clear way by a number of plots. 
The program can be used by a user with a basic knowledge of Python language.  

• Data/algorithm/model usage to date: 

o Who has used the data/algorithms/models, for what? Please list a) Ramp-Up 
data (please use DIC name) used for validation or input, and the number and 
name of the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task 
number and name of the SGA1 Task that will use the developed 
models/approach to generate models, or c) Tasks that will build modelling tools 
that allow usage of the model/approach in SGA2. 

This code is still in development and it is not yet made available for the HBP community. 
We plan to release the code to the public at the end of ramp-up phase. 

• Are the data/algorithms/models considered final? 

No. The code is still in development. We expect much development in the functionality of 
the actual algorithms and at the level of user interface. 

• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) 

The results haven't been published yet.  

2.1.2.4 Model Results 

Basic properties of dendritic spikes in the model 

To measure the speed of the dendritic spike, we have generated a single spike at the end 
of the dendrite and measured the time of its propagation toward soma.  

The measured speed can be explained by following approximation. We want to know how 
quick the potential changes in the compartment in front of the spike. We take into account 
only exponential and leak currents and the current which flows from the compartment 
with a spike: 

 

where Vp is the spike detection value. From this equation we can calculate the time 
needed for the potential to rise from the resting potential to the detection value. The 
velocity of the spike is the length of compartment divided by this time.  

We checked how spike velocity depends on diameter and length of compartments and on 
specific axial resistance ri, spike detection potential Vdet and slope factor ∆T. We compared 
the measured velocities with our approximation. 



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 20 / 151 
  

 

Figure 4: Velocity of spike increases with the diameter of dendrite. 
Velocity measured in simulations (crosses) and fit function (grey). Approximated speed (black line). 

When dendritic action potentials collide, they annihilate. To show this behavior with the 
AdEx model, we generated two spikes: one near soma and one at the end of the dendrite. 
Upon collision, the annihilation of spikes was complete. 

 

Figure 5: Left: Collision of dendritic spikes. Right: propagation of dendritic spikes  
Influence of correlation of synaptic bombardment 

Next, we checked how the number of spikes which reach soma depends on the global 
correlation coefficient cg for different parameters of the Ornstein-Uhlenbeck noise. 

It occurred that this relation depends mainly on time constant of the Ornstein-Uhlenbeck 
noise, see Figure 6. 
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Figure 6: Number of spikes which reached soma as a function of correlation coefficient 
cg for different τ , starting upper left plot 0.01, 0.1, 1, 10. σ = 0.1, and r = 50Hz 

Other parameters such as velocity of spike also affects the relationship between a number 
of spikes in soma and a global correlation of synaptic bombardment. This is currently under 
investigation, as well as the role of synaptic weights.   

2.1.2.5 Provenance 

Not applicable. 

2.1.3 W. Gerstner (EPFL) _ Derive simplified neuron and neural circuit models 
from biophysically morphologically detailed models 

2.1.3.1 Introduction 

Work done at EPFL-LCN: Neuron models from data: algorithmic pipeline to extract 
parameters from measuremets. The methodology has been verified, written up in a paper 
in PLOS Computational Biology, and will be used in the future routinely in the Allan 
Institute for large-scale data collection. 

At EPFL-LCN we have also same methodology to reduce complex neuron models from the 
simulation platform to simplified integrate-and-fire type models. 

In the following quotation marks refer to quotes from the paper Pozzorini et al. in PLOS 
Comput. Biology. 2015 

In task 4.1.1, we developed a pipeline for automated, high-throughput characterization of 
single neurons. The proposed approach consists of fitting and validating simplified neuron 
models (i.e., Generalized Integrate-and-Fire models) to electrophysiological recordings. 

The pipeline can be used to: i) derive simplified neuron models from in vitro patch-clamp 
recordings and ii) derive simplified neuron models from biophysically morphologically 
detailed models. The methodology has been verified and written up in a paper published in 
PLOS Computational Biology as: 

Pozzorini C, Mensi S, Hagens O, Naud R, Koch C, Gerstner W (2015) Automated High-
Throughput Characterization of Single Neurons by Means of Simplified Spiking Models. PLoS 
Comput Biol 11(6): e1004275. doi:10.1371/journal.pcbi.1004275 

The computational tools described in the manuscript are currently being used at the Allan 
Institute for Brain Science for the analysis of the Allen Cell Types Database 
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(http://celltypes.brain-map.org/). Within HBP, the pipeline is currently being used to 
simplify the detailed model of the cortical column recently published by Markram et al. 
Cell 2015. In the following, quotation marks refer to quotes from the paper Pozzorini et al. 
2015. 

“In vitro patch-clamping is the gold standard used to investigate the intrinsic 
electrophysiological properties of neurons, but remains labor intensive and requires a 
trained experimentalist with high technical skills. In the last years, several platforms have 
been developed that automatize electrophysiological recordings for ion-channel screening 
and drug discovery. In the future, this technology is likely to be transferred to more 
complex setups, such as in vitro brain slices. To make sense of the large amount of data 
that automated patch-clamp can produce, adequate computational tools and experimental 
protocols have to be developed.”  

“Traditional protocols for single-neuron characterization rely on somatic current-clamp 
injections of stimuli (e.g., square current pulses, ramps of current) that are specifically 
designed to extract a small number of features (e.g. membrane time constant, firing 
threshold). We developed an alternative approach in which the electrophysiological 
properties of neurons are characterized by fitting point-neuron models (i.e., generalized 
integrate-and-fire models) to the response evoked by somatic current-clamp injection of in 
vivo-like fluctuating currents.” 

“Nowadays, integrate-and-fire models are mainly used in large-scale simulations to study 
the emergent properties of neural circuits. In Pozzorini et al. 2015, we demonstrate that 
the same models (and their fitting procedures) can serve an equally important purpose, 
namely to characterize the electrical properties of single neurons. In this view, integrate-
and-fire models (and their fitting procedures) are seen as computational tools to 
automatically compress the information contained in intracellular recordings into a set of 
unique and meaningful parameters, i.e., the model parameters. Summarizing the 
information of complex recordings can in turn enable systematic comparisons, clustering 
and identification of cell types.”  

The proposed model is a Generalized Integrate-and-Fire model obtained by extending the 
standard leaky integrate-and-fire with: i) a spike-triggered current, whose functional shape 
is not assumed a priori, but is extracted from data; ii) a spike-triggered movement of the 
firing threshold, whose functional shape is not assumed a priori, but is extracted from 
data; iii) the exponential escape-rate mechanism for stochastic spike generation. More 
details about the model are provided in the next section. Model parameters can be 
efficiently extracted from a limited amount of data using the three-step procedure 
described in the next section. 

“On the experimental side, the proposed approach relies on in vitro somatic injections of 
rapidly fluctuating currents that mimic natural inputs received in vivo at the soma of 
neurons.” The experimental protocol used to fit and validate at GIF model to data is shown 
and described in the following figure.  
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Figure 7: Electrode properties for data preprocessing 

“To characterize the properties of the electrode required for data preprocessing by Active Electrode 
Compensation (AEC), the experimental protocol starts with the injection of a short subthreshold current. 
While the filtering properties of the electrode are estimated (AEC box, left part), the training dataset is 
collected that will be used to estimate the GIF model parameters. After training set collection, the raw 
data are preprocessed with AEC to compensate for the bias known to occur when the same electrode is 
used to both record and stimulate a neuron (AEC box, right part). Then, in parallel with GIF model 
parameter extraction and successive spike timing prediction, the test dataset is collected by injecting 9 
repetitions of the same time-dependent current. Finally, after complete acquisition of the test set, the 
model performance Md* is computed.  Md* quantify the similarity between the observed and the predicted 
spike trains (i.e., the fraction of spikes that the GIF model can correctly predict with a temporal precision 
of 4ms). Overall, GIF model parameter extraction and validation requires around 5 minutes of recording 
and CPU time. This method is thus suitable for high-throughput single-neuron characterization.” 

Importantly, this experimental protocol, together with the GIF model and its fitting and 
validation procedure can also be used to derive simplified neuron models from more 
complex, biophysical multi-compartmental models (i.e., the main goal of Task 4.1.1.). In 
this case, the experimental data are not acquired from biological neurons, but are 
obtained in silico by simulating the response of a biophysical model of interest. Since in 
silico recordings are not biased, Active Electrode Compensation is not required and the 
experimental protocol directly starts with the training set acquisition. 

As shown in the results section, the GIF model achieves good performance in describing the 
electrophysiological activity of cortical pyramidal neurons and complex biophysical 
models. The methods and results reported in Pozzorini et al. 2015 are currently being used 
in two different cortexes: 

1) Automated modeling and analysis of the electrophysiological recordings performed at 
the Allen Institute for Brain Science (see Allen Cell Types Database: 
http://celltypes.brain-map.org/) 

2) Systematic reduction/simplification of the biophysical models used for the detailed 
model of a cortical column developed within HBP and recently published by Markram et 
al. Cell 2015. 

2.1.3.2 Model Description 

“The GIF model discussed in Pozzorini et al. 2015 is a leaky integrate-and-fire model 
augmented with a spike-triggered current η(t), a moving threshold γ(t) and the escape rate 
mechanism for stochastic spike emission. In the model, the subthreshold membrane 
potential V(t) evolves according to the following differential equation: 

 

where the parameters C, gL and EL define the passive properties of the neuron, I(t) is the 
input current and {t} are the spike times. Each time an action potential is fired, an 
intrinsic current with stereotypical shape η(t) is triggered. Currents triggered by different 
spikes accumulate and produce spike-frequency adaptation, if η(t) > 0 (or facilitation, if 
η(t) < 0). The functional shape of η(t) varies among neuron types as previously shown in 
Mensi et al. 2012. Consequently the time course of η(t) is not assumed a priori but is 
extracted from intracellular recordings. Each time a spike is emitted, the numerical 
integration is stopped during a short absolute refractory period and the membrane 
potential is reset. Spikes are produced stochastically according to a point process with 
conditional firing intensity λ(t|V, VT), which exponentially depends on the momentary 
difference between the membrane potential V(t) and the firing threshold VT(t):  

C dV (t)
dt

= −gL (V (t)−EL )+ I(t)− η(t − t̂ )
t∈{t̂ }
∑
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where λ0 has units of s−1, so that λ(t) is in Hz and ∆V defines the level of stochasticity. In 
the limit ∆V � 0, the model becomes deterministic and action potentials are emitted at 
the precise moment when the membrane potential crosses the firing threshold. 
Importantly, the value of ∆V is extracted from experimental data. The dynamics of the 
firing threshold VT(t) is given by:  

!! ! = !!∗ + !(! − !)
!∈{!}

 

where VT∗ is a constant and γ(t) describes the stereotypical time course of the firing 
threshold after the emission of an action potential. Since the contribution of different 
spikes accumulates, the moving threshold constitutes an additional source of adaptation 
(or facilitation). Similar to η(t), the functional shape of γ(t) is not assumed a priori but is 
extracted from intracellular recordings.” 

Fitting procedure 

Given the intracellular voltage response Vdata(t) evoked in vitro by a fluctuating input 
current I(t), all of the GIF model parameters can be extracted from experimental data 
using a three-step procedure. 

Step 1: the parameters related to absolute refractoriness and voltage reset are extracted. 
First, the experimental spike train is defined as the collection of instants at which Vdata(t) 
crossed a certain threshold from below. The average spike shape VSTA(t) is then obtained 
by computing the spike-triggered average (STA) of Vdata(t). The absolute refractory period 
Tref is fixed to twice the spike width at half maximum and the reset potential is computed 
as Vreset = VSTA(Tref).  

Step 2: the parameters related to the subthreshold voltage dynamics are extracted. The 
first-order temporal derivative of the experimental voltage is estimated from the data and 
the parameters determining the membrane potential dynamics are extracted by fitting the 
model voltage derivative on data. This is done by exploiting the knowledge of the 
experimental voltage Vdata(t) and the external input I(t). To avoid a priori assumptions on 
the functional shape of the spike-triggered current, η(t) is expanded in a linear 
combination of rectangular basis functions. Consequently, optimal subthreshold 
parameters θsub = {C, gL, EL, η(t)} minimizing the sum of squared errors on the voltage 
derivative can be efficiently obtained by solving a multilinear regression problem. Since 
simplified threshold models do not describe the membrane potential dynamics during 
action potentials, all the data close to spikes are discarded.  

Step 3: the parameters related to the firing threshold dynamics are extracted. The 
parameters estimated so far are first used to compute the subthreshold membrane 
potential of the model. The parameters θth = {VT∗,∆V,γ(t)} defining the firing threshold 
dynamics are then extracted by maximizing the log-likelihood of the experimental spike 
train being produced by the GIF model. Similar to η(t), the spike-triggered threshold 
movement is extracted nonparametrically by expanding γ(t) in a linear combination of 
rectangular basis functions. In the GIF model, the nonlinear function of the escape-rate 
mechanism is convex and log-concave. Moreover, its argument is linear in the model 
parameters θth. Given these properties, the log-likelihood to maximize is guaranteed to be 
a concave function of the model parameters and the optimization problem can be solved 
using standard gradient ascent techniques.  

2.1.3.3 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 
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Simulation and model development by EPFL-LCN, Group of Wulfram Gerstner, responsible 
scientist has been Christian Pozzorini. 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

Computational tools for fitting GIF models to data, publicly available on: 

https://github.com/pozzorin/GIFFittingToolbox 

Published paper publicly available on: 

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004275 

• Description of algorithms/models/principles: 

o Format, language if applicable. 

Code written in Python. Tutorial publicly available on: 

https://github.com/pozzorin/GIFFittingToolbox/wiki/Automated-high-throughput-single-
neuron-characterization 

• Name of DICs/software catalogue/or HBP github project entries. 

DIC entry generated under task 4.1.1. 

• Description of data: 

o Species, sex, age, number of specimen/subjects. 

In vitro patch clamp recordings used to validate the methods were performed in 

mice (C57BI/6J), male, P13-15, 10 cells from different animals. 

In silico patch clamp recordings used to validate the methods were performed using the 
multicompartmental model of a L5 pyramidal neuron introduced in Hay et al. 2011, PLOS 
Comp. Biol.: 

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002107 

• Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of entities, e.g. 
morphological characterisation of basket cells of the hippocampus. 

Neurons, physiology. The model is flexible and can be applied to data from different brain 
regions. The results in Pozzorini et al. 2015 were from layer 5 somatosensory cortex and 
provide a characterization of the electrical activity of single neurons. 

• Completeness of data/algorithms/models: 

o Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated 
data set/algorithms/models?  

Model and algorithms meet the anticipated target. In particular, the GIF model accurately 
predicts the activity of the Hay model responding to somatic current-clamp injections of in 
vivo like fluctuating currents. 

• Current data set/algorithms/models versus a projected full data set/algorithms/models 
to be generated by the research community 

o The pipeline for single neuron characterization and modeling has been tested on 
a restricted number of neurons and biophysical models.  

Within HBP, the pipeline is currently being used to map 31000 biophysical, multi-
compartmental neuron models used in Markram et al. 2015 into point-neuron models. The 
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pipeline is currently playing an important role in the effort of providing a simplified 
version of the cortical column model. 

• Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

Fitting neuron models to in vitro recordings has a long history. Several models and fitting 
procedures have been introduced both by previous scientists at EPFL-LCN as well as by 
other research groups. Most of the existing methods are based on deterministic integrate-
and-fire models. While these models have been shown to achieve good performance in 
predicting spike times, their fitting procedures are not efficient and often require high 
computing power. Existing methods were thus not well suited for high-throughput 
modeling and characterization of single neurons.  

The major contribution of Pozzorini et al. 2015 was to develop a stochastic version of the 
integrate-and-fire model, which allows for efficient and reliable parameter extraction. In 
contrast to previous stochastic models (such as the Generalized Linear Model), the GIF 
model has a clear biophysical interpretation. With the proposed method, a neuron model 
can be derived reliably and efficiently either from patch-clamp recordings or more 
complex biophysical models. In contrast to existing methods, our fitting procedure is 
convex. The set of model parameters found by the algorithm is thus guaranteed to be 
optimal.  

Overall, less than 5 minutes of data acquisition and computing are sufficient to generate 
and validate a single neuron model from limited amounts of data. In contrast to previous 
methods, our method is suitable for high-throughput analysis and modeling. 

• Outline state of validation work. 

The validation was done by fitting the GIF model both to in vitro patch-clamp recordings 
form layer 5 pyramidal neurons as well as by fitting the GIF model to a state-of-the-art 
multi-compartmental model (Hay et al., PLOS Comp. Biol. 2011). 

• Data Quality and Value: 

o Verification of data quality. 

The main check for verification has been that the GIF model accurately predicts the 
electrical activity of biological neurons and complex biophysical models. In both cases, the 
GIF model was able to predict around 80% of the spikes with a temporal precision of 4ms. 
To avoid problems related to over fitting, model validation was performed on a new 
dataset (i.e., cross-validation) that was not used for parameter extraction. 

• Your subjective analysis of the value of the data/algorithms for the users. 

The algorithm for parameter extraction is robust and efficient. The resulting GIF models 
are of good quality and can mimic the electrical behavior of cortical neurons as well as of 
more complex neuron models. 

• Data/algorithm/model usage to date: 

o Who has used the data/algorithms/models, for what? Please list a) Ramp-Up 
data (please use DIC name) used for validation or input, and the number and 
name of the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task 
number and name of the SGA1 Task that will use the developed 
models/approach to generate models, or c) Tasks that will build modelling tools 
that allow usage of the model/approach in SGA2. 

The methods are currently being used at Allen Institute for Brain Science to characterize 
the electrical activity of a large number of cells (see Allen Cell Types Database: 
http://celltypes.brain-map.org/). 
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Inside HBP, the model is currently being used to generate a simplified version of the 
detailed model of a neocortical column recently published by Markram et al. as:  

Markram, Henry, et al. "Reconstruction and simulation of neocortical microcircuitry." Cell 
163.2 (2015): 456-492. 

• Are the data/algorithms/models considered final? 

Yes. 

• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) 

Computational methods, code and data are published in Pozzorini et al. 2015: 

Pozzorini C, Mensi S, Hagens O, Naud R, Koch C, Gerstner W (2015) Automated High-
Throughput Characterization of Single Neurons by Means of Simplified Spiking Models. PLoS 
Comput Biol 11(6): e1004275. doi:10.1371/journal.pcbi.1004275 

2.1.3.4 Model Results 

To verify its validity, the pipeline for single neuron characterization was tested on: i) in 
vitro recordings from layer 5 pyramidal neurons (obtained using standard patch clamping) 
and ii) in silico recordings obtained by simulating the activity of a multi-compartmental 
conductance-based model by Hay et al. PLOS Comp. Biol. 2011. 

Results from in vitro recordings (single neuron characterization) 

Despite its relative simplicity, the GIF model is able to predict both the subthreshold 
fluctuations of the membrane potential and the spikes evoked by in vivo-like fluctuating 
currents that have not been used for parameter extraction. The GIF model performance 
was quantified by the percentage of variance explained for the subthreshold membrane 
potential fluctuations, and by the percentage of spikes correctly predicted with a temporal 
precision of 4 ms, for the spiking activity. For layer 5 pyramidal neurons of the mouse 
somatosensory cortex, the percentage of variance explained was 80% and the percentage 
of spikes predicted 79%, on average. Fitting and validating a single neuron model to data 
required less than 5 minutes in total. The following figure illustrates the performance 
achieved by the model in capturing the activity of a layer 5 pyramidal neuron of the mouse 
somatosensory cortex. 
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Figure 8: GIF Model 
“The GIF model accurately predicts the occurrence of individual spikes with millisecond precision. To 
evaluate the predictive power of the GIF model, the response of a L5 pyramidal neuron to a fluctuating 
input current (top) has been recorded intracellularly (middle, black). The same protocol was repeated 
nine times to assess the reliability of the neural response (bottom, black raster). The GIF model (with 
parameters extracted using a different dataset) was able to accurately predict both the subthreshold 
(middle, red) and the spiking response (bottom, red raster) of the cell. The horizontal dashed line 
represents 0 pA.” 

Results from in silico recordings (model simplification) 

We also used our pipeline for automated high-throughput single neuron characterization to 
simplify a biophysical, multicompartmental model of a layer 5 pyramidal neuron developed 
by Hay et al. and published in PLOS Computational Biology in 2011. In this case, the input 
current was calibrated to obtain an average firing rate of 10 Hz. To model stochastic spike 
emission, a source of noise was introduced by corrupting the input current with additive 
white-noise. All in silico experiments were preformed by delivering the current at the 
somatic compartment. Similar to the results obtained from layer 5 pyramidal neurons, the 
GIF model was able to predict 80% of the spikes with a temporal precision of 4ms and 
explained 74% of the variance of the subthreshold potential fluctuations. The following 
figure illustrates the performance achieved by the GIF model in capturing the activity of 
the Hay model (Hay et al. PLOS Comp. Biol. 2011). 
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 Figure 9: GIF Model (2) 
“The GIF model (red) accurately predicts the subthreshold and spiking activity of the multi-compartmental 
biophysical model by Hay et al. PLOS Comp. Biol. 2011 (black) responding to a somatic current injection 
(gray). Top: input current. Middle: the membrane potential dynamics predicted by the GIF model (red) 
closely matches the one generated by with the biophysical model (black). Bottom: raster plot of the 
spiking activity generated in response to nine injections of the current shown in gray by the GIF model 
(red) and the multi-compartmental biophysical model (black). 

These results indicate that the GIF model, together with its fitting and validation procedure, is a valid 
candidate to simplify the complex biophysical models developed in the context of HBP and recently used 
to simulate the activity of a cortical column (Markram et al. Cell 2015). 

2.1.3.5 Provenance 

The pipeline for single neuron modeling is currently been applied to data from Markram et 
al. Cell 2015 (i.e., simulation of cortical column based on multicompartmental models). 

2.2 Task 4.1.2 Modelling brain signals at different scales, from 
intracellular, local field potentials, and VSD up to EEG  

2.2.1 A. Destexhe (CNRS) _ simplified models of local field potential 

2.2.1.1 Introduction 

The brain signals can be represented in form of hierarchy going from microscopic 
(intracellular) to macroscopic (EEG/MEG) scales. Moving from one level of the hierarchy to 
another usually requires some kind of averaging of the signals from the level below (for 
example, to estimate the LFP one averages all synaptic currents generated within the 
population). Since the signals at the lower level are usually correlated the average 
measures are affected by such correlations. We developed a phenomenological model of 
correlated neuronal activity and studied its impact on the population (LFP) signal. Such 
simplified models will help us to interpret the collective activity recorded from animal 
models and humans (Tasks TODO) and it will be calibrated according to the measurement 
at single neuron level (Tasks TODO). The prediction of the model will be validated by 
detailed models including the cellular morphology and detailed ion channels (Tasks TODO). 

2.2.1.2 Model Description 

We considered the LFP signal generated by a population of neurons firing correlated spikes 
from homogeneous Poisson distribution. The LFP signal was calculated as a linear sum of 
unitary contributions from each spike, which was modelled as a LFP kernel. For the 
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purpose of this study, the same LFP kernel was used for all neurons. The choice of the 
kernel was such, that each neuron only contributed to the LFP in the nearest electrode. 
We chose a causal kernel consisting of a step at the time of the spike and an exponential 
tail: 

! ! = ! ! !"#$ − ! !  

where ! !  is the Heaviside function, ! = 1 (normalised units) and ! = 5 ms. Then the LFP 
at a single electrode is: 

!"#! ! = ! ! − !!
!!

!!!
 

For each electrode j the spike times {t_i }_(i=1)^(K_j ) were concatenated over a 
population of N simulated Poisson neurons. Spikes of distinct neurons were correlated with 
the correlation coefficient r and exponentially distributed jitter with mean σ (for sample 
cross-correlograms, see Figure 2B). The correlated spike trains were generated using 
mother spike train technique as described by Brette (2009). 

We implemented three methods for generating correlated spike trains: 

• doubly stochastic process — correlated spike trains were generated from a 
inhomogeneous Poisson process with the same rate described by Ornstein-Uhlenbeck 
process. This method allows having an arbitrary correlation structure in space, but is 
limited in the magnitude of the correlations. 

• mother spike train method — all spikes were generated from the same “mother 
template” by drawing spikes randomly and adding jitter. This method can generate 
spikes of arbitrary correlation coefficients, but with limited correlation structure in 
space. 

• mixture model — this extends over the mother spike train method by taking N “mother 
templates” and drawing from it with different probabilities. This is most general 
methods allowing to generate spike trains with flexible correlation structure and high 
correlation coefficients. 

2.2.1.3 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 

T4.1.2 UNIC/EITN, Alain Dextexhe 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

The model will be deposited in an internal repository and released to the public when the 
accompanying article is accepted for publication. 

• Description of algorithms/models/principles: 

o Format, language if applicable. 

Python. 

o Name of DICs/software catalogue/or HBP github project entries. 

Link to the repository will be provided  

• Description of data: 

o Species, sex, age, number of specimen/subjects. 

N/A. 

o Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of 
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entities, e.g. morphological characterisation of basket cells of the 
hippocampus. 

N/A. 

• Completeness of data/algorithms/models: 

o Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated 
data set/algorithms/models? 

o Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community 

o Give a short review (1–2 paragraphs) of data/algorithms/models generated by 
the community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

o Outline state of validation work. 

In the modelling part we implement well-accepted and validated algorithms for generation 
of the correlated spike trains (Brette 2009). The LFP simulation code will be validated 
against detailed simulations using compartmental models (implemented by the group of 
Einevol) in the next phase of the project. The obtained simulation results were shown to 
agree qualitatively with the LFP recorded in human and monkey brain (see results below). 

• Data Quality and Value: 

o Verification of data quality. 

Unit tests are partially used to assure the code quality. 

o Your subjective analysis of the value of the data/algorithms for the users. 

The library may prove useful to the computational community at large. The ease of use 
and fast performance of the algorithms may encourage many groups from HBP and outside 
to adopt it. Our goal is to make it a community project, where other groups may 
contribute corrections, enhancements of new algorithm. For this to work, we will need to 
invest more time into documenting and testing the code and community building. 

• Data/algorithm/model usage to date: 

o Who has used the data/algorithms/models, for what? Please list a) Ramp-Up 
data (please use DIC name) used for validation or input, and the number and 
name of the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task 
number and name of the SGA1 Task that will use the developed 
models/approach to generate models, or c) Tasks that will build modelling tools 
that allow usage of the model/approach in SGA2. 

o This code is still in development and it is not yet made available for the HBP 
community. We plan to release the code internally at the end of ramp-up 
phase. The code used for calculation the correlogram function was integrated 
with the Elephant library developed by Sonja Grün and Andrew Davison in SP5. 

• Are the data/algorithms/models considered final? 

No. The code is still in development. We expect much development in the functionality of 
the actual algorithms and at the level of user interface. 

• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) 
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2.2.1.4 Model Results 

To validate the model and compare it with the data (Telenczuk et al. 2016, in prep) we 
estimated the single spike contribution by means of so-called spike-triggered LFP average 
(st-LFP), that is the average of short LFP segments centered around each spike. This 
procedure can be applied to LFP signals from all electrodes, but keeping always firing of 
the same cell as the reference. This way we obtain a spatio-temporal map of the LFP 
components coincident with a spike of a given cell. The st-LFP is often used as the 
measure of the direct contribution of a neuron to LFP ("LFP kernel"). 

We estimated the st-LFP of the model and compared it with LFP kernel. The spatio-
temporal st-LFP obtained in the model extends over the entire array despite the fact that 
the individual LFP kernels are spatially limited to a single electrode (Figure 1B). In 
addition, the st-LFPs start before the onset of the spike as observed in the experimental 
data, although the contribution of each spike starts only at the spike onset. We conclude 
that the non-locality and non-causality of the experimental st-LFP can be a direct 
consequence of the neuronal correlations. 

To estimate the relative st-LFP contribution of the correlated neurons and compare it with 
the direct contribution of the trigger neuron, we calculated the st-LFP in the model with 
correlated and uncorrelated population (Figure 10). In case of uncorrelated population, the 
st-LFP (red) can perfectly capture the direct contribution of the trigger neuron (LFP 
kernel, black). However, even in a small population (N=200) of weakly correlated neurons 
(correlation coefficient, r=0.1; spike jitter σ=5 ms) the st-LFP (blue) was dominated by the 
correlated neurons diverging from the modelled kernel. Both theoretical analysis and 
simulations show that the magnitude of this "correlation st-LFP" increases linearly with the 
size of the population and correlation coefficient, whereas it decreases exponentially with 
spike jitter (Figure 10D). 
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Figure 10: Simulation of single neuron spikes 
(A) Single-neuron spikes are simulated using correlated Poisson processes with defined correlograms (left). 
Electrodes are arranged on a grid modelled after Utah array (middle). Contribution of a single spike to LFP 
is modelled by a LFP kernel (right). Sum over contributions from all neurons is the simulated LFP (bottom 
right). (B) st-LFP calculated from simulated LFP signals shows non-local and non-causal components. 
Traces of different colors in the lower panel show st-LFP four different locations in the array (marked with 
color squares in the heatmaps). (C) In non-correlated neuronal population st-LFP (red) recovers the direct 
contribution of a single spike to LFP (LFP kernel, black). When neurons are correlated the st-LFP is 
broader and substantially higher in amplitude (blue). (D) The amplitude ratio of direct contribution to LFP 
(LFP kernel) and st-LFP in correlated population depends linearly on the population size (! ) and 
correlation coefficient (!) and non-linearly on the correlation widths (!). For realistic population size 
(!=1000), correlation coefficients (!=0.05) and correlation widths (!=10 ms) the contribution of the 
population is approximately 5 times higher than direct contribution. 

Experiments show that the latency st-LFP increases with distance in a form of apparent 
propagation (Telenczuk et al. 2016, in prep, Figure 11A). Such st-LFP propagation can be 
reproduced in the model without axonal or synaptic delays. The latencies of the simulated 
st-LFP are gradually shifted with increasing distance from the trigger neuron (Figure 11B) 
due to asymmetry of the LFP kernel and increasing widths of cross-correlograms. Since we 
assumed that the correlation width depends only on distance and not direction, the 
propagation proceeds uniformly in all directions with equal speeds. In contrast, st-LFP 
derived from experimental data propagates preferentially in a specific direction. 
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Figure 11: Latency of st-LFP peak 
(A) The latency of st-LFP peak (left) increases with distance as a hallmark of st-LFP propagation (middle). 
The spike-evoked LFP propagates in a preferred direction (right). (B) Even without synaptic delays (cross-
correlograms centered around zero, right) the simulated st-LFPs peak at higher latencies for longer 
distances (left) giving rise to apparent propagation (middle). Similarly to the experimental data, modelled 
cross-correlograms increase linearly in width with distance (right). 

2.2.1.5 Provenance 

Not applicable. 

2.2.2 G. Einevoll (UMB) _ Modelling brain signals at different scales 

2.2.2.1 Introduction 

The local field potential (LFP), the low-frequency part of electrical potentials recorded in 
the brain, offers a unique window into the actions of cortical circuits comprising thousands 
of neurons. However, due to its numerous neural sources, the LFP is more complicated to 
interpret than spikes, and careful mathematical modeling is needed to properly analyze 
the signal. While the link between activity in neurons with passive dendrites and the 
generated LFP is fairly well understood, the role of active dendritic conductances remains 
elusive. We have performed a detailed modelling study of the effect of subthreshold active 
dendritic conductances in shaping the cortical LFP, and a putative key role of the  
conductance in strongly modifying the signal, is identified. 

This modeling project is important to the overall HBP project as the resulting formulas 
gives the recipé for implementing the computations of LFPs in brain simulation, for 
example, in CDP1 (contact: Marc-Oliver Gewaltig, EPFL). 

2.2.2.2 Model Description for LFP generation from active-dendrite neurons 

This model description is based on the description available in the arXiv paper “Active 
subthreshold dendritic conductances shape the local field potential”, that can be accessed 
from http://arxiv.org/pdf/1512.04293v1.pdf 

Numerical simulations were carried out using a model of a cortical layer 5 pyramidal cell 
that was published by Hay et al. (2011). This model has a detailed morphology and includes 
ten active ionic conductances fitted to experimental data by multi-objective optimization 
with an evolutionary algorithm. For simulations of a passive model, the active 
conductances were removed from the model. Simulations with a so-called "frozen" h-type 
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conductance were performed by keeping the gating variable of the h-current constant, 
yielding an additional passive conductance. 

The original model showed a voltage gradient from soma to distal apical dendrites. In 
order to simplify the interpretation of the simulation results, we adjusted the leak reversal 
potential of each compartment such that we could set the resting potential uniformly to a 
specified chosen potential (Carnevale and Hines, 2006). 

The neuron model received either excitatory synaptic input or white-noise current input. 
Synaptic inputs were modeled as steps in the synaptic conductance followed by an 
exponential decay with a time constant of 2 ms and used a reversal potential of 0 mV. The 
white-noise current input consisted of a sum of sinusoids with identical amplitudes but 
random phases for each integer frequency from 1 Hz to 500 Hz (see Linden et al. (2010)). 
The resulting white-noise signal was scaled to obtain current fluctuations with a standard 
deviation of 8 pA. Injection of this input into the distal apical dendrite at a distance of 
1094 µm away from the soma of the active cell held at -60 mV yielded local membrane 
potential fluctuations with a standard deviation of 1.5 mV. The exact same white-noise 
input was used in all simulations (i.e., so-called "frozen" noise). 

Quasi-active approximation of voltage-dependent ion currents 

Voltage-dependent membrane currents often behave in a near-linear fashion for small 
perturbations around a holding potential. This can be exploited by making linear 
approximations, so-called "quasi-active" models, of the nonlinear ionic currents (Mauro et 
al., 1970; Koch, 1984; Hutcheon and Yarom, 2000; Remme, 2014). In this way one can 
reduce the parameter space while retaining key dynamical features of the system. Results 
in Figure 2 used quasi-active currents to simplify the original, nonlinear cortical pyramidal 
cell model (see above) and to allow for a systematic study of the effects of active 
conductance on the LFP.   

We here briefly describe the derivation of a quasi-active description of a single cellular 
compartment. The compartment includes one active current  that depends on the 

membrane potential  and is described by , with peak 

conductance , reversal potential , and gating variable . The passive leak current 

is given by , with conductance  and reversal potential . 
Finally, the axial current, i.e., the net current entering or leaving to neighbouring cellular 

compartments, is denoted by . The voltage of the compartment then evolves 
according to 

 

where the term  is the capacitive current with membrane capacitance . The 

dynamics of the gating variable  is given by 

 

with voltage-dependent activation time constant  and activation function  . 
The quasi-active description is obtained by linearizing  and  around resting-state values 

 and , respectively, by means of Taylor expansions. Defining the variable 

, we can write the linearized equation 
describing the voltage dynamics of a single compartment: 
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where , i.e., the ratio between the total membrane 
conductance (at ) and the leak conductance. The parameter 

 determines whether the quasi-active current 
functions as a positive feedback (when ; i.e., a regenerative current) amplifying 
voltage deviations from the holding potential , or as a negative feedback (when ; 
i.e., a restorative current) counteracting changes in the voltage. When , the quasi-
active current is frozen and functions as a static passive current (throughout the text we 
will refer to this as the "passive-frozen" case). The dynamics of the linear gating variable 

 is described by, 

 

The description of the ionic currents in a single compartment is easily extended to a multi-
compartmental model where each compartment can have its own set of parameters to 
describe the passive and quasi-active currents. 

For the simulations with a single linearized h-type current, we kept the passive 
parameters, as well as the peak conductance and activation time constant (at the 
specified holding potential) of the relevant active current, the same as in the original 
detailed model. 

To systematically study the effect of the cellular distribution of a quasi-active current on 
the LFP, we used three different channel density distributions: (1) linearly increasing with 
distance from the soma, (2) linearly decreasing with distance from the soma, and (3) a 
uniform distribution. The slopes of the increasing (decreasing) distributions were set such 
that the most distal tip of the apical dendrite had a sixty-fold larger (smaller) density 
compared to that of the soma (in line with experimental estimates for  distributions: 
Mishra and Narayanan 2015; Lörincz et al. 2002; Nusser 2009; Kole et al. 2006), and the 
total membrane conductance of the quasi-active current (i.e., summed over all 
compartments) was the same as the total passive leak conductance . The passive leak 

conductance was set uniformly to 50 µS/cm2 for all cases. For  the 

distance-dependent quasi-active peak conductance was  µS/cm2 

for the linear increase, and  µS/cm² for the linear decrease, 
where the distance x was measured in µm and had a maximum of 1291 µm. Note that the 
three distributions had the same total quasi-active membrane conductance summed over 
the neuronal membrane. The parameters  and  vary along the cell for the non-uniform 

channel distributions. We introduced , such that 

 is independent of the distribution of the quasi-active 
conductance and can be specified as a single constant. We used  for the 
regenerative conductance,  for the passive-frozen conductance, and  for 
the restorative conductance. For the uniform distribution this gives the same values as 
those used in Remme and Rinzel (2011), namely  for the regenerative, 

passive-frozen and restorative cases, respectively. The activation time constant  of 
the quasi-active conductance was set to 50 ms in order to have dynamics similar to the h-
type conductance. The intracellular resistivity was Ra = 100 cm, and the specific 
membrane capacitance cm = 1 µF/cm². 
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Calculation of extracellular potentials 

Extracellular potentials recorded inside the brain are generated by transmembrane 
currents from cells in the vicinity of the electrode contact (Nunez and Srinivasan, 2006). 
The biophysical origin of the recorded signals is well understood in the context of volume 
conduction theory. Extracellular potentials originating from a simulated multi-
compartmental neuron model can be computed by first obtaining the transmembrane 

currents  from each compartment  at position  Next, the extracellular potential 

 at position  resulting from these transmembrane currents can be calculated (Holt 
and Koch, 1999; Lindén et al., 2014): 

 

where  is the conductivity of the extracellular medium. This corresponds to the so-called 
line-source formula assuming the transmembrane currents to be evenly distributed along 
the axes of cylindrical neural compartments, see Lindén et al. (2014) for a detailed 
description. 

All simulations and computations of the extracellular potentials were carried out using 
LFPy (Lindén et al., 2014), an open-source Python package that provides an interface to 
NEURON (Carnevale and Hines, 2006). The time step of the neural simulation was 0.0625 
ms. For all simulations the first 1000 ms was discarded to avoid initialization effects. All 
simulation code used to produce the figures in the study is available. 

2.2.2.3 Model Data 

This work is the results of a collaboration between Torbjørn V Ness and Gaute T Einevoll at 
The Norwegian University of Life Sciences and Michiel W H Remme at The Institute for 
Theoretical Biology, Humboldt University Berlin. A repository containing all simulation 
code will be available at the HBP database, as well as at BitBucket 
(https://bitbucket.org/torbness/alfp.git). All simulation code is written in Python. Neural 
simulations were conducted using LFPy (Lindén et al., 2014), an open-source Python 
package that provides an interface to NEURON (Carnevale and Hines, 2006). 

The main focus of this project was subthershold cortical pyramidal cells, but using the 
quasi-active formulation, we were able to study generic features of the effects of 
subthreshold active conductance to the LFP, and we expect our findings to generalize to 
all brain regions and neural cells types that contributes to the LFP.  

We have completed a thorough study of the effect of active conductances on the single 
cell contribution to the LFP (Ness et al. (2015), http://arxiv.org/pdf/1512.04293v1.pdf), 
and there is on-going work to extend these results to populations of cells. The first step 
will be to reproduce many of the results in Łęski et al. (2013). 

2.2.2.4 Provenance 

Not applicable 

2.2.2.5 Model Results 

With a morphologically detailed and experimentally constrained cortical pyramidal cell 
model, we demonstrated that active conductance could strongly shape the LFP stemming 
from subthreshold input. The precise effects depended on the position of the input, the 
position of the extracellular electrode, and the membrane potential of the cell (Figure 12). 
The subthreshold active conductance had distinct effects on the power spectral density 
(PSD) of the LFP, providing either amplification or attenuation of the low frequencies, in 
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the latter case leading to a resonance in the LFP-PSD. The effects on the LFP were 
observed for various spatial distributions of the active conductance across the cell, but 
generally required an asymmetric distribution of synaptic input onto the cell (Figure 13). 
We found that the effect of a subthreshold active conductance on the LFP was maximized 
for (i) an asymmetric distribution of the active conductance, (ii) when the input was 
targeted to regions where the active conductance was most strongly expressed, and (iii) 
the LFP was recorded on the opposite side of the cell with respect to the input. 

Peaks in the LFP-PSD are commonly observed experimentally (see, e.g., Roberts et al., 
2013; Hadjipapas et al., 2015), and such peaks are usually interpreted as the result of 
network oscillations, i.e., oscillatory firing activity driving the LFP-generating neurons 
(Buzsáki and Draguhn, 2004). Importantly, our work shows that such peaks may also be due 
to subthreshold restorative conductance molding the transmembrane return currents. In 
particular, in our simulations with the pyramidal cell model by Hay et al. (2011) we found 
that the h-type current had a prominent role in shaping the LFP and could cause a strong 
resonance in the LFP-PSD (Figure 1C). The h-type current is strongly expressed in cortical 
and hippocampal pyramidal neurons and has a particularly asymmetric distribution across 
the cell, increasing in density along the apical dendrites and peaking in the distal apical 
tuft dendrites (Magee, 1998; Williams and Stuart, 2000; Harnett et al., 2015). The h-type 
current can be expected to impact the LFP resulting from synaptic input that is 
predominantly targeting the apical dendritic tuft of populations of cortical or hippocampal 
pyramidal neurons. Indeed, various input pathways to pyramidal neurons target specific 
domains of the cell (see, e.g., Petreanu et al., 2009). An intriguing consequence of our 
work is that the LFP can contain information on the spatial distribution of subthreshold 
active channels, as well as on the location of synaptic input to the LFP generating cells. 
For example, given a known apical concentration of h-type conductance, a resonance in 
the LFP due to  would suggest that the cells receive asymmetric input. Vice versa, if 
asymmetrical input is provided, an absence of a resonance in the LFP (measured at 
multiple locations along the cell axis) suggests that the cell does not strongly express 
restorative currents. 

 

Figure 12: Active conductances can shape the extracellular signature of synaptic 
inputs. 

A: A single synaptic input is provided to a cortical layer 5 pyramidal cell model. The extracellular response 
is shown at five positions (cyan dots) for two cases: the active model that includes various voltage-
dependent conductances (red), or a passive model from which the active conductances have been 
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removed (black). The position of the input is marked by the yellow star: at the distal apical dendrite (top 
panels) or at the soma (bottom panels). The cell's resting potential was held uniformly at a hyperpolarized 
potential of -80 mV (left panels) or at a depolarized potential of -60 mV (right panels). The synaptic peak 
conductance was 0.001 µS. The plots show the x,z-plane of the cell; the soma and the electrodes are 
positioned at y=0. B: As in panel A, but using white-noise current input instead of synaptic input, and 
displaying the response as the power spectral density (PSD). The PSD is calculated from 1000 ms long 
simulations. C: Apical input (marked by star) to the cell model held at a hyperpolarized potential (-80 mV). 
The extracellular potential is shown at two positions (cyan dots) for the active (red) and passive (black) 

model and for two additional versions of the model: the passive model supplemented by  (dashed blue), 

and the passive model supplemented by frozen  (dotted gray). 

 

 

Figure 13: Resonance is retained for asymmetric input from distributed synapses. 

A: The pyramidal cell model expressed a single linearly increasing quasi-active conductance that was 
either restorative (blue), passive-frozen (black), or regenerative (red). 1000 excitatory conductance-based 
synapses (green dots) with a peak conductance of 0.0001 µS were distributed across the distal apical tuft 
more than 900 µm away from soma. The synapses were activated by independent Poisson processes with a 
mean rate of 5 spikes per second. Simulations were run for 20 seconds and the LFP-PSD was calculated 
using Welch's method. B: As panel A, but with synapses distributed above the main bifurcation, 600 µm 
away from the soma. C: Synapses were distributed uniformly across the entire cell. 

2.3 Task 4.1.3 Mechanistic Models of Cognition Linked to the Neural 
Substrate by Population Density Methods  

2.3.1 M. de Kamps (ULEEDS)  

2.3.1.1 Introduction 

Task 4.1.3 has as objective the development of population level simulation methods, the 
production of a simulator available to the HBP - and any other interested parties - that 
allows more efficient simulation of large-scale neuronal networks, and can be applied in 
models of cognition. The point of population density techniques is that large populations of 
neurons can be simulated by modelling a single density function, and that population level 
quantities, such as firing rate, can be derived directly from the density function. We 
provide a simulation technique that is equivalent to spiking neuron simulations, at least 
when individual neuron identity does not matter, but require less run time and produce 
less data. Much effort has been invested into the development of efficient algorithms for 
population density techniques using 1-dimensional neural models, such as leaky-integrate-
and-fire and quadratic-integrate-and–fire and exponential-integrate-and-fire neuron 
models. 

Additionally, we have extended the methods theoretically and provided demonstrators to 
validate them: we have developed an algorithm that is applicable to any 2-dimensional 
neuron model. This means that we can model populations of model neurons as diverse as: 
adaptive-exponential-integrate-and-fire; Izhikevich; Fitzhugh-Nagumo; as well as 
conductance-based models (for a single conductance variable). We also have made 
progress towards spike trains with non-Markov distributed interspike intervals: we are able 
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to model populations subject to spike trains with gamma distributed spike intervals, for 
example. We found that in some cases superpositions of these processes can be analyzed, 
but that we cannot at present handle the general case of a superposition of such 
processes. We are currently in the process of integrating these novel algorithms into the 
main code base. 

We apply our own work to models of cognition, in particular the problem of compositional 
representations in language. We are working with SP3 Pallier lab (NEUROSPIN, T3.6.2) and 
Twente University (non-HBP) to construct models of language representation, and below 
we will present a population level model on how humans handle some forms of ambiguity 
better than others. This model  - the Neural Blackboard Architecture is used by Pallier lab 
in the analysis of MEG/fMRI data.  

We are working with the Juelich (SP6 T6.2.3, now also SP4) group to apply population 
density methods in a reduced version of the Potjans-Diesmann  (2014) model of a cortical 
column to allow for faster parameter sweeps and are discussing with UMB (Einevoll, 
T4.1.2) whether population density methods can be used in a more parsimonious model of 
Local Field Potentials (LFPs). In general, we belief our simulator is in a state where it can 
be used to great effect in reduced models of spiking neuron populations. We have 
improved the documentation and created a tutorial. In this document, we will present the 
simulator, explain how it can be installed and set up and provide many of the validation 
experiments that we have performed to ensure that it produces correct results. We would 
like this simulator to become a fixture in the simulator platform, and will strongly push its 
adaption by other groups in the HBP. We are working with the Juelich group on a 
reimplementation of the Potjans-Diessmman model (T6.2.3) and hope to be able to 
contribute to  T4.1.2. We will discuss the following aspects: 

Installation and set up of the simulator 

We have produced many examples, ranging from single populations to simple circuits of 
populations of leaky-integrate-and-fire and quadratic-integrate-and-fire neurons. These 
examples are described in http://miind.sf.net/tutorial.pdf. The examples are models. 
They are not novel, or original. Their purpose is to serve as validation and benchmarks. 

A large-scale simulation, demonstration the MPI backend, and proof of scalability of the 
simulator. Large-scale network simulations will be based on this methodology. These 
examples are taken from http://mind.sf.net/tutorial.pdf 

Possibilities and current limitations for the inclusion of spike train intervals that are drawn 
from a non-Markov processes, e.g. gamma distributions. Our results are summarized from 
http://arxiv.org/abs/1601.07126, which is currently under review in Physics Review E. The 
method is novel, and the examples can be considered to be models, but again, their 
purposes is validation. 

Possibilities and current limitations for modelling 2-dimensional population densities. 
Earlier methods were restricted to one specific model. The method we have developed will 
handle any 2D model. We will present results on the quantitative validation of the method. 

The models thus, serve an unusual purpose. They were necessary in the development of 
the simulation techniques and the simulator code, which is the bulk of the work for the 
ramp up phase.  

2.3.1.2 Model Description for Miind 

2.3.1.2.1 Introduction 

The 1-dimensional population density methods, currently leaky- and-quadratic-integrate-
and-fire neurons, are available at http://miind.sf.net, which serves as documentation. The 
code is available as a git repository there:  ‘git clone git://git.code.sf.net/p/miind/git 
miind-git’. A mirror repository is kept on github, in an anticipated move to that facility. 
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The git address mirrors the development version. Stable versions can be downloaded from: 
‘https://sourceforge.net/projects/miind/’.  We will describe the installation process in 
Annex C. It details the required third party-packages and their installation, and then the 
installation of MIIND itself. We will now describe how to run the examples. These examples 
also cover comparison experiments between rabte-based models and population density 
techniques (PDT-RBMS;M283) 

2.3.1.2.2 Demonstration  

Starting	with	MIIND		
We assume that you managed to install MIIND by the procedure explained in annex C. If 
not, please ask for assistance at M.deKamps@ leeds.ac.uk.  

In general there is no need to write C++ code, and you don’t need a background in C++ to 
work with MIIND. Simulations of a limited number of populations can be configured in an 
XML file, which are easier to create and store than the corresponding C++ code, and are 
more expressive. Once you have created an XML file that you want to run, you will invoke 
a Python script that translates the XML into C++ code and adds the resulting C++ code into 
the compilation tree. From that moment onward a C++ program corresponding to the XML 
file is part of your local MIIND installation until you decide to remove it. Invoking another 
Python script triggers compilation, will run the program and compile simulation results in a 
specific directory, which makes it easy to analyze them.  

This set up is intended as an intermediate step towards a solution where XML files are 
submitted to an HPC facility and simulation results can be obtained from a server, possibly 
after a first remote analysis step. Even in such a set up a local MIIND installation will be 
useful.  

Validating	your	Installation		
Your top directory is called miind-git, we will refer to this directory as the MIIND_ROOT. In 
the MIIND_ROOT, you will find the directories apps, libs, python and example. Moreover, 
during installation you will have created a build directory, if it wasn’t there already. 
Within the build directory you will find the libraries and applications that were created 
during installation, also called build and apps. In the directory 
MIIND_ROOT/build/apps/PerformanceGeom, you will find the executables LifOneCanvas, 
LifOne, LifTwoCanvas and LifTwo. Run LifOneCanvas, by typing ‘./LifOneCanvas’, or by 
specifying the full path name. The program should run and a screen should pop-up that 
provides a running demonstration of the density display. You will see the full simulation of 
the single population of LIF neurons that was described in the last chapter.  

 

Figure 14: File structure of the MIIND installation. 

MIIND_ROOT

examples apps

UnitMPILib UnitGeomLib Geom
Performance

python build libs

GeomLibMPILib

apps libs

UnitGeomLibUnitMPILib
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jobs
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Typically you will make a local installation, in a working directory of your choice, possibly on staging disks 
in an HPC environment. In your working directory you will find a directory called ’miind.git’. This is the 
MIIND_ROOT. The file structure is explained relative to this directory. A full explanation can be found in 
Section B, but you will want to add the python directory directly under the MIIND_ROOT to the PATH and 
PYTHONPATH environment variables. The window that pops up shows both the population density, the 
distribution of the population over the membrane potential, and the output firing rate: the fraction of 
neurons per unit time that are pushed across threshold and thereby emit a spike themselves. The pop up 
display is discussed in the figure below. You can also run LifTwoCanvas which describes a small circuit of 
two fully connected LIF populations, one excitatory and one inhibitory. You can run the executables: 
LifOne and LifTwo which perform the same simulation, but without online visualisation. As you can see 
these programs run much faster, and each produce a ROOT file that contains the simulation results.  

 

Figure 15: Monitoring running simulations 
If the pop up screen is used, running simulations can be monitored. This is useful in setting up circuits and 
debugging. The use of a pop up screen slows down simulations considerably. On the right the population 
density function itself is shown as a function of membrane potential. On the left the population’s output 
firing rate is shown as a function of time.  

2.3.1.2.3  Running Example Simulations  

In http://miind.sf.net/tutorial.pdf you will find a number of examples that provide a good 
introduction to population density techniques and running MIIND.  

2.3.1.2.4 Large-scale Networks 

We will use the example of the balanced excitation-inhibition in a two-population circuit 
to demonstrate performance of the simulator on a large-scale network. The two –
population circuits are copied and these copies are placed in hexagonal rings around the 
original circuit. 
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Figure 16: Network of two-population circuits 
Each node represents a two-population circuit consisting of one excitatory and one inhibitory population, 
connected as described in the previous section. By increasing the number of rings, the number of 
populations in the network can be increased quadratically. 

The inhibitory populations remain connected to the excitatory populations, but the 
excitatory populations acquire lateral connectivity. If it is assumed that the excitatory 
populations all fire at the same firing rate as the cortical background input, it is possible 
to work out how strong the lateral connections should be so that each excitatory receives 
on average as much input as in the two population circuit.  Moreover, it is not difficult to 
do this as a function of the number of rings. By choosing an increasing number of rings, one 
can grow the network size quadratically in terms of number of populations. This makes the 
network suitable for scaling investigations. 

The programme that resides in the MIIND_ROOT/apps/largeNetwork directory implements 
this network. This programme is built by default as part of MIIND’s performance 
monitoring. At the moment this model is only used for investigating the scaling of 
parallelization, but we intend to use as an investigation into lateral wave phenomena in 
cortex. To investigate scaling, MPI must be used. This can be done as follows: restart the 
building process of MIIND with step 3: ‘ccmake ..’. A toggle is present that allows the 
enabling of MPI. This requires the presence of BOOST.MPI in the boost libraries that the 
MIIND executable links to, and of course it assumes that MPI is installed on your host 
system..  If this is the case, you will be able to successfully compile MIIND. You must now 
use your host  version of ‘mpirun’. On the Leeds HPC cluster, we submit this as a batch 
job: 

#$ -cwd -V 
#$ -l h_rt=1:00:00 
#$ -l np=64 
mpirun ./largeNetwork 

using 64 cores. It is now possible to investigate the scaling behavior of MIIND as follows: in 

MIIND_ROOT/apps/largeNetwork/largeNetwork.hpp is a variable:     

 const  int NR_RINGS = 4             

By changing the number of rings, the number of populations can be changed: the number 
of populations increases quadratically with the number of rings. For 25 rings, there are 
already 15000 populations in the network. In the model results section we will 
demonstrate that parallelization is nearly ideal: the total CPU time is almost inversely 
proportional to the number of cores used. 
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2.3.1.3 Model Data 

2.3.1.3.1 Single Populations and Simple Circuits 

A DIC has been created for the MIIND repository: ‘MIIND code repository’ 

Benchmark models are:  a single population of leaky-integrate-and-fire neurons; a single 
population of quadratic-integrate-and-fire neurons; a circuit of two fully connected 
populations: one excitatory, one inhibitory, in a state of balanced excitation-inhibition; 
transfer curves for leaky-integrate-and-fire and quadratic-integrate-and-fire neurons. The 
core simulator is written in C++, the data format is that of the ROOT data analysis 
framework (http://root.cern.ch).  Within ROOT a conversion is possible to NUMPY arrays. 

 

Figure 17: the response of a population of leaky-integrate-and-fire neurons to an input 
that has been switched on at t = 0. 

Left: a spiking neuron simulation, right: a calculation based on population density techniques (solid curve), 
the red markers are the population firing rate, calculated from the spikes of the spiking neuron 
simulation. Within statistics the agreement is perfect. 

The response of a single population is shown in Fig.17. For reasons of space, we refer to 
the tutorial for the other examples.  The tutorial has available on 
http://miind.sf.net/tutorial.pdf, and also has been submitted with this report. 

2.3.1.3.2 A Universal 2D Population Density Solver 

As explained above, we use population density methods to model populations. We will 
briefly outline the methodology for 2D neuronal models (1D neuronal models can be 
considered a special case and details can be found in http://arxiv.org/abs/1309.1654).  

Consider an arbitrary 2D neuronal model, for example adaptive-exponential-integrate-and-
fire. The 2D model is a two-dimensional vector field, and it is straightforward to compute 
its flow. 
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Figure 18: AdExp model 
Left: vector field generated by AdExp model. Right: a geometric grid built from integral curves. 

We use these integral curves to construct a mesh, built out of parallel strips, as shown on 
the right of Fig. 18.  It is important to realise that neurons move through the grid in 
ascending order: the numbering of the grid is chosen in such a way that a group of neurons 
that is present in a grid cell is present in the neighbouring cell in the next time step. This 
is a so-called geometric grid. Importantly, such a grid can be constructed for any neuronal 
model.  Fig. 19 shows a similarly constructed grid for a very different model: a 
conductance-based model, first considered in this form by Apfalter et al. (2006). 

The horizontal axis describes the membrane potential, the vertical axis the conductance. 
As can be seen from the strip numbering, neurons at a high conductance move towards a 
higher membrane potential, and whilst they do this, the ion channel associated with the 
conductance closes: the conductance variable decreases. Below a certain conductance 
value, the neuron hyperpolarizes. Again, neurons move from cell to cell in each time step. 
It is now possible to define a density over the state space: consider the distribution of a 
group of neurons over the state space at t = 0. The density is then defined by the fraction 
of neurons, divided by bin area. If no synaptic input is present, the movement from cell to 
cell captures the evolution of the density. If a threshold is present (not shown in Fig.19), 
those neurons that move beyond, need to be reintroduced at a reset potential, but this is a 
trivial calculation.  The firing rate can be computed as the fraction of neurons that cross 
the threshold per unit time. 
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Figure 19: Mesh for a conductance-based model 

The process is illustrated in Fig. 19. We store probability mass in an array that has as many 
elements as there are cells in the grid. The mass profile does not change in general, only 
the position of the mass in the grid is updated.  

 

Figure 20: The same neurons (the same mass) moves through the grid from cell to cell. 
It is sufficient to update the relation ship between the mass array and the mass. 

So the population density for any model neuron is trivial to model. This captures the so-
called advective part of density evolution. With synaptic input things become more 
complex. We assume Poisson distributed input spikes. Each neuron in the population will 
see its individual realization of a Poisson process. In any neuronal model, an input spike 
will lead to an instantaneous change in the state. In LIF and QIF neurons with delta 
synapses, an input spike causes a jump in the membrane potential. In conductance-based 
models there will be a jump in the conductance. To model the evolution of the density, we 
will have to consider the Poisson Master equation as it manifests itself on the mesh. The 
problem is illustrated in Fig.21. It shows how neurons that are present in a given bin are 
distributed over other bins if these neurons receive a jump in conductance due to synaptic 
input. 
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18,3618,3718,3818,3918,4018,4118,4218,4318,4418,4518,4618,4718,4818,4918,5018,5118,5218,5318,5418,5518,5618,5718,5818,5918,6018,6118,6218,6318,6418,6518,6618,6718,6818,6918,7018,7118,7218,7318,7418,7518,7618,7718,7818,7918,8018,8118,8218,8318,8418,8518,8618,8718,8818,8918,9018,9118,9218,9318,9418,9518,9618,9718,9818,99

19,0

19,1

19,2

19,3

19,4

19,5

19,6

19,7

19,8

19,9

19,10

19,11

19,12

19,13

19,14

19,15

19,16

19,17

19,18

19,19
19,20
19,21
19,22
19,23
19,24

19,25
19,26

19,27
19,28

19,29
19,30

19,31
19,32

19,33
19,34

19,35
19,36

19,37
19,3819,3919,4019,4119,4219,4319,4419,4519,4619,4719,4819,4919,5019,5119,5219,5319,5419,5519,5619,5719,5819,5919,6019,6119,6219,6319,6419,6519,6619,6719,6819,6919,7019,7119,7219,7319,7419,7519,7619,7719,7819,7919,8019,8119,8219,8319,8419,8519,8619,8719,8819,8919,9019,9119,9219,9319,9419,9519,9619,9719,9819,99

V (mV)
0.066� 0.065� 0.064� 0.063� 0.062� 0.061� 0.06� 0.059� 0.058� 0.057�0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,01,11,21,31,41,51,61,71,81,91,101,111,121,131,141,151,161,171,181,191,201,211,221,231,241,251,261,271,281,291,301,311,321,331,341,351,361,371,381,391,401,411,421,431,441,451,461,471,481,491,501,511,521,531,541,551,561,571,581,591,601,611,621,631,641,651,661,671,681,69

2,0
2,1

2,2
2,32,42,52,62,72,82,92,102,112,122,132,142,152,162,172,182,192,202,212,222,232,242,252,262,272,282,292,302,312,322,332,342,352,362,372,382,392,402,412,422,432,442,452,462,472,482,492,502,512,522,532,542,552,562,572,582,592,602,612,622,632,642,652,662,672,682,69

3,0

3,1
3,2

3,3
3,4
3,53,63,73,83,93,103,113,123,133,143,153,163,173,183,193,203,213,223,233,243,253,263,273,283,293,303,313,323,333,343,353,363,373,383,393,403,413,423,433,443,453,463,473,483,493,503,513,523,533,543,553,563,573,583,593,603,613,623,633,643,653,663,673,683,69

4,0

4,1

4,2
4,3

4,4
4,5
4,6
4,74,84,94,104,114,124,134,144,154,164,174,184,194,204,214,224,234,244,254,264,274,284,294,304,314,324,334,344,354,364,374,384,394,404,414,424,434,444,454,464,474,484,494,504,514,524,534,544,554,564,574,584,594,604,614,624,634,644,654,664,674,684,69

5,0

5,1

5,2

5,3
5,4

5,5
5,6
5,7
5,85,95,105,115,125,135,145,155,165,175,185,195,205,215,225,235,245,255,265,275,285,295,305,315,325,335,345,355,365,375,385,395,405,415,425,435,445,455,465,475,485,495,505,515,525,535,545,555,565,575,585,595,605,615,625,635,645,655,665,675,685,69

6,0

6,1

6,2

6,3

6,4
6,5

6,6
6,7
6,8
6,96,106,116,126,136,146,156,166,176,186,196,206,216,226,236,246,256,266,276,286,296,306,316,326,336,346,356,366,376,386,396,406,416,426,436,446,456,466,476,486,496,506,516,526,536,546,556,566,576,586,596,606,616,626,636,646,656,666,676,686,69

7,0

7,1

7,2

7,3

7,4

7,5
7,6
7,7
7,8
7,9
7,107,117,127,137,147,157,167,177,187,197,207,217,227,237,247,257,267,277,287,297,307,317,327,337,347,357,367,377,387,397,407,417,427,437,447,457,467,477,487,497,507,517,527,537,547,557,567,577,587,597,607,617,627,637,647,657,667,677,687,69

8,0

8,1

8,2

8,3

8,4

8,5

8,6
8,7
8,8
8,9
8,10
8,118,128,138,148,158,168,178,188,198,208,218,228,238,248,258,268,278,288,298,308,318,328,338,348,358,368,378,388,398,408,418,428,438,448,458,468,478,488,498,508,518,528,538,548,558,568,578,588,598,608,618,628,638,648,658,668,678,688,69

9,0

9,1

9,2

9,3

9,4

9,5

9,6

9,7
9,8
9,9
9,10
9,119,129,139,149,159,169,179,189,199,209,219,229,239,249,259,269,279,289,299,309,319,329,339,349,359,369,379,389,399,409,419,429,439,449,459,469,479,489,499,509,519,529,539,549,559,569,579,589,599,609,619,629,639,649,659,669,679,689,69

10,0

10,1

10,2

10,3

10,4

10,5

10,6

10,7
10,8
10,9
10,10
10,11
10,1210,1310,1410,1510,1610,1710,1810,1910,2010,2110,2210,2310,2410,2510,2610,2710,2810,2910,3010,3110,3210,3310,3410,3510,3610,3710,3810,3910,4010,4110,4210,4310,4410,4510,4610,4710,4810,4910,5010,5110,5210,5310,5410,5510,5610,5710,5810,5910,6010,6110,6210,6310,6410,6510,6610,6710,6810,69

11,0

11,1

11,2

11,3

11,4

11,5

11,6

11,7

11,8
11,9
11,10
11,11
11,1211,1311,1411,1511,1611,1711,1811,1911,2011,2111,2211,2311,2411,2511,2611,2711,2811,2911,3011,3111,3211,3311,3411,3511,3611,3711,3811,3911,4011,4111,4211,4311,4411,4511,4611,4711,4811,4911,5011,5111,5211,5311,5411,5511,5611,5711,5811,5911,6011,6111,6211,6311,6411,6511,6611,6711,6811,69

12,0

12,1

12,2

12,3

12,4

12,5

12,6

12,7

12,8
12,9
12,10
12,11

12,12
12,1312,1412,1512,1612,1712,1812,1912,2012,2112,2212,2312,2412,2512,2612,2712,2812,2912,3012,3112,3212,3312,3412,3512,3612,3712,3812,3912,4012,4112,4212,4312,4412,4512,4612,4712,4812,4912,5012,5112,5212,5312,5412,5512,5612,5712,5812,5912,6012,6112,6212,6312,6412,6512,6612,6712,6812,69

13,0

13,1

13,2

13,3

13,4

13,5

13,6

13,7

13,8

13,9
13,10
13,11

13,12
13,1313,1413,1513,1613,1713,1813,1913,2013,2113,2213,2313,2413,2513,2613,2713,2813,2913,3013,3113,3213,3313,3413,3513,3613,3713,3813,3913,4013,4113,4213,4313,4413,4513,4613,4713,4813,4913,5013,5113,5213,5313,5413,5513,5613,5713,5813,5913,6013,6113,6213,6313,6413,6513,6613,6713,6813,69

14,0

14,1

14,2

14,3

14,4

14,5

14,6

14,7

14,8

14,9
14,10
14,11

14,12
14,13

14,1414,1514,1614,1714,1814,1914,2014,2114,2214,2314,2414,2514,2614,2714,2814,2914,3014,3114,3214,3314,3414,3514,3614,3714,3814,3914,4014,4114,4214,4314,4414,4514,4614,4714,4814,4914,5014,5114,5214,5314,5414,5514,5614,5714,5814,5914,6014,6114,6214,6314,6414,6514,6614,6714,6814,69

15,0

15,1

15,2

15,3

15,4

15,5

15,6

15,7

15,8

15,9
15,10
15,11

15,12
15,13

15,1415,1515,1615,1715,1815,1915,2015,2115,2215,2315,2415,2515,2615,2715,2815,2915,3015,3115,3215,3315,3415,3515,3615,3715,3815,3915,4015,4115,4215,4315,4415,4515,4615,4715,4815,4915,5015,5115,5215,5315,5415,5515,5615,5715,5815,5915,6015,6115,6215,6315,6415,6515,6615,6715,6815,69

16,0

16,1

16,2

16,3

16,4

16,5

16,6

16,7

16,8

16,9

16,10
16,11

16,12
16,13

16,1416,1516,1616,1716,1816,1916,2016,2116,2216,2316,2416,2516,2616,2716,2816,2916,3016,3116,3216,3316,3416,3516,3616,3716,3816,3916,4016,4116,4216,4316,4416,4516,4616,4716,4816,4916,5016,5116,5216,5316,5416,5516,5616,5716,5816,5916,6016,6116,6216,6316,6416,6516,6616,6716,6816,69

17,0

17,1

17,2

17,3

17,4

17,5

17,6

17,7

17,8

17,9

17,10
17,11

17,12
17,13

17,14
17,1517,1617,1717,1817,1917,2017,2117,2217,2317,2417,2517,2617,2717,2817,2917,3017,3117,3217,3317,3417,3517,3617,3717,3817,3917,4017,4117,4217,4317,4417,4517,4617,4717,4817,4917,5017,5117,5217,5317,5417,5517,5617,5717,5817,5917,6017,6117,6217,6317,6417,6517,6617,6717,6817,69

18,0

18,1

18,2

18,3

18,4

18,5

18,6

18,7

18,8

18,9

18,10
18,11

18,12
18,13

18,14
18,1518,1618,1718,1818,1918,2018,2118,2218,2318,2418,2518,2618,2718,2818,2918,3018,3118,3218,3318,3418,3518,3618,3718,3818,3918,4018,4118,4218,4318,4418,4518,4618,4718,4818,4918,5018,5118,5218,5318,5418,5518,5618,5718,5818,5918,6018,6118,6218,6318,6418,6518,6618,6718,6818,69

19,0

19,1

19,2

19,3

19,4

19,5

19,6

19,7

19,8

19,9

19,10

19,11
19,12

19,13
19,14

19,1519,1619,1719,1819,1919,2019,2119,2219,2319,2419,2519,2619,2719,2819,2919,3019,3119,3219,3319,3419,3519,3619,3719,3819,3919,4019,4119,4219,4319,4419,4519,4619,4719,4819,4919,5019,5119,5219,5319,5419,5519,5619,5719,5819,5919,6019,6119,6219,6319,6419,6519,6619,6719,6819,69

V (mV)
0.066� 0.065� 0.064� 0.063� 0.062� 0.061� 0.06� 0.059� 0.058� 0.057�0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,01,11,21,31,41,51,61,71,81,91,101,111,121,131,141,151,161,171,181,191,201,211,221,231,241,251,261,271,281,291,301,311,321,331,341,351,361,371,381,391,401,411,421,431,441,451,461,471,481,491,501,511,521,531,541,551,561,571,581,591,601,611,621,631,641,651,661,671,681,69

2,0
2,1

2,2
2,32,42,52,62,72,82,92,102,112,122,132,142,152,162,172,182,192,202,212,222,232,242,252,262,272,282,292,302,312,322,332,342,352,362,372,382,392,402,412,422,432,442,452,462,472,482,492,502,512,522,532,542,552,562,572,582,592,602,612,622,632,642,652,662,672,682,69

3,0

3,1
3,2

3,3
3,4
3,53,63,73,83,93,103,113,123,133,143,153,163,173,183,193,203,213,223,233,243,253,263,273,283,293,303,313,323,333,343,353,363,373,383,393,403,413,423,433,443,453,463,473,483,493,503,513,523,533,543,553,563,573,583,593,603,613,623,633,643,653,663,673,683,69

4,0

4,1

4,2
4,3

4,4
4,5
4,6
4,74,84,94,104,114,124,134,144,154,164,174,184,194,204,214,224,234,244,254,264,274,284,294,304,314,324,334,344,354,364,374,384,394,404,414,424,434,444,454,464,474,484,494,504,514,524,534,544,554,564,574,584,594,604,614,624,634,644,654,664,674,684,69

5,0

5,1

5,2

5,3
5,4

5,5
5,6
5,7
5,85,95,105,115,125,135,145,155,165,175,185,195,205,215,225,235,245,255,265,275,285,295,305,315,325,335,345,355,365,375,385,395,405,415,425,435,445,455,465,475,485,495,505,515,525,535,545,555,565,575,585,595,605,615,625,635,645,655,665,675,685,69

6,0

6,1

6,2

6,3

6,4
6,5

6,6
6,7
6,8
6,96,106,116,126,136,146,156,166,176,186,196,206,216,226,236,246,256,266,276,286,296,306,316,326,336,346,356,366,376,386,396,406,416,426,436,446,456,466,476,486,496,506,516,526,536,546,556,566,576,586,596,606,616,626,636,646,656,666,676,686,69

7,0

7,1

7,2

7,3

7,4

7,5
7,6
7,7
7,8
7,9
7,107,117,127,137,147,157,167,177,187,197,207,217,227,237,247,257,267,277,287,297,307,317,327,337,347,357,367,377,387,397,407,417,427,437,447,457,467,477,487,497,507,517,527,537,547,557,567,577,587,597,607,617,627,637,647,657,667,677,687,69

8,0

8,1

8,2

8,3

8,4

8,5

8,6
8,7
8,8
8,9
8,10
8,118,128,138,148,158,168,178,188,198,208,218,228,238,248,258,268,278,288,298,308,318,328,338,348,358,368,378,388,398,408,418,428,438,448,458,468,478,488,498,508,518,528,538,548,558,568,578,588,598,608,618,628,638,648,658,668,678,688,69

9,0

9,1

9,2

9,3

9,4

9,5

9,6

9,7
9,8
9,9
9,10
9,119,129,139,149,159,169,179,189,199,209,219,229,239,249,259,269,279,289,299,309,319,329,339,349,359,369,379,389,399,409,419,429,439,449,459,469,479,489,499,509,519,529,539,549,559,569,579,589,599,609,619,629,639,649,659,669,679,689,69

10,0

10,1

10,2

10,3

10,4

10,5

10,6

10,7
10,8
10,9
10,10
10,11
10,1210,1310,1410,1510,1610,1710,1810,1910,2010,2110,2210,2310,2410,2510,2610,2710,2810,2910,3010,3110,3210,3310,3410,3510,3610,3710,3810,3910,4010,4110,4210,4310,4410,4510,4610,4710,4810,4910,5010,5110,5210,5310,5410,5510,5610,5710,5810,5910,6010,6110,6210,6310,6410,6510,6610,6710,6810,69

11,0

11,1

11,2

11,3

11,4

11,5

11,6

11,7

11,8
11,9
11,10
11,11
11,1211,1311,1411,1511,1611,1711,1811,1911,2011,2111,2211,2311,2411,2511,2611,2711,2811,2911,3011,3111,3211,3311,3411,3511,3611,3711,3811,3911,4011,4111,4211,4311,4411,4511,4611,4711,4811,4911,5011,5111,5211,5311,5411,5511,5611,5711,5811,5911,6011,6111,6211,6311,6411,6511,6611,6711,6811,69

12,0

12,1

12,2

12,3

12,4

12,5

12,6

12,7

12,8
12,9
12,10
12,11

12,12
12,1312,1412,1512,1612,1712,1812,1912,2012,2112,2212,2312,2412,2512,2612,2712,2812,2912,3012,3112,3212,3312,3412,3512,3612,3712,3812,3912,4012,4112,4212,4312,4412,4512,4612,4712,4812,4912,5012,5112,5212,5312,5412,5512,5612,5712,5812,5912,6012,6112,6212,6312,6412,6512,6612,6712,6812,69

13,0

13,1

13,2

13,3

13,4

13,5

13,6

13,7

13,8

13,9
13,10
13,11

13,12
13,1313,1413,1513,1613,1713,1813,1913,2013,2113,2213,2313,2413,2513,2613,2713,2813,2913,3013,3113,3213,3313,3413,3513,3613,3713,3813,3913,4013,4113,4213,4313,4413,4513,4613,4713,4813,4913,5013,5113,5213,5313,5413,5513,5613,5713,5813,5913,6013,6113,6213,6313,6413,6513,6613,6713,6813,69

14,0

14,1

14,2

14,3

14,4

14,5

14,6

14,7

14,8

14,9
14,10
14,11

14,12
14,13

14,1414,1514,1614,1714,1814,1914,2014,2114,2214,2314,2414,2514,2614,2714,2814,2914,3014,3114,3214,3314,3414,3514,3614,3714,3814,3914,4014,4114,4214,4314,4414,4514,4614,4714,4814,4914,5014,5114,5214,5314,5414,5514,5614,5714,5814,5914,6014,6114,6214,6314,6414,6514,6614,6714,6814,69

15,0

15,1

15,2

15,3

15,4

15,5

15,6

15,7

15,8

15,9
15,10
15,11

15,12
15,13

15,1415,1515,1615,1715,1815,1915,2015,2115,2215,2315,2415,2515,2615,2715,2815,2915,3015,3115,3215,3315,3415,3515,3615,3715,3815,3915,4015,4115,4215,4315,4415,4515,4615,4715,4815,4915,5015,5115,5215,5315,5415,5515,5615,5715,5815,5915,6015,6115,6215,6315,6415,6515,6615,6715,6815,69

16,0

16,1

16,2

16,3

16,4

16,5

16,6

16,7

16,8

16,9

16,10
16,11

16,12
16,13

16,1416,1516,1616,1716,1816,1916,2016,2116,2216,2316,2416,2516,2616,2716,2816,2916,3016,3116,3216,3316,3416,3516,3616,3716,3816,3916,4016,4116,4216,4316,4416,4516,4616,4716,4816,4916,5016,5116,5216,5316,5416,5516,5616,5716,5816,5916,6016,6116,6216,6316,6416,6516,6616,6716,6816,69

17,0

17,1

17,2

17,3

17,4

17,5

17,6

17,7

17,8

17,9

17,10
17,11

17,12
17,13

17,14
17,1517,1617,1717,1817,1917,2017,2117,2217,2317,2417,2517,2617,2717,2817,2917,3017,3117,3217,3317,3417,3517,3617,3717,3817,3917,4017,4117,4217,4317,4417,4517,4617,4717,4817,4917,5017,5117,5217,5317,5417,5517,5617,5717,5817,5917,6017,6117,6217,6317,6417,6517,6617,6717,6817,69

18,0

18,1

18,2

18,3

18,4

18,5

18,6

18,7

18,8

18,9

18,10
18,11

18,12
18,13

18,14
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Figure 21: A fraction of neurons in bin (5,5) will be translated vertically due to 
synaptic input, as input spikes cause a jump in conductance. 

To set up a Master equation, one needs to know what bins of the mesh the translated neurons cover. The 
problem can be stated as one of computational geometry: what proportion of which bins are covered by 
the translated bin (5,5)? 

This problem is easily stated, but hard to compute efficiently. We do this offline, i.e. 
before simulation, using Monte Carlo techniques. When the translation coefficients have 
been calculated, the problem is that of solving an ordinary Poisson Master equation, which 
is a simple set of ordinary differential equation. We have developed the technique on 
AdExp neurons and qualitatively validated it on conductance-based models. The results will 
be demonstrated below. We consider this implementation successful.  We hoped that we 
would obtain qualitative correct results for approximately 100000 bins, and this turns out 
to be the case. Our demonstrator in Python is too slow. It needs to be programmed more 
intelligently, and as a computational geometry application it is especially suitable for 
parallelization. We aim for a factor 40 speed up; we expect a factor 4 gain from moving to 
C, and from algorithmic improvements. We expect a more than factor 10 speedup by 
parallelization, which is currently being implemented. As a first step, we will produce an 
OpenMP version of the algorithm, and we hope to start soon on a Thrust-based 
implementation on a Tesla K80 GPU. We have underestimated the problem of computing 
the geometry of the Master equation, and found this more time consuming than expected. 
We now accept that this will probably have to be done offline, which is not in itself a 
fundamental problem. A potential solution to this problem may be the SpiNNaker 
architecture. Although not directly designed as such, it can function as a massively parallel 
database structure. It can in principle be used to find which grid cell a translated point 
resides in. We will explore this option with SP6.The current implementation is not yet part 
of the MIIND codebase, we will integrate the code after parallelization. 

We consider the creation of a universally applicable 2D population density method a 
significant step. A few algorithms have been developed for individual models, e.g. by Casti 
et al. for the integrate-fire-and-burst model, and by Apfalter et al (2006) for the 
conductance based model, but the implementations were very specific to the model. Here, 
we have shown that any 2D model can be implemented, by solving the Master equation of 
the noise process on a geometric mesh. This is an inherently efficient method: it is easier 
to solve systems of ODEs than partial integro-differential equations. We consider the 
possibility to model 2D neurons a sea change. Just as 2D models of individual neurons are 
infinitely richer than 1D models such as leaky-integrate-and-fire models, but not as 
complex as e.g. a Hodgkin-Huxley model, and therefore more amenable to analysis, 
population versions of 2D models will offer a much richer toolset for modelling population 
dynamics.  
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2.3.1.3.3 Population Density Techniques for non-Markov Interspike Intervals 

In population level modelling, the assumption that interspike intervals are drawn from a 
Poisson or white noise process is so commonly made that it is often not even stated 
explicitly.  The assumption is implicitly present in diffusion-based approaches, such as 
Fokker-Planck equations. The potential impact non-Markov interspike intervals has been 
pointed out by Cateau and Reynes (2004).It is clearly an interesting question to see if 
population density techniques can be extended to include non Markov processes such as 
gamma distributed interspike intervals. There are some results: notably Ly and Tranchina 
(2009). For them, the starting point is usually a renewal process in two dimensions:  the 
membrane potential and the time since last spike. The general framework that we 
presented for population density techniques above decouples deterministic motion from 
the stochastic process. The particular way in which we set up our solution means that we 
can model the stochastic process in it own terms: instead of solving the full partial integro-
differential equation that describes the evolution of the density, we have to solve the 
Poisson Master equation on a geometric grid. This begs the question of whether 
generalizations of Master equations can be incorporated in our formalism. Such 
generalizations exist, for example in the form of the generalized Montroll-Weiss equation 
(Hoffmann et al, 2012), where the stochastic process is formulated in terms of waiting 
time distributions (WTDs), rather than transition probabilities.  For a gamma distribution, 
this formalism leads to a Master-like equation, with a convolution of a finite kernel with 
the recent population density history. This approach is very attractive: first, there is no 
need to introduce an extra dimension. One-dimensional neuronal models require a one-
dimensional density and as long as the kernel under consideration has a clear limited 
width, there is no need to consider the entire history. Second, generalizations to transient 
results are manifest; earlier results had only been derived for the steady state. We found 
the implementation straightforward: technical details are relegated to the write up: 
http://arxiv.org/abs/1601.07126. 

In the next Section, we present our main results (M283; PDTS-RBMS). Here, we present a 
discussion of the limitations of the technique.  We found that the technique worked well 
for a single channel. Both transient and steady state results were compared to Monte Carlo 
results and were satisfactory. The superposition of two renewal processes is in general not 
a renewal process, and we identified where in the generalized Montroll-Weiss equation the 
argument breaks down. It turns out that there the assumption is made that on an event the 
clocks for all WTDs reset, and that is in general not the case for computational 
neuroscience. We argued that for moderately high firing rates, this assumption is not 
dramatically violated, and proceeded to calculate the interaction of an excitatory and an 
inhibitory input process. We predicted that a 20% suppression compared to a linear 
addition of these processes should be expected and Monte Carlo validation bore this out, 
provided the processes were comparable in terms of firing rate, and synaptic efficacy. On 
the one hand, this is a nice result. On the other hand, it demonstrates that a study of 
balanced excitation and inhibition in full generality is difficult for non-Poisson processes. 

Nonetheless, the method improves the state-of-the-art: it produces valid results for 
transients, and works similarly for excitatory and inhibitory processes. It inherently one 
dimensional, and shows transparently that the non-Markov character of spike intervals 
results in a convolution of a kernel with the recent density history.  In earlier work this 
was shown to be the case for the steady state. We have shown this is generally true.  

2.3.1.3.4 A Model of Sentence Ambiguity 

Modelling language was the original driver for the development of MIIND. We have created 
a theory for the neural representation of linguistic trees, which was published as a target 
paper in Brain and Behaviour Science (van der Velde & de Kamps, 2006). We have further 
developed this architecture to account for so-called non-problematic ambiguities.  Some 
sentences, garden-path sentences are clearly ambiguous and pose processing problems. 
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Other sentences are ambiguous, but can be easily processed, e.g. John knows Bill vs. John 
know Bill loves fish.  

 

Figure 22: the neural blackboard architecture models linguistic trees in terms of 
populations. 

Population dynamics plays an important role in ambiguity resolution by means of winner-take-all networks. 

The purpose of the neural blackboard architecture is two-fold: first neural dynamics is 
instrumental in describing the computational processes that are required for language 
processing, but also should lead to a prediction of neural dynamics during sentence 
processing. With this document we submit our contribution to the NIPS workshop on 
Cognitive Computation. 

2.3.1.3.5 Outlook 

During the ramp up phase, our emphasis has been strongly on theory development and 
algorithm implementation. This is what we signed up for. Now that we have a functioning 
simulator, with most aspects necessary for modelling work implemented, we are keen to 
move away from this, and towards applications. We will continue the language modelling 
with the Pallier group (SP3), even if they will not be part of the HBP beyond the ramp up 
phase. Population level modelling is foreseen in co-development project 1 (CPD1), and the 
Juelich group has expressed an interest to adopt this simulation technique.  

It is interesting to note that the Allen Brain Institute is developing a similar approach (Iyer 
et al, 2013): http://alleninstitute.github.io/dipde/DIPDE is similar for leaky-integrate-and-
fire neurons, but does not at present have support for 2D neural models or non-Poisson 
statistics. We have recently invited Nicholas Cain to a workshop in the EITN to discuss 
commonalities and differences, and believe there is no fundamental problem with 
developing two population density simulators. First, as mentioned above, they have a 
different emphasis, second it allows the cross validation of results.  Importantly, also for 
the Allen Brain Institute the motivation for the development is that spiking neuron 
simulations become to unwieldy, and need complementary lightweight techniques. 
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2.3.1.4 Results 

2.3.1.4.1 Conductance-based results 

Here, we show the evolution of density of a population of conductance-based neurons that 

 

Figure 23 the density at three different moment in time (t = 0, 8, 28 ms). 
Green dots are Monte Carlo events. The Monte Carlo events stick tightly to the white area. The heat plot is 
logarithmic so yellow and red areas will unlikely to have any events in them. 

start at equilibrium. We have implemented a threshold at V = -55mV in line with the 
original model by Apfaltrer et al (2006).  The population firing rate can be calculated from 
the fraction of density that is being push over threshold per unit time. The population 
firing rate predictions are also accurate (Fig.24). 

 

Figure 24: Population firing rate as calculated by the 2D method (red line) and inferred 
from Monte Carlo events (blue line) for a total input frequency of 900 spikes/s. 

We conclude that the method is accurate. 

2.3.1.4.2 Results for non-Poisson input spike trains 

We start with a benchmark test that we have used before (originally from Omurtag et al 
(2000). The benchmark is a population receiving a spike train of 800 Hz, with an efficacy h   

3% of threshold value. For different shape factors, the efficacy is chosen such that the 
expectation value of the input is the same as for the Poisson case. 

The results show that the population density predictions and Monte Carlo values 
correspond closely. The transients are clearly larger for larger shape factors. For this 
superthreshold stimulus the steady state firing rate is not dramatically affected. 
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Figure 25: Non-Poisson input spike trains 
Left: transient firing rate as a result of input being switched on at t=0. The results are dependent on shape 
factor, with stronger transients for higher shape values (circles:2, triangles 3). For superthreshold inputs 
the steady state is not affected. Middle: for subthreshold inputs there is a clear dependency of steady 
state results on the shape factor. Right: the effect is pronounced enough to affect the shape of the 
population’s transfer function at low firing rates. 

For subthreshold input, this is different, the steady ate values are dependent on the shape 
factor. This effect is pronounced enough to affect the population’s transfer function at low 
firing rates.  

2.3.1.4.3 Results on scaling 

We demonstrate the scalability of large-scale simulations, due to the MPI backend. MIIND is 
trivially parallel and an MPI implementation is relatively straightforward.  Above, we have 
described how we can create a network of populations group in hexagonal rings. The 
number of population scales quadratically with the number of rings. The simulation time 
scales inversely with the number of cores used in simulation. It is therefore possible to 
determine the scaling theoretically, as well as to simply measure it. The results are shown 
in Fig. 26, and indicate almost perfect inverse linear scaling with number of cores used, 
i.e. a successful parallelization.  The larges network has more than 15000 populations. 
Since each population represents hundreds or even thousands of neurons, truly large 
networks can now be simulated. 

 

Figure 26: Simulation time as function of the number of rings in the network. 
The measured simulation times are dot and lie mostly on the theoretic predictions (solid lines). This 
indicates nearly perfect scaling with the number of processors involved. 
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2.3.1.5 Publications 

• Yi Ming Lai and Marc de Kamps (2016), http://arxiv.org/abs/1601.07126, submitted to 
Phys.  Rev. E 

• Frank van der Velde and Marc de Kamps (2015), Neural Information Processing Systems 
(NIPS) workshop on Cognitive Computation: Integrating neural and symbolic 
approaches, Combinatorial structures and processing in Neural Blackboard 
Architectures, Accepted oral presentation. 

• M. de Kamps (2015), Using your MIIIND (http://miind.sf.net/tutorial.pdf), In 
Preparation for a Neuroinformatics journal. 

• Yi Ming Lai, Elaine Duffin and Marc de Kamps, Population Density Techniques for 
Modeling Neural Populations, ICMNS (2015), Accepted poster.  

2.3.1.6 Provenance 

All data is MIIND generated.  

2.3.2 Task 4.2.1 Derive learning rules from biophysical synapse models  

2.3.2.1 Introduction 

In task 4.2.1, we have worked on four different models corresponding to four different 
algorithms, presented below. The models/algorithms were developed by the labs of 
Wulfram Gerstner (listed under A),  Walter Senn (listed under B and C) and Misha Tsodyks 
(listed under D) 

2.3.3 W. Gerstner (EPFL) 

2.3.3.1 Introduction - A)  

As part of task 4.2.1, EPFL-LCN (the Gerstner lab) developed the  ALGO STDPorchestrated 
which combines Hebbian plasticity with heterosynaptic plasticity and transmitted induced 
plasticity. The main results have been published by Zenke et al. in ‘Nature 
Communications 2015’. Text in quotation marks in this report refers to quotations from 
that paper. 

“The concepts of cell assembly and Hebbian learning have inspired generations of 
experimental and theoretical work. A cell assembly, loosely formulated as a group of 
neurons with strong connections among each other, can be interpreted as a functional 
circuit of brain activity. Cell assemblies may be activated during memory recall, as 
evidenced by delay activity of neurons during working memory tasks or during recognition 
of abstract items. While models of cell assemblies for fixed, preset connectivity can be 
readily constructed, the question of whether Hebbian learning rules can be used to form 
and recall such assemblies in a robust, stable manner is not well understood. 

The reason why models fail to form functional memory assemblies in plastic networks of 
spiking neurons could be linked to either one specific or a combination of several features 
of biological networks, which were not addressed in these models. First, there are many 
different types of neurons in the brain, and experimental forms of plasticity depend on 
both the type of neuron and its connections. Second, plasticity manifests in multiple 
concurrently active forms. This includes, but is not limited to rate-dependent, voltage-
dependent and spike-timing-dependent homosynaptic as well as heterosynaptic plasticity. 
Third, induction of synaptic plasticity needs to be distinguished from processes of synaptic 
consolidation and maintenance. Finally, additional nonstandard forms of plasticity such as 
structural plasticity, short-term plasticity (STP) or homeostatic synaptic changes 
complicate the picture. 
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Here we show that a well-orchestrated combination of a plausible Hebbian plasticity 
model30 together with non-Hebbian forms of plasticity and globally modulated inhibitory 
plasticity leads to the formation of cell assemblies. Importantly, the emergent assemblies 
are stable and do not degrade or inflate during on-going activity and memory recall.” 

2.3.3.2 Model Description A) ALGO STDPorchestrated:  

C++ code based on Auryn simulation library; documentation on  

https://www.fzenke.net/auryn/doku.php?id=examples:orchestrated_plasticity 

“In order to distinguish different forms of plasticity in our model, we use the following 
terms and criteria. First, we call contributions to synaptic plasticity that depend only on 
the state of the postsynaptic neuron, but not on those of the presynaptic neurons, 
‘heterosynaptic’. Manifestations of synaptic plasticity that depend jointly on pre- and post-
synaptic activity are called ‘homosynaptic’. Similarly, changes of the synapse that depend 
only on the transmitter release, but not on the state of the post-synaptic neuron, are 
called ‘transmitter-induced’. By definition, heterosynaptic and transmitter-induced 
plasticity are non-Hebbian, while homosynaptic plasticity can either be Hebbian or anti-
Hebbian. Second, in our terminology we also consider the timescale on which synaptic 
changes manifest themselves.” 

“The stability in our model is a direct consequence of the orchestrated interplay of 
multiple plasticity mechanisms on different timescales. First, on the timescale of several 
hundred milliseconds the nonlinearity of STP creates the possibility for firing rate 
bistability in cell assemblies at intermediate levels of neuronal activity. Second, on the 
timescale of seconds, induction of plasticity is achieved by a combination of triplet STDP 
with heterosynaptic and transmitter-induced plasticity (see Methods). Transmitter-induced 
plasticity of strength δ, in our model, is proportional to the presynaptic activity (pre)j and 
ensures low neuronal baseline firing rates. Similar to earlier models, heterosynaptic 
plasticity of strength β changes all synapses on neuron i whenever the postsynaptic activity 
(post)i reaches a high value. The direction of change depends on the present value wij of 

the synaptic weight in relation to a reference weight consistent with experiments of 
tetanic burst induction. The combination of transmitter-induced, heterosynaptic and 
Hebbian plasticity at the excitatory synapse between neuron j and the postsynaptic neuron 
i induces weight change schematically described by “ the triplet STDP model where “LTP is 
quadratic in the postsynaptic variable and of strength A, whereas LTD is linear in the 
postsynaptic variable and of strength Bi. The fourth power in the description of 
heterosynaptic plasticity implements a threshold on the postsynaptic activity and acts as a 
burst detector.“ 

2.3.3.3 Model Data -A) ALGO STDPorchestrated: 

Task(s)/group(s) responsible for generating algorithms/models/principles. 

EFPL-LCN, Group of Wulfram GERSTNER, responsible Scientist has been Friedemann Zenke, 
now at Stanford University. 

Simulation and model development by EPFL-LCN, Group of Wulfram GERSTNER, responsible 
Scientist has been Friedemann Zenke, now Standford University. 

Data, algorithms, tools and methodologies storage location(s) (and links?) 

Simulation program, publicly available on 

https://github.com/fzenke/pub2015orchestrated 

Published paper publicly available on 

http://www.nature.com/ncomms/2015/150421/ncomms7922/full/ncomms7922.html 

Description of algorithms/models/principles: 
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Format, language if applicable.  

C++ code based on Auryn simulation library; documentation l on 
https://www.fzenke.net/auryn/doku.php?id=examples:orchestrated_plasticity 

Name of DICs/software catalogue/or HBP github project entries. 

DIC entry generated under task 4.2.1 

Description of data: 

Species, sex, age, number of specimen/subjects. 

Does not apply 

Scale (brain, brain region, cells, molecules), features (morphology/physiology/expression, 
etc.), locations, and description of entities, e.g. morphological characterisation of basket 
cells of the hippocampus. 

Brain region with memory function, network of excitatory and inhibitory neurons 

Completeness of data/algorithms/models: 

Comparison of data set/algorithms/models anticipated versus those actually delivered in 
M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models?  

The model meets the anticipated target. 

Current data set/algorithms/models versus a projected full data set/algorithms/models to 
be generated by the research community 

Other aspects of plasticity, other neuron types, more brain areas involved in memory and 
learning should be added in the future 

Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the data/algorithms/models 
gathered by the HBP Task, and/or complement it. 

Online learning and maintenance of memory in the same network model  has been always 
been considered as  a challenging task. The fact that the model resulting from the work 
reported here came out at the level of Nature Communications shows the importance of 
the results. The scientific community remains interested in the problem as signified by an 
slightly earlier publication by the group of Brent Doiron that also appeared in Nature 
Communications. In contrast to their work, the synaptic memories are maintained in the 
model with orchestrated plasticity even in the absence of ongoing activity or prolonged 
and repeated recall of the same memory. 

Outline state of validation work. 

The validation was performed by checking the possibility of stable memory recall in a 
recurrent network with ongoing activity and ongoing synaptic plasticity.  

Data Quality and Value: 

Verification of data quality. 

The main check for verification has been that model input on the level of individual 
synapses leads to collective network states that enable memory formation and memory 
recall via attractor dynamics. 

Your subjective analysis of the value of the data/algorithms for the users. 

The data resulting from simulations of the algorithm is of good quality. 

Data/algorithm/model usage to date: 
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Who has used the data/algorithms/models, for what? Please list a) Ramp-Up data (please 
use DIC name) used for validation or input, and the number and name of the corresponding 
Ramp-Up Phase Task (and subsidiary group), b) Task number and name of the SGA1 Task 
that will use the developed models/approach to generate models, or c) Tasks that will 
build modelling tools that allow usage of the model/approach in SGA2.  

The paper has been cited 4 times according to Google scholar from people outside HBP. 
Inside HBP, the aim is to transfer this algorithm (currently a stand-alone simulator) into 
the simulation platform and integrate it into larger software packages such as NEST. 

Are the data/algorithms/models considered final?   

The data resulting from simulations of the algorithm is of good quality 

Publications connected to the gathered data (please put in parenthesis a short description 
how they are connected, e.g. description of method used generate data, analysis results, 
models built using the data, etc.) 

The paper has appeared as: F. Zenke, J.A. Agnes and W. Gerstner, Diverse synaptic 
plasticity mechanisms orchestrated to form and retrieve memories in spiking neural 
networks. 

Nature Communication 6: 6922 doi:10.1038/ncomms7922 

http://www.nature.com/ncomms/2015/150421/ncomms7922/full/ncomms7922.html 

2.3.3.4 Model Results A) ALGO STDPorchstrated:  

All results are reported here are quotations and images from the paper Zenke et al, cited 
above. This figure shows the layout of the network with an input layer (left) where four 
different pixel images are presented, connected to a network of excitatory and inhibitory 
neurons. Connections between excitatory neurons are plastic with the rule described 
above. 



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 56 / 151 
  

 

“We studied whether the combination of inhibitory plasticity with excitatory 
homosynaptic, heterosynaptic and transmitter-induced plasticity could work in symphony 
to enable stable assembly formation and recall in a spiking recurrent network model. To 
that end we implemented all forms of plasticity described above in the random network of 
excitatory and inhibitory neurons (Fig. above). Each excitatory neuron received recurrent 
input from the network, but also from a small patch of sensory neurons that defines the 
spatial location of its receptive field. All excitatory synapses were initialized with a 
common value such that the recurrent network exhibited asynchronous irregular firing. 
Synapses evolved freely according to the orchestrated plasticity rules described above. The 
network was then stimulated by applying repeatedly and stochastically one of four possible 
full-field input patterns (Fig. above). Stimulus identity, stimulus duration and interstimulus 
interval were randomized, while the stimulus intensity was kept fixed. Plasticity of feed-
forward synapses induced the development of spatially structured feature detectors within 
the receptive fields that caused neurons to respond to specific input patterns.  

Plasticity of recurrent excitatory connections led to the development of strongly 
connected assemblies (Fig. below), reminiscent of recent experimental findings in the 
sensory cortex. In our model, however, recurrent connections grew strong enough that 
assemblies could sustain selective delay activity following a brief stimulation of one of the 
patterns (Fig. below) consistent with signatures of attractor dynamics in experiments. 
Neurons that participated in an assembly exhibited a broad range of firing rates during 
delay activity. Background neurons had a firing rate of around 1 Hz or less and showed a 
large trial-to-trial variability. Some background neurons exhibited weakly inhibited or 
elevated responses to a specific assembly, whereas others did not. A large fraction of 
neurons did not belong to any of the assemblies (that is, never fired at high rate), which 
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suggests that there is a ‘reserve pool’ that could become sensitive to novel patterns not 
included in the stimulation paradigm.” 

This figure below shows the spiking activity (black dots) of neurons in the network (vertical 
axis: neuron number) as a function of time (horizontal axis). Each of the four stimuli (color 
coded) is applied only for a very short time, but delay activity persists. The histograms in 
the lower part of the figure indicate the population activity in each of the four assemblies 
created through orchestrated plasticity (color code). 

 

“To check whether recall is associative, we stimulated the plastic network with partial 
input by occluding up to three quarters of the input field. In most cases, we found 
activation of the appropriate assembly corresponding to the partial information, indicating 
memory recall from partial cues. Despite ongoing plasticity the learned assemblies were 
stable and did not degrade during days of ongoing network activity. Completely novel 
stimuli, unrelated to those previously encountered, or an ambiguous combination of known 
patterns could initiate memory recall of a single memory with overlap with the stimulated 
pattern”. 

2.3.3.5 Provenance 

Not applicable. Data is from other, previously published articles, prior to our outside HBP. 

2.3.4 W. Senn (UBERN) 

2.3.4.1 Introduction B) ALGO STDPpredictive:  

The model documentation and all associated codes are available in pure Python at the 
GitHub repository https://github.com/dspicher/py_stdp. From this documentation: 

“In theoretical abstractions of synaptic plasticity, it has been difficult to reconcile 
approaches that strive for biological plausibility with models mathematically developed 
within an error-minimization framework. Specifically for spike-timing-dependent plasticity, 
provably optimal models have mostly relied on the point neuron assumption, whereas it 
has been difficult to establish the computational relevance of detailed biophysical models. 
Based on a model published before the HBP funding period [1], we propose the ALGO 
STDPpredictive which sits at the intersection of these two approaches. The key idea is that 
synaptic plasticity is driven by a prediction error where the dendritic voltage serves as a 
prediction of somatic spiking in a compartmental neuron model. Taking this perspective, a 
single learning rule derived from first principles has been shown to subserve diverse 
learning paradigms depending on the structure of synaptic input, thus providing an 
intriguing proposal of how computation might be implemented on the single-cell level in 
neocortex. 

In a two-compartment formalism with somatic voltage ! and dendritic voltage !, synaptic 
weights are updated according to 

    !"(!) ∼ (!(!) − !(!∗))!"!∗(!)  
where !(!∗) is the dendritic prediction of somatic spiking based on a low-pass filtered 
version !∗ of the dendritic potential. Spikes at the soma follow an inhomogenuous Poisson 
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process based on the firing rate !(!)  with some voltage-to-rate transfer function ! ) 
leading to a spike train !(!) . Finally, learning is modulated by presynaptic activity 
according to a filtered version of the EPSP !"!∗(!). 
This learning rule has a self-correcting component in the sense that large weights will lead 
to large dendritc predictions resulting in depression on average, whereas small weights will 
be more likely to be potentiated. Thus, there is no need for special homeostatic terms on 
the short time scale to prevent unbounded weight growth as is a common problem in 
standard Hebbian learning schemes, although a slow homeostatic process that moves the 
strength of the somatic synapses into a working regime is still required.” 

2.3.4.2 Model Data  B) ALGO STDPpredictive: 

 The code is available in pure Python from the GitHub repository 
https://github.com/dspicher/py_stdp. Note though that due to conceptual reasons, no 
NEST implementation currently exists (NEST so far does not allow to differentiate between 
somatic and dendritic potentials – this will only be addressed in SGA1, in particular in 
CDP5). 

Task(s)/group(s) responsible for generating algorithms/models/principles. 

UNIBE, Group of Walter SENN, responsible Scientist is Dominik Spicher (2nd year PhD 
student).  

Data, algorithms, tools and methodologies storage location(s) (and links?) 

Simulation program, publicly available on the repository 

https://github.com/dspicher/py_stdp. 

Description of algorithms/models/principles: 

Format, language if applicable.  

Currently in Python, but it is currently rewritten in the meta-language Brian to be made 
accessible to other scientists. 

Name of DICs/software catalogue/or HBP github project entries. 

DIC entry generated under task 4.2.1 

Description of data: 

Species, sex, age, number of specimen/subjects. 

Does not apply 

Scale (brain, brain region, cells, molecules), features (morphology/physiology/expression, 
etc.), locations, and description of entities, e.g. morphological characterisation of basket 
cells of the hippocampus. 

Single cell with simplest dendritic morphology (two-compartment) 

Completeness of data/algorithms/models: 

Comparison of data set/algorithms/models anticipated versus those actually delivered in 
M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models?  

The model is under development and evolves with the PhD project. On good track. 

Current data set/algorithms/models versus a projected full data set/algorithms/models to 
be generated by the research community 

The model should be extended to a more complex morphology (will be addressed in CDP5) 
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Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the data/algorithms/models 
gathered by the HBP Task, and/or complement it. 

So far, optimal plasticity algorithms were tailored either to the supervised and 
reinforcement or to the unsupervised learning scenario. ALGO STDPpredictive, instead, 
represents a learning rule that can be used in all three learning scenarios. It is also a first 
algorithm that makes essential use of the intrinsic structure of a neuron.  

Outline state of validation work. 

The validation will be performed in the next period by applying the rule to specific 
learning tasks.  

Data Quality and Value: 

Verification of data quality. 

As an intrinsic feature of an error-correcting rule, noisy perturbations are corrected out, 
making the algorithm very noise robust.    

Your subjective analysis of the value of the data/algorithms for the users. 

The algorithm is currently being implemented in VLSI. 

Data/algorithm/model usage to date: 

Who has used the data/algorithms/models, for what? Please list a) Ramp-Up data (please 
use DIC name) used for validation or input, and the number and name of the corresponding 
Ramp-Up Phase Task (and subsidiary group), b) Task number and name of the SGA1 Task 
that will use the developed models/approach to generate models, or c) Tasks that will 
build modelling tools that allow usage of the model/approach in SGA2.  

This algorithm is one of the reasons to extend NEST during SGA1 such that NEST can also 
deal with dendritic structures. 

Are the data/algorithms/models considered final?   

Publications connected to the gathered data (please put in parenthesis a short description 
how they are connected, e.g. description of method used generate data, analysis results, 
models built using the data, etc.) 

The publication is still ahead (planned for the 3rd PhD year). 

2.3.4.3 Model Results 

Model Results - B) ALGO STDPpredictive: Only preliminary results are available that 
reproduce important experimental features of STDP such that the “switch” of LTP to LTD 

when the synaptic location moves distally (see Figure, data from Sjöström&Häusser, 2006). 
In the model, the change from LTP to LTD with increasing distance of synaptic location 

from the soma is caused by failures in the AP backpropagation. 
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2.3.4.4 Provenance 

Not applicable. Data is from other, previously published articles, prior to our outside HBP. 

2.3.4.5 Introduction C)  

In a third part the Senn lab developed the ALGO STDPbackprop which generalizes the 
optimal spike-dependent plasticity rule introduced by Pfister et al. 2006 to include 
dendritic NMDA-spikes. As other optimal rules it is derived as a gradient of a loss function. 
These can serve as a functional standard for a neuromorphic hardware implementation,  
and they may also guide the search for new biological forms of synaptic plasticity. This 
work was partly supported by the HBP, and the main research is Dr. Mathieu Schiess, 
former member of the Senn lab. The paper was published in PLoS Comp Biol (2016). The 
text in quotation marks refers to this paper. 

“Error-backpropagation is a successful algorithm for supervised learning in neural net- 
works. Whether and how this technical algorithm is implemented in cortical structures, 
however, remains elusive. Here we show that this algorithm may be implemented within a 
single neuron equipped with nonlinear dendritic processing. An error expressed as 
mismatch between somatic firing and membrane potential may be backpropagated to the 
active dendritic branches where it modulates synaptic plasticity. This changes the classical 
view that learning in the brain is realized by rewiring simple processing units as formalized 
by the neural network theory. Instead, these processing units can themselves learn to 
implement much more complex input-output functions as previously thought. While the 
original algorithm only considered firing rates, the biological implementation enables 
learning for both a firing rate and a spike-timing code. Moreover, when modulated by a 
reward signal, the synaptic plasticity rule maximizes the expected reward in a 
reinforcement learning framework.” 

2.3.4.6 Model description C) 

ALGO STDPbackprop: The model generalizes the ALGO STDPpredictive to a neuron that is 
composed of a somatic compartment and many dendritic compartments that in parallel 
feed into to soma. As before a dendritic branch with local voltage Vw predicts the somatic 
firing rate as !(aVw), where ! is the instantaneous rate function and a the dendritic 
attenuation factor. The dendritic weights (wi) are adapted such that !(aVw) is equal to the 
averaged somatic spike train S(t) at each point in time. But different from ALGO 
STDPpredict, the learning rule is now modulated by a putative NMDA-spike in that branch 
and by the instantaneous rate of NMDA-spike triggering, !(Vw). Overall, the rule becomes  

 

where PSPi is the postsynaptic potential of synapse i on the specific branch. Basically, the 
rule stretches the window of long-term potentiation if between the occurrence of a 
presynaptic and a subsequent postsynaptic spike (arriving at tpre and tpost, respectively) 
when in between a NMDA-spike is triggered (at td, see Figure).  

�wi = ⌘
⇣
Si � �(↵Vw)

⌘⇣
NMDA+ �(Vw)

⌘
PSPi
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2.3.4.7 Model data C) ALGO STDPbackprop:  

The code needs yet to be made available at GitHub. So far only Mathematica code is 
available. Because the algorithm at that stage represents a hypothetical rule for which no 
appropriate data is available, we do not (yet) plan a  transcription into another language.   

Task(s)/group(s) responsible for generating algorithms/models/principles. 

UNIBE, Group of Walter SENN, responsible scientist is Mathieu Schiess (former PhD student, 
now private industry).  

Data, algorithms, tools and methodologies storage location(s) (and links?) 

-       https://github.com/mschiess/PLOS2016 

Scale (brain, brain region, cells, molecules), features (morphology/physiology/expression, 
etc.), locations, and description of entities, e.g. morphological characterisation of basket 
cells of the hippocampus. 

Single cell with many parallel dendritic branches. Dendritic spikes are modeled as 50ms 
long depolarizations that are triggered by a voltage-dependen escape rate. It is shown that 
this model is realistic in the case of balanced excitatory and inhibitory input. 

Completeness of data/algorithms/models: 

Comparison of data set/algorithms/models anticipated versus those actually delivered in 
M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models?  

The plasticity model has been shown to succeed in difficult learning tasks with delayed 
reward and linearly non-separable patterns.  

Current data set/algorithms/models versus a projected full data set/algorithms/models to 
be generated by the research community 

The algorithm yet waits on experimental validation or rejection (not planned within HBP). 

Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the data/algorithms/models 
gathered by the HBP Task, and/or complement it. 
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Various attempts exist to implement error-backpropagation in single neurons exist, but the 
current algorithm represents a mathematically rigorous way to formulate error-
backpropagation in terms of a spike code.   

Outline state of validation work. 

The many simulations performed in the paper (Schiess et al., PLoS Comp. Biol. 2016) can 
be seen as a validation of theoretically deduced algorithm. 

2.3.4.8 Model results  C) ALGO STDPbackprop:  

As an example of how the error-backprop algorithm for spikes works in dendritic structure 
we show the result of a simple learning task. A spatio-temporal presynaptic spike pattern 
that mimics the movement of a stimulus across the receptive field is repeatedly presented 
to the neuron. Before learning the stimulus does not evoke somatic spikes. But if during 
learning such spikes are imposed, the neuron learns to generate NMDA spikes (red) in a few 
dendritic branches that together depolarize the soma (with somatic voltage us) and 
generate a burst of action potentials. The neuron is shown to learn linearly non-separable 
tasks like the XOR-problem (Schiess et al. 2016).  

 
2.3.4.9 Provenance 

Not applicable. Data is from other, previously published articles, prior to our outside HBP. 

2.3.5 M. Tsodyks (WIS) 

2.3.5.1 Introduction D) ALGO LT-memory 

The human long-term memory capacity for names, facts, episodes and other aspects of our 
lives is practically unlimited. Yet recalling this information is often challenging, especially 
when no precise cues are available. A striking example of this deficiency is provided by 
classical studies of free recall paradigm, where participants are asked to remember lists of 
unrelated words after a quick exposure. Even for short lists of 5-10 words most of 
participants are unable to reproduce them without omissions. These surprising results are 
still not accounted for in the framework of neural network modeling of memory.  Many 
influential models of recall were developed in cognitive psychology. According to the 
'search of associative memory' (SAM) model, items presented for recall acquire a set of 
mutual associations when stored temporarily in working memory buffers. These acquired 
associations are then used to retrieve words from memory. SAM can be fit to reproduce 
recall data with great precision, but since it has many parameters it cannot provide the 
first-principle explanation for very limited recall capacity observed in experiments. A 
recent model of (Romani et al 2013, Katkov et al 2015) introduced the notion that long-
term associations between items determined by overlaps between their neuronal 
representations in memory networks, rather than short-term associations acquired during 
the experiment, are primarily responsible for recall process. With a simple 
phenomenological implementation of recall, this assumption results in a generic limit for 
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the recall capacity compatible with the data (Romani et al, 2013). Moreover, the neuronal 
representations determine the recall probability of different items ('easy' vs 'difficult' 
words) and the order of their recall. In the current contribution, we develop a more 
realistic neural network model where recall is mediated by the sequential reactivation of 
neuronal ensembles encoding different items in memory. As suggested in (Romani et al, 
2013) the transitions between the memories is driven by periodic modulation of the 
feedback inhibition that pushes the network to oscillate between the attractor memory 
states and intersection between these states. We identify different phases of the model 
with mean-field analysis of the network dynamics and perform extensive numerical 
simulations to characterise the recall behavior or the model. 

2.3.5.2 Model description 

We consider a Hopfield neural network of   rate-neurons. The dynamics of the network is 
defined by the equation for the synaptic currents: 

   1
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where ( )ic t  is the synaptic current of neuron i at time t, ir   the firing rate, iξ   is a white 

Gaussian noise. The gain function is: 
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where 1γ <    resulting in the sublinear growth of gain function with increasing inputs. 

The matrix of recurrent connections ijJ   is determined by the set of P  random memory 

patterns. Each memory is a binary vectors of  N  bits: 

  100011101001..1{ 001}µη =   

where each neuron belongs to a given memory with probability f  , representing the 
sparseness of the memory representation. 

These memories are stored in the network as attractors through the Hebbian learning rule 
for recurrent connections (Tsodyks & Feigelman, 1988) 
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where 1J   and  0J  are two parameters that respectively define the strength of excitation 

and inhibition in the network. Their ratio is defined as 0 1/J Jφ = . When simulating the 

network, all parameters are held constant except for the relative strength of inhibition, φ     
(see below). 

We say that a particular memory item is 'recalled' when the corresponding memory pattern 
is active. To quantify the degree of memory activations we introduce the 'overlaps' defined 
as  
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While 0( )m t  measures the average firing rate in the network at time t , each mµ    
measures the difference between the average firing rate of neurons encoding memory µ   
and all other neurons. 

Simulation technique. 

To study the influence of finite size effects and noise on the dynamics of the network we 
simulate the dynamic of a network of  510N =  neurons. To achieve this goal we simplify 
the dynamic equations above. This is dimensionality reductionג�� of the network that 
reduces the number of simulated units. All the neurons that are in the same population vr      
such that  i vη =

r r
 can be described by a single unit. For these neurons the afferent 

connections given by the matrix J are identical. Each neuron receives the same input and 
projects equally on other neurons. It is not possible to differentiate their activity except 
for the effect of the noise term. But in the above dynamical equations we can average 
terms which share the same connections averaging also their noise. For a given realization 
of the network we can write the fraction of neurons in a given population vr  as vSr . 

Defining ( )vc tr , the averaging synaptic current for a neuron in population vr  at time t, it is 

then possible to write an equation for the dynamics of ( )vc tr : 

( ) ( ) ( ( )) ( )v v vw w w vc t c t J S g c t t
ω

ξ= − + +∑r r rr r r r
r

&    

These equations is a reduction of the original dynamical system, it has 2P  equations 
instead of the N. In this reduction the only piece of information which is not accessible is 
the precise value of the firing rate of each single neuron. Only the average firing rate of 
the population it belongs to is now accessible. 

Although in principle the system has 2Pequations, in practice, due to the finite size of the 
network and its sparse connectivity, there are much less populations since 0vS =r  for most 

vr . In this framework, for 16P =  we are able to simulate easily a large network of 510N =
neurons. 
2.3.5.3 Model data D) ALGO LT-memory 
• Task(s)/group(s) responsible for generating algorithms/models/principles. 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

• Description of algorithms/models/principles: 

− Format, language if applicable. 

− Name of DICs/software catalogue/or HBP github project entries. 

• Description of data: 

− Species, sex, age, number of specimen/subjects. 

− Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of entities, 
e.g. morphological characterisation of basket cells of the hippocampus. 
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• Completeness of data/algorithms/models: 

− Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models?  

The model broadly fits the expectations.  

− Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community 

− Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

• Outline state of validation work. 

• Data Quality and Value: 

− Verification of data quality. 

− Your subjective analysis of the value of the data/algorithms for the users. 

• Data/algorithm/model usage to date: 

− Who has used the data/algorithms/models, for what? Please list a) Ramp-Up data 
(please use DIC name) used for validation or input, and the number and name of 
the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task number and 
name of the SGA1 Task that will use the developed models/approach to generate 
models, or c) Tasks that will build modelling tools that allow usage of the 
model/approach in SGA2. 

• Are the data/algorithms/models considered final? 

No. We are currently working on extending the model to account for recent observations 
on free recall data, in particular the spontaneous emergence of chunking.  

• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) 

Recanatesi S, Romani S, Katkov M and Tsodyks M. ‘Neural network model of memory 
retrieval’. Front. Comput. Neurosci., 17 December 2015  
http://dx.doi.org/10.3389/fncom.2015.00149 

2.3.5.4 Model results D) ALGO LT-memory 
Time course of retrieval. 

The example network activity generated by the model is presented in Fig. 27, showing the 
characteristic transitions between different memory attractors caused by oscillating 
inhibition. Since the recall of subsequent memories is a stochastic process triggered by 
noise in the input, we perform multiple simulations to characterize the average 
accumulation of recalled memories with time (see figure 28 below). We observe that after 
a quick initial accumulation of retrieved memories, the retrieval process slows down 
sharply, however the number of memories recalled continues to increase. This behavior is 
compatible with experimental observations and with results obtained by stochastic 
implementation of the free recall model presented in (Katkov et al, 2014). The time 
between the recall of subsequent items (inter-retrieval time, IRT) is highly variable as 
shown in the figure. Even after very long time-intervals it is possible to retrieve new items, 
in line with the experimental findings.  
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Figure 27. Neural network activity. 

(A) Activity of the attractors in the network. Different rows correspond to the average firing rate of 
different memories for 15 cycles of oscillation of φ. (B) Activity of the attractors in the network. Each 
colored line corresponds to the average firing rate of a different memory. (C) Details of the neuronal 
dynamics. 

 

 

Figure 28. Temporal properties of recall. 
(A)Average number of words recalled vs. time. (B)Distribution of the IRTs.  

2.3.5.5 Provenance 

Not applicable.  

2.4 Task 4.2.2 Unsupervised learning rules and emergent 
connectivity  

2.4.1 W. Gerstner (EPFL) 

2.4.1.1 Introduction 

All quoted text and the figures reported here are excerpts from a draft article by Moritz 
Deger & Wulfram Gerstner, which will be submitted for publication soon.  

“Excitatory synaptic inputs on pyramidal cells of the mammalian neocortex are almost 
exclusively made on postsynaptic dendritic spines. Dendritic spines are small protrusions of 
the dendrite that vary in size and shape, and are subject to ongoing plasticity in the 
developing as well as in the adult brain [Yasumatsu2008, Holtmaat2009]. “ 

“Previous combined electrophysiological and anatomical studies in the somatosensory 
barrel cortex of the mouse have established that neocortical synapses between pyramidal 
neurons are sparse, but in case a synaptic connection exists between two neurons, it is 
typically made of several synaptic contacts [Feldmeyer1999, Fares2009] -- which means 
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that postsynaptically the connection involves several dendritic spines. The number of 
potential synaptic contacts between neuron pairs, estimated from reconstructed neuronal 
morphologies, is typically greater than the number of actual contacts (see Fig. 1D) 
[Fares2009]. Most importantly, the distribution of actual contact numbers cannot arise 
from independent synapse formation [Fares2009] but instead requires a mechanism of 
cooperation between synaptic contacts onto the same neuron. “ 

“We hypothesize that cooperative synaptic contact formation can be explained by spike-
timing dependent plasticity models. Synaptic contacts connecting a neuron A to another 
neuron B share the same pre- and postsynaptic neuronal activity: presynaptic spikes cause 
Glutamate release and eventually leave a biochemical trace at each postsynaptic density, 
while information about postsynaptic spikes reaches the dendritic spines by means of 
backpropagating action potentials. Now if the plasticity rule that governs synaptic contact 
dynamics is sensitive to spike-timing correlations, the contacts indirectly influence each 
other because changes in the postsynaptic firing influence all synaptic contacts onto that 
cell. Previous modeling studies [see Deger2012 and references therein], however, have 
considered structural plasticity as being distinct from synaptic plasticity, by virtue of an 
assumed separation of time scales.”  

“Thus STDP-based models of synaptic plasticity have not yet been linked quantitatively to 
data of dendritic spine plasticity and turnover [Yasumatsu2008, Holtmaat2009], and the 
statistics of synaptic contact numbers [Feldmeyer1999, Fares2009]. Here we present a 
quantitative model that links continuous synaptic plasticity of dendritic spine volume to 
discrete structural plasticity of synaptic contact formation and removal.” 

see references 

2.4.1.2 Model Description for Algo STDP-structural 

All quoted text and the figures reported here are excerpts from a draft article by Moritz 
Deger & Wulfram Gerstner, which will be submitted for publication soon.  

 “Synaptic contacts in our model follow a variant of spike-timing dependent plasticity 
(STDP), see also Fig. 29. Each contact is described by its efficacy (weight) w_"jk"  (t) , 
which is the amplitude of the excitatory postsynaptic effect that the contact k evokes 
upon transmission of an action potential of the presynaptic neuron j . Each presynaptic 
neuron j may be connected to the postsynaptic neuron by several synaptic contacts, up to 
a maximum of n_j , 1≤k≤n_j , cf. Fig. 1A. The number n_j of potential contacts of a 
connection is random, with a probability distribution (Fig. 29D, blue line) estimated by 
[Fares2009] for synapses connecting Layer 4 pyramidal neurons within a maximum distance 
of "\5\0\µm"  in the barrel cortex of the rat. For computational reasons we limited n to a 
maximum of "\1\0"  and renormalized the distribution P(n). Accordingly each possible value 
of n should appear (in expectation) P(n)ŊN times, where N is the number of presynaptic 
neurons. Therefore we randomly assigned groups of P(n)ŊN presynaptic neurons to each 
potential contact number n in order to exactly reproduce P(n), the reported distribution of 
contact numbers per connection.”  

“Synaptic contacts with a (unit-less) weight !jk(!)>0 (active contacts) evolve according to 
a local STDP rule  

  

with the parameters !2,corr=10!!!  , !4,corr=0.02453 ⋅ 10!!!!  , !4,post=0.01630 ⋅ 10!!!!  and 
α=1.27142 ⋅ 10!!!!! . The terms in (1) are illustrated in Fig. 29C. As soon as a contact has 
weight !jk(!) ≤ 0  , however, its weight is set to 0  and the dynamics cease (potential 

)((t),αw(t)Ra(t)Ca(t)Ca(t)w
dt
d

jkpostpostpostjk,corrpostjk,corr
jk

14
4,

2
4,2, −−−=



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 68 / 151 
  

contacts, see also Fig. 29B). However, with a rate of !!=2.8%∕day , each potential contact 
(!jk=0) may be randomly transformed into an active contact again. In such an event, 
called creation, its weight !jk is set to a low, non-zero value !! , and its dynamics again 
follow (1) (see Fig. 29B).” 

“The term !jk,post  is a slow filtering trace of the correlations of pre- and postsynaptic 
spiking activity, and !post of the postsynaptic activity. These traces are defined by the 
differential equations  

!slow
!
dt!jk,post(!) = −!jk,post(!)+rjk(!) ⋅ !post(!) (2)

!slow
!
dt!post(!) = −!post(!)+Spost(!) (3)

 

with a time-constant of !slow=2min . The terms !jk(!) and !post(!) are filtered traces of the 
pre- and postsynaptic activities !jk(!) and !post(!) , defined by the differential equations  

! !dt !jk(!) = −!jk(!)+Sjk(!), (4)

! !dt !post(!) = −!post(!)+Spost(!), (5)
 

with a time constant τ=20ms, as is typical for an excitatory postsynaptic potential (EPSP) 
or an STDP window function. This leads to a symmetric STDP window, but the formalism 
can be extended to a more standard STDP with long-term potentiation and depression by 
using more traces with different time constants.” 

“Finally, the term  

 

is the spike train of the presynaptic neuron ! (with spike times !pre ) as it is received at the 
postsynaptic density of the contact ! . Some spikes are not transmitted at each contact 
due to transmission failures. Specifically, the spike train !jk=S! ⋅ !jk  differs from the 
presynaptic spike train !!(!) = ! (! − !pre)  through the (Bernoulli) random variables 
!jk(!pre) ∈ 0,1  that describe stochastic failures of synaptic transmission. Such synaptic 
failures occur randomly and independently with a probability of !!=20% , so !jk(!pre) is 1 
(successful transmission) with probability 1 − !!. “ 

“To enable us to perform mathematical analysis of the model’s dynamics, we assume a 
minimal model of the postsynaptic neuron. In the absence of synaptic input from the 
presynaptic neurons, the postsynaptic neuron fires with a baseline firing rate !!=1∕s (as a 
Poisson process). We further assume that synaptic inputs cause transient increases of the 
firing rate on the typical time-scale ! of an EPSP. We thus model the dynamics of the 
postsynaptic neuron’s firing rate !(!) as  

 

here the second term sums all inputs across all !! synaptic contacts over all ! presynaptic 
neurons. We further assume that all presynaptic spike trains are independent Poisson 
processes with a constant firing rate of !pre=5∕s. “ 

“We performed direct simulations of the system by analytical integration of (1) between 
any successive pre- and postsynaptic spikes. The synapse model was implemented in NEST, 
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and this modified version of NEST was used to perform the simulations. The NEST neuron 
model that we used in this simulation is called  “pp_psc_delta”, which implements (7). The 
complete system state (!jk , !jk , !post !jk,post , !post , ! ) was recorded in intervals of 5min.” 

2.4.1.3 Model Data for Algo STDP-structural 

T4.2.2 “Unsupervised learning rules and emergent connectivity” 

Task(s)/group(s) responsible for generating algorithms/models/principles. 

4.2.2 / EPFL-LCN / Moritz Deger & Wulfram Gerstner 

Data, algorithms, tools and methodologies storage location(s) (and links?) 

Model will be published as part of NEST, https://github.com/nest/nest-simulator. 

Description of algorithms/models/principles: 

Format, language if applicable. 

C++ code based on NEST simulation library 

Name of DICs/software catalogue/or HBP github project entries. 

DIC entry ‘ALGO STDP-structural’ generated under task 4.2.2 

Description of data: 

Species, sex, age, number of specimen/subjects. 

Mostly more or less adult (around P16) rats. For details please refer to the cited 
publications from which the data has been obtained.  

Scale (brain, brain region, cells, molecules), features (morphology/physiology/expression, 
etc.), locations, and description of entities, e.g. morphological characterisation of basket 
cells of the hippocampus. 

Light (confocal and two- photon) and electron microscopy of dendritic spines  in 
somatosensory cortex of the rat. 

Completeness of data/algorithms/models: 

Comparison of data set/algorithms/models anticipated versus those actually delivered in 
M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models?  

The final publication of the model will include more analysis and discussion of plasticity 
dynamics than presented here, both for feed-forward and recurrent networks. 

Current data set/algorithms/models versus a projected full data set/algorithms/models to 
be generated by the research community 

Our plasticity model is well suited to be integrated in all kinds of network simulations of 
cortical circuits. For instance it will be interesting to study what it does in the BBP circuit 
simulations. 

Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the data/algorithms/models 
gathered by the HBP Task, and/or complement it. 

The model by Fauth, Wörgötter & Tetzlaff (PloS Comp Biol, 2015a,b) concerns an isolated 
synaptic connection between a single pair of neurons only. In networks, as we study here, 
there is cooperation and competition of synaptic contacts, which may lead to the 
formation and maintenance of structure in the network. Zheng, Dimitrakakis & Triesch 
(PloS Comp Biol, 2013) also model structural plasticity, but in an abstract network model 
of binary neurons with biologically implausible time scales. 
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Outline state of validation work. 

The statistics and dynamics of the model system are consistent with experimental 
observations of dendritic spine turnover and synaptic contact numbers. 

Data Quality and Value: 

Verification of data quality. 

Your subjective analysis of the value of the data/algorithms for the users. 

At this stage, the model represents a hypothesis how synaptic contact plasticity could take 
place, but other explanations are possible as well. Targeted experiments could help to 
increase confidence in this model, but these are out of scope of the present project. 

Data/algorithm/model usage to date: 

Who has used the data/algorithms/models, for what? Please list a) Ramp-Up data (please 
use DIC name) used for validation or input, and the number and name of the corresponding 
Ramp-Up Phase Task (and subsidiary group), b) Task number and name of the SGA1 Task 
that will use the developed models/approach to generate models, or c) Tasks that will 
build modelling tools that allow usage of the model/approach in SGA2. 

Just EPFL-LCN has access to the model at the moment. Through integration in NEST, which 
is planned at the time of acceptance of the paper, the model will eventually become 
available to all users of the simulation platform of the HBP. 

Are the data/algorithms/models considered final? 

The model is final as far as the authors are concerned. The review process for publication 
may bring up additional concerns of the referees, but none are expected at this stage. 

Publications connected to the gathered data (please put in parenthesis a short description 
how they are connected, e.g. description of method used generate data, analysis results, 
models built using the data, etc.) 

Publication in preparation (Network simulations with structural plasticity are performed 
using NEST. The state of the plastic synapses is saved every 5 minutes. Analysis of the 
synapse states is performed on this dataset. The results are compared to experimental 
data on ongoing plasticity in adult rats. Simulations of the plasticity model with some 
manipulations of the parameters are also performed, to highlight the importance of certain 
components of the model). 

2.4.1.4 Model Results 

All quoted text and the figures reported here are excerpts from a draft article by Moritz 
Deger & Wulfram Gerstner, which will be submitted for publication soon.  

“We have built a model of the collective plasticity of the synapses from  
presynaptic neurons onto a single postsynaptic neuron (Fig. 29A). The model (1) is a local, 
spike-timing dependent plasticity rule that we imagine to be realized by the biophysics of 
dendritic spines. The plasticity rule Eq. (1) maintains a certain level of spike timing 
correlations, as well as of postsynaptic firing rate.”  
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Figure 29: Model overview 

A: Postsynaptic neuron (post) receiving multiple synaptic connections from several excitatory neurons 
(pre). Each connection consists of multiple synaptic contacts. The synaptic efficacy (weight) of contact ! 
in connection ! is denoted as !jk . The total weight of this synapse is !! , which is the sum of all its contact 
weights !jk  . B: Individual contact weights !jk  take continuous, positive values, and change in time 
according to spike-timing dependent plasticity. A small weight !jk corresponds to a dendritic spine with a 
small volume, or a thin spine, and a large weight !jk corresponds to a large, or mushroom-shaped dendritic 
spine. If !jk is greater than ! we call the contact an actual contact. In contrast, if at any time !jk hits ! , 
the contact is pruned, its weight is kept fixed at !jk=0 , and its dynamics cease. Contacts with !jk=0 are 
called potential (but inactive) contacts. They may occasionally form an actual contact (by being set to a 
positive !jk ) at random times, with a rate !! . C: Components of the plasticity model (top to bottom): 
presynaptic spike train !! ; transmitted spike train !jk at the contact (random synaptic failures occur), and 
its filtered trace !jk  ; postsynaptic spike train !post  and its filtered trace !post  ; product term !jk ⋅ !post 
composed of pre- and postsynaptic traces; slow low-pass filtered trace !jk,post of the pre- post product term 
!jk ⋅ !post . D: Reference distribution of the number of actual (red) [Feldmeyer1999] and potential (blue) 
synaptic contacts of pairs of neurons in the adult somatosensory cortex  [Fares2009] (recurrent synapses 
of layer 4 pyramidal neurons), truncated to ! ≤ 10  and renormalized. The steady state distribution 
generated by the model is shown in green (data pooled over 100 days of simulation).  

 “As a result of on-going STDP, synaptic weights move up and down. As soon as a contact 
weight !jk(!) hits zero, we fix it at zero and its dynamics cease. This contact is now called 
a potential, but inactive contact. However, with a rate of !!=0.028∕day, each potential 
contact (!jk=0 ) may be randomly transformed into an active contact again. In such an 
event, called creation, its weight !jk is set to a low, non-zero value !! , and its dynamics 
again follow (1) (see Fig. 29B).”  



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 72 / 151 
  

  

 

Figure 30: Dynamics of synaptic contacts in the steady state. 

A: Example synaptic connection number j=82 , different colors correspond to contact weights !jk over 
time. New contacts (filled circles) are created with a weight given by the lower dashed line, but may 
evolve until the next recorded time step when they are first observed. Long-term stable contacts fluctuate 
close to the upper dashed line, which is the fixed point of ! predicted by the theory (see Online Methods). 
B: Zoom into A at the time of creation and pruning of a persistent and of a transient synaptic contact. C: 
Relative changes of synaptic contact efficacy Δwjk in one day, each dot corresponds to the change of one 
contact in one day, data pooled over all contacts and 100 days of simulation. 

“Following an initial transient at the beginning of the simulation, the synaptic contacts 
fluctuate around a steady state. Sample trajectories of all contacts from a single 
presynaptic neuron to the postsynaptic cell are shown in Fig. 30A-B. Several contacts 
remain over the course of 100 days of simulation, occasionally new contacts are formed, 
which mature or are quickly removed (see Fig. 30B). Within one day, the relative change of 
the contact weight ranges up to 500%  (see Fig. 2C) but fluctuations decrease with 
increasing contact weight. This is consistent with long-term time-lapse imaging data of 
spine volume in vitro [Yasumatsu2008].” 

“The firing rate of the postsynaptic neuron, as well as the total synaptic weight and the 
average number of contacts are tightly controlled by the plasticity rule (1) (data not 
shown). The resulting distribution of synaptic contact numbers per connection (Fig. 29D) is 
bimodal, as found experimentally [Feldmeyer1999]. The turnover ratio of synaptic contacts 
in the model is 0.15 ± 0.02∕day (mean ± SEM), which is consistent with the values found 
experimentally in somatosensory cortex [Holtmaat2009a]. “ 

2.4.1.5 Provenance 

Not applicable. Data is from other, previously published articles, prior to our outside HBP. 

2.5 Task 4.2.3 Structures of Spiking Learning Algorithms  

2.5.1 A. Gruning (SURREY) 

2.5.1.1 Introduction 

Note All quoted text and the figures reported here are excerpts from [@gardner:neco:14] 
(as [1]) and from submitted print [@gardner:arxiv:16] (as [2]). 

This task concentrated on the lack of efficient supervised learning algorithms for spiking 
neural network balancing biologically plausible plasticity mechanism as research in WP4.1 
and WP4.2 and technical applicaplitiy as required for the neuromorphic and 
neuronformatic platforms SP6 and SP9. In particular this task has addressed the questions 
of general-purpose learning algorithms in [1], and that of the relation between different 
similar learning algorithms and their theoretical embedding in [2]. 

In particular, the research conducted on novel learning algorithms includes the following: 
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"Information encoding in the nervous system is supported through the precise spike timings 
of neurons; however, an understanding of the underlying processes by which such 
representations are formed in the first place remains an open question. Here we examine 
how multilayered networks of spiking neurons can learn to encode for input patterns using 
a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, 
MultilayerSpiker, that can train spiking networks containing hidden layer neurons to 
perform transformations between spatiotemporal input and output spike patterns. The 
performance of the proposed learning rule is demonstrated in terms of the number of 
pattern mappings it can learn, the complexity of network structures it can be used on, and 
its classification accuracy when using multispike-based encodings. In particular, the 
learning rule displays robustness against input noise and can generalize well on an example 
data set. Our approach contributes to both a systematic understanding of how 
computations might take place in the nervous system and a learning rule that displays 
strong technical capability." [from 1] 

"In summary, we find the learning rule can encode for a large of number of input spike 
patterns, being a substantial improvement over existing learning rules in this respect, and 
it provides increased accuracy when classifying inputs by the timings of multiple rather 
than single output spikes. Furthermore, we also explore the performance of the learning 
rule as applied to networks containing large numbers of output layer neurons, representing 
a unique contribution in the area of spike-based learning rules for multilayer networks." 
[from 1] 

2.5.1.2 Model Description MultilayerSpiker 

"[W]e propose a new supervised learning rule for multilayer spiking neural networks, 
termed MultilayerSpiker. Our rule extends the single-layer learning rule of Pfister, 
Toyoizumi, Barber, and Gerstner (2006) to multiple layers by combining a maximum 
likelihood approach with error backpropagation. We demonstrate the efficacy of the 
proposed learning rule on several spike pattern transformation tasks: in terms of the 
accuracy of input pattern classifications based on multispike codes and the time taken to 
converge in learning." [from 1] 

"[We] propose a supervised learning rule, termed MultilayerSpiker, for training multilayer 
spiking neural networks to perform transformations between spatiotemporal input-output 
spike patterns. In the rule’s formulation, we first consider a suitable likelihood function for 
generating desired output spike patterns, on which stochastic gradient ascent can be 
taken. The technique of backpropagation, as is traditionally used for rate-coded networks, 
is subsequently applied in finding hidden layer weight updates. In this way, our technique 
can be viewed as a generalization of the single-layer learning rule by Pfister et al. (2006) 
to multiple layers. Our multilayer learning rule differs from those proposed by Brea et al. 
(2013) and Rezende and Gerstner (2014), which have instead taken gradient descent on the 
KL divergence in a supervised and reinforcement setting, respectively. The novelty of our 
letter comes from the application of backpropagation, and its indicated high performance 
when encoding for a large number of input spike patterns as multiple and precisely timed 
output spikes." [from 1] 

"The performance of the MultilayerSpiker learning rule was tested through simulations of 
multilayer networks trained to perform temporally precise spike pattern transformations. 
In our analysis, we considered networks containing either single- or multiple-output 
neurons. Example tasks for single-output networks include measuring the resilience of the 
network to input noise during learning, the solution of the XOR computation, a comparison 
between specific network structures, the memory capacity of the network, and its ability 
to generalize to new patterns on a synthetic data set. For multiple-output networks, the 
performance of the learning rule was tested for networks tasked with performing fully 
spatiotemporal spike pattern transformations." [from 1] 
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2.5.1.3 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles: ~ Task 423 
"Structures of Spiking Learning Algorithms". PI: Andre Gruening. Executing Scientists: 
Brian Gardner (PhD student, postdoc), Ioana Sporea (postdoc, left), Eric Nichols 
(acceding postdoc). 

• Data, algorithms, tools and methodologies storage location(s): 

Algorithms and simulations are in GIT repository https://feps-
web.eps.surrey.ac.uk/gitlab/HBP 

• Description of algorithms/models/principles: 

The algorithms are written in the Matlab/Octabve language or C/C++. 

• Name of DICs/software catalogue/or HBP github project entries. 

see above 

• Description of data: 

n/a 

Scale (brain, brain region, cells, molecules), features (morphology/physiology/expression, 
etc.), locations, and description of entities: ~ simulation of small and medium-sized 
neurnal networks. 

• Completeness of data/algorithms/models: 

codes are as released, and constantly being worked upon for the next stage of the HBP, 
especially with respect to implementation in the neuromorphic platforms. Contacts to the 
experts for the Spinnaker platform have been made and the modalities of model transfer 
are discussed in CDP5. 

Comparison of data set/algorithms/models anticipated versus those actually delivered in 
M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models? 

~ The source codes provided are stand-along in-principle implementations. Due to delay 
with the platforms and the evolving nature of plastictiy implementatin in them, codes are 
anticipated to run on eg Spinnaker during work on CDP5. 

Current data set/algorithms/models versus a projected full data set/algorithms/models to 
be generated by the research community 

~ Implementation on the neuromprohic platforms is in progress. 

Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the data/algorithms/models 
gathered by the HBP Task, and/or complement it: 

~ There are various groups in this area designing learning algorithms for spiking neural 
networks with recent publications. The learning algorithms as developed by Westkott, 
Albers and Pawelzik http://arxiv.org/abs/1407.6525 in particular follows a similar type of 
approach as ours. Other publications concentrate mainly on learning at single synapses / 
neurons and give greater emphasis to the biologically plausibility, however at the cost of a 
loss in technical performance. 

Outline state of validation work. 

n/a 

• Data Quality and Value: 

At the current stage, the model represents a hypothesis on how 



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 75 / 151 
  

goal-oriented learning could be implemented on top of neural hardware. Its value consist 
in the demonstration that backpropagation can be implemented utilising spiking codes and 
neurons at a technically acceptable level (order of magnitude better perfromance then 
preexisting approaches) which opens up the road to technical use in the neuromporphic 
platforms. 

• Data/algorithm/model usage to date: 

The model/paper have just been published, hence too early to tell. At presentation to 
other research groups during the M18-M30 period, the suggested models have been well 
received. 

• Who has used the data/algorithms/models, for what? 

currently SP4 internal use.  

It will be use for the "Learning Workbench" in Co-Design-Project 5 together with user in 
SP6/SP9. 

• Are the data/algorithms/models considered final? 

models are under constant improved to improve performance and biological plausibility. 

2.5.1.4 Model Results 

"[...], we have presented a new and technically efficient learning rule for training 
multilayer spiking neural networks, which has demonstrated a high performance level on 
several benchmark tests. The learning rule is capable of learning fully spatiotemporal input 
and output spike pattern transformations and can perform input classifications to a high 
level of accuracy using multiple output spikes. In our analysis we used the escape noise 
neuron model defined in Gerstner and Kistler (2002), which has been shown to closely 
approximate the variable firing activity of neurons in vivo (Jolivet, Rauch, Luscher, & 
Gerstner, 2006). Our choice of neuron model was primarily motivated by its general 
applicability to a wide range of learning paradigms, including supervised (Pfister et al., 
2006; Brea et al., 2013) and reinforcement (Florian, 2007; Fremaux, Sprekeler, & 
Gerstner, 2010) learning. A key advantage of implementing escape noise neurons comes 
from being able to determine the likelihood of generating a specific output spike pattern 
(Pfister et al., 2006), which can then form the basis of a suitable objective function. Here 
we took the approach of maximizing the log likelihood of generating a desired output spike 
pattern in a multilayer network through a combination of gradient ascent and 
backpropagation, that is, an extension of the single-layer learning rule proposed by Pfister 
et al. (2006) to multilayer networks. In terms of the output layer, weight updates result 
from a product of locally available pre- and postsynaptic activity terms that bears a 
resemblance to Hebbian-like learning: the presynaptic term originates from filtered hidden 
neuron spike trains in the form of PSPs, and the postsynaptic term an output error signal 
that controls the direction and magnitude of weight changes [...]. Hidden layer weight 
updates, however, appear as a three-factor rule: PSPs due to input spikes are combined 
with hidden spike trains, to then be modulated by backpropagated error signals to allow 
hidden weight changes [...]. In training multilayer networks to map between spike 
patterns, it proved necessary to represent input patterns with sufficiently rich spiking 
activity at each input neuron; sparse representations otherwise led to decreased 
performance. This requirement is apparent from an examination of the hidden layer 
weight update rule, which has an explicit dependence on hidden neuron spike trains: a 
lack of input-driven hidden layer activity prevented weight updates from taking place, 
thereby resulting in diminished learning. 

Previous multilayer learning rules (Bohte et al., 2002; Sporea & Gruning, 2013) have faced 
a similar challenge in effectively presenting input patterns to the network, but instead 
took the approach of introducing multiple synaptic connections with varying conduction 
delays between neurons of neighboring layers. We were motivated to introduce synaptic 
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scaling to the network to maintain an optimal range of hidden firing rates (van Rossum et 
al., 2000), a process that has been observed in biological networks (Turrigiano, Leslie, 
Desai, Rutherford, & Nelson, 1998). Aside from stabilizing the firing rate, the introduction 
of synaptic scaling also has side benefits, such as decreasing the network sensitivity to 
initial synaptic weight values (Sporea & Gr uning, 2013), a critical issue that was identified 
in Bohte et al. (2002). An important contribution of our letter is the large number of 
accurate pattern encodings that can be performed by MultilayerSpiker. In comparison with 
multilayer ReSuMe (Sporea & Gr uning, 2013) for a network containing 100 input neurons, a 
variable number of hidden neurons and a single output neuron tasked with mapping 
between arbitrary input-output pattern pairs, MultilayerSpiker was capable of at least 10x 
as many pattern classifications at a 90% performance level but requiring less than 1/10th 

the number of hidden neurons (see table 1 in appendix C, and table 7 in ̈ Sporea & Gr 
uning, 2013). In addition to this, MultilayerSpiker scaled well with both the input and 
hidden layer sizes and performed classifications with higher accuracy when using 
multispike based encodings. It is worth noting that most standard ANNs—for example, 
those containing perceptron units—are fundamentally incapable of performing such 
temporally based pattern mappings and fall behind spiking networks in terms of their 
computational power (Maass, 1997). 

We believe our encoding method better takes advantage of spike-timing ̈ than many 
alternative methods (G utig & Sompolinsky, 2006; Florian, 2012; ̈ Mohemmed et al., 2012). 
For example, the Tempotron (G utig & Sompolinsky, 2006) is limited to binary 
classifications using a spike/no-spike coding scheme, and the experiments run for the 
Chronotron (Florian, 2012) and SPAN (Mohemmed et al., 2012) required precisely matched 
actual and target output spikes, which would invariably be detrimental to the network 
performance on generalization tasks given that actual output spikes would fluctuate about 
their respective target timings in response to input noise. As in most existing learning rules 
for spiking networks, we have assumed the presence of a supervisory signal, which allows a 
continuous comparison between actual and target output spike patterns during learning. 
Biologically, however, the source of such a signal remains unclear. Knudsen (1994) has 
posited that a separate, external network might exist that is capable of providing 
continuous feedback during learning, hence acting as a form of activity template that is to 
be mimicked elsewhere in the brain. Such a mechanism has been offered as an explanation 
for functional plasticity changes in neurons encoding for auditory stimuli in the barn owl 
(Knudsen, 2002). Finally, reinforcement learning might offer a plausible alternative, 
especially in light of the promising evidence that the firing activity of dopaminergic 
neurons can encode a form of reward-prediction error signal (Schultz, Dayan, & Montague, 
1997; Schultz, 2000). In our previous work (Gardner & Gruning,2013), we have shown how 
reinforcement learning can be applied in training single-layer networks to perform 
temporally precise input-output spike pattern transformations." [1] 
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The dependence of the network performance on the number of input patterns, the number 
of hidden neurons n h , and the number of target output spikes n s . In all cases, the 
network contained one output neuron. In this experiment, input patterns p were equally 
assigned between c = 10 classes. (Left) The performance as a function of the number of 
input patterns, for n h = 10 (A), n h = 20 (B), and n h = 30 (C) hidden neurons. In each 
panel, different curves correspond to the number of target output spikes identifying each 
class of input. (Right) The number of episodes to convergence in learning. Results were 
averaged over 20 independent runs. at an early stage before being. Fig.8 from 1 

2.5.1.5 Provenance 

n/a 

2.6 T4.3.1 Models of perception-action 

2.6.1 Cognitive model of whole cortex _G. Deco (UPF) 

2.6.1.1 Introduction 

Our purpose is to develop a dynamical model of the whole cortex activity to reproduce 
activity patterns, or functional connectivity (FC), observed during rest or when performing 
a task (e.g., using fMRI, EEG, MEG). The tuned model is then used as a fingerprint of the 
brain activity to discriminate between brain states, categories of processing, etc. What the 
model captures is effective connectivity (EC), namely the interaction strengths between 
neural populations in a network. In this sense, EC differs from the structural connectivity 
(SC), namely the density of white-matter connections between distant cortical areas, 
which can be estimated by diffusion tensor imaging (DTI). Rather, EC measures the 
corresponding strengths that depend in the biology on neurotransmitter types, receptor 
concentration, local excitability, etc. Therefore, the aim of our project is to infer the 
macroscopic EC for the whole cortex from observed activity using fMRI, while incorporating 
DTI information for the connectivity skeleton. In practice, this means about 2000-3000 
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connections for 70-100 cortical regions and the model is tuned to reproduce empirical FC 
defined as the covariances of BOLD time series. The results will be used to constrain more 
detailed models (e.g., populations of spiking neurons) that aim to exhibit given correlated 
spatio-temporal patterns of activity in a specific neural system or for the whole cortex 
(SP6). The estimated EC values are biomarkers to be incorporated in the atlas (SP5), as 
they describe the dynamic properties of the corresponding neural populations. We also 
plan to characterize a “normal” profile for healthy subjects in order to examine 
abnormalities for individuals, as a tool for diagnostics (SP12). 

2.6.1.2 Model Description 

Figure 31 illustrates the global aspects of the whole-cortex dynamical model. DTI and fMRI 
information is combined to estimate the strengths of intracortical connections. The key 
here is to use the temporal information in FC to estimate the direction of connectivity at 
the scale of the whole cortex. 

 

Figure 31: Schematic diagram of the data flow in our model-based approach to 
interpret cortical activity. 

DTI information (bottom left) and a parcellation in 68 cortical areas (middle left) is used to build the 
skeleton of the network model. The strengths of the network are then tuned such that the model (right) 
fits the empirical FC (top left). 

The network model in Fig.32 (left) is a nonlinear version of a multivariate Ornstein-
Uhlenbeck process. As an illustration, the minimum model describes each population with 
a synaptic variable ix , which exponentially decays with time constant xτ  and receives a 

current iU  that lumps excitation/inhibition from itself and other populations: 
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= )(  where Φ  is the activation function that applies to the current 

∑
≠

+=
ij

jiji exCu , idB  is unitary white noise and e  the homogeneous external input. The 

intracortical connectivity (EC) by the matrix C . FC is the second-order moments of the 

variables ix , namely ))(( j
t
ji

t
iij xxxxQ −−= +ττ , where τ  is the time shift and the bar 

indicates the mean over an observation period; the angular brackets denote the averaging 
over the noise in the network, related to the white noise. The matrices C  and 0Q  are 

related via a Lyapunov equation: 000 =Σ++ TJQJQ , where the Jacobian of the 

dynamical system is )(1
iij

x
ij UCJ Φʹ+

−
=
τ

, and Σ  is the diagonal noise matrix such that 

2
iii σ=Σ . Moreover, the time shifted covariance is given by )expm(0 ττ TJQQ = . The code 

is a Lyapunov optimization algorithm (Fig. 32 right) to infer C  and Σ  from τ/0Q  based on 
the previous consistency equations: the Jacobian update is 

( ) ( )[ ]ττ J-expm010 QQQJ Δ+Δ=Δ
−

 for the model FC error corresponding to the difference 

between the empirical and model FC matrices 000 ˆ QQQ −=Δ  and 
τττ QQQ −=Δ ˆ
. Finally, 

the update of EC is 
)(/ iijij UJC ΦʹΔ∝Δ
 for existing connections (cf DTI). This also allows 

for the use of constraints on the connectivity during the optimization, namely non-
negativity. The input variances are tuned according to the heuristic optimization 

0
iiii QΔ∝ΔΣ . 

 

Figure 32:  
Left: Example of network of interconnected populations (purple circles). EC corresponds to the recurrent 
connectivity in red, which is directed. Each node in the network receives individual noise (�) that is 
shaped by EC to generate FC (activity covariances between all pairs of node). Right: Algorithm that tunes 
the network parameters EC and �  for the model to reproduce empirical FC. 

Details for the linear model (Φ  is the identity) can be found in a recently accepted 
publication (uploaded preprint PLoS_CB_dircon_R3.pdf). The algorithm has been checked 
on surrogate networks by generating activity from known underlying network parameters, 
then measuring the performance to retrieve that original connectivity. The focus is on 
directed connectivity, which requires the use of time-shifted covariances in addition to 
zero-shift covariances. 

2.6.1.3 Model Data 

T4.3.1 is responsible for generating algorithms/models/principles. 

• Code stored on EITN owncloud (www.unic.cnrs-gif.fr/owncloud) 
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• Description of algorithms/models/principles: 

o 2 equivalent versions, in Matlab and Python (in ‘HBP_code_WP43’ folder). 

o Matlab version: the script ‘extract_data.m’ computes from BOLD time series the 
average empirical FC matrices, as well as SC from DTI; the script 
‘optimization.m’ estimates the “best” network parameters EC and � that give 
the best fit for the empirical FC used as objectives in the optimization. 

o Python version: see ‘how to use’ document. 

• Description of experimental data: 

o fMRI/BOLD time series recorded from 25 subjects aged from 19 to 40 years 
during rest (eyes closed); DTI data; all available online, see Schirner M, 
Rothmeier S, Jirsa V, McIntosh A, Ritter P. An automated pipeline for 
constructing personalised virtual brains from multimodal neuroimaging data. 
Neuroimage (2015) 117: 343-357; Parcellation of cortex in 68 areas. 

o Twenty-four right-handed young, healthy volunteers (15 females, 20–31 years 
old) participated in the fMRI recording for 2 conditions: a resting state and a 
natural viewing condition. In the resting state, participants fixated a red target 
with a diameter of 0.3 visual degrees on a black screen. In the natural viewing 
condition, subjects watched (and listened) to 30 minutes of the movie “The 
Good, the Bad and the Ugly”. Data published previously in: Hlinka J, Palus M, 
Vejmelka M, Mantini D, Corbetta M (2011) Functional connectivity in resting-
state fMRI: is linear correlation sufficient? Neuroimage 54:2218–25 

• Completeness of algorithms/models: 

o The method has been verified using fMRI and DTI data from three distinct 
laboratories (Prof P Ritter from la Charite in Berlin, Prof M Kringelbach in 
Oxford, Prof Kourtzi from Cambridge), and a currently developed extension 
focuses on interpreting task evoked activity / other condition in addition to 
resting state. In particular, we collaborate with Prof S Dehaene in SP3 for 
anaesthesia, cf T4.3.3. 

o The algorithms and models are final in the sense they can be used in the current 
version, but will be extended in the future. 

• Model Quality and Value: 

o A limitation lies in the temporal resolution (~2s) and duration of fMRI time 
series during resting state, which raises the issue of stationarity of the network 
parameters to estimate. 

o So far, we have focused on 100 cortical areas (e.g., AAL90). Detailed 
parcellations with more than 100 areas imply a larger number of connectivity 
parameters and require further investigastion for the optimization robustness. 
In particular, the amount of empirical BOLD data (recordings duration) for 
individual subjects is a crucial issue.  

o The nature of the nonlinearity for the local dynamics (activation function of 
each cortical area) requires further examination. 

• Data/algorithm/model usage to date: 

o The algorithm will be passed and adapted to SP6/SP12 for applications in large-
scale simulations of cortical network with realistic macroscopic connectivity and 
applications to individual profiling of subjects/patients. 

• Publications with details of model and algorithm:  
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Gilson, Moreno-Bote, Ponce-Alvarez and Deco, Estimation of Directed Effective 
Connectivity from fMRI Functional Connectivity Hints at Asymmetries in Cortical 
Connectome, PLoS Comput Biol (in press)  

Deco, Ponce-Alvarez, Hagmann, Romani, Mantini and Corbetta. How Local Excitation–
Inhibition Ratio Impacts the Whole Brain Dynamics. J Neurosci (2014) 34: 7886-7898 

Deco and Kringelbach. Great Expectations: Using Whole-Brain Computational Connectomics 
for Understanding Neuropsychiatric Disorders. Neuron (2014) 84: 892-905 

• References 

Deco, Tononi, Boly and Kringelbach. Rethinking segregation and integration: contributions 
of whole-brain modelling. Nat Rev Neurosci (2015) 16: 430-439 

Hlinka, Palus, Vejmelka, Mantini and Corbetta. Functional connectivity in resting-state 
fMRI: is linear correlation sufficient? Neuroimage (2011) 54:2218–25 

Schirner, Rothmeier, Jirsa, McIntosh and Ritter. An automated pipeline for constructing personalised 
virtual brains from multimodal neuroimaging data. Neuroimage (2015) 117: 343-357 

2.6.1.4 Model Results 

From BOLD time series, we calculate two empirical FC matrices, one with spot covariances 
and one with a time shift of 4s; here the average over 25 subjects in Fig. 33A. The 
autocovariances are close to an exponential decay, with a time constant of 5.3s evaluated 
in a log plot in Fig. 3B. The distribution of time constants for all areas is narrow, as shown 
in Fig. 3C, which justifies the use of a single time constant here. This calibrates the model 
before the optimization. SC values obtained from DTI are thresholded to determine 
existing connections (in black in Fig. 33D), constraining the model to be tuned. The 
optimization gives the “best” EC in Fig. 33F, which corresponds to the minimum FC error 
(blue curve in Fig. 33E) between the model and empirical matrices. Fig. 33G illustrates the 
fit for all matrix elements (diagonal in cyan, existing connections in blue, absent 
connections in black) for the two FC matrices. 

 

Figure 33: Tuned network model to reproduce empirical FC obtained from fMRI data. 
See text for details. 
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We present briefly the results in the last figure of our publication, in order to interpret EC. 
As shown in Fig. 34A, EC values differ from SC values, suggesting that the strengths of 
dynamic interactions are not only predicted by the density of neural fibres estimated by 
DTI. EC has information about individual connections, in particular representing directed 
connectivity, in contrast to SC. This corresponds to the input-output asymmetry of EC 
weights for each cortical area (red crosses in Fig. 34B). Interestingly, hubs are either 
receivers with strong inputs or feeders with strong outputs, but not both. Further 
interpretation of the results are ongoing, to understand the flow of information across the 
whole cortex, which is measured via the proxy of EC and � in Fig. 34C. These biomarkers 
can then serve to constrain the connectivity between cortical regions in more detailed 
models, and should be integrated in the human atlas. 

 

Figure 34: Interpretation of results from Fig. 33. See text for details. 

Finally, we give unpublished results related to task condition, passive viewing and listening 
versus resting state. Fig. 35 shows that the average estimated EC for the 23 subjects is not 
dramatically affected in the visual and auditory systems. Rather, the change of inputs is 
more pronounced (right).  
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Figure 35: EC estimated for rest (left) and movie (middle). Significant changes in inputs 
(right) between movie and rest conditions. 

Disentangling the contributions in changing FC from inputs and conectivity is at the core of 
the concept of effective connectivity. It gives quantitative estimates of how the 
activity/information flows in the network, uncovering the dynamic emergence of 
functional communities. Results in Fig. 35 based on data from Hlinka et al Neuroimage 
(2011) are a first step in that direction toward a more systematic approach. 

What we aim to obtain then is a description of the average human profile of dynamical 
biomarkers (excitability, interaction strengths) in various conditions, such as rest, specific 
tasks involving sensory perception or task performance. We aim to uncover principles for 
the regulations the dynamical interactions at the cortex level that can be used to constrain 
large-scale models, for example, relating estimated excitability with neuromodulators in 
more detailed models (see Deco et al Neuron 2014, Nat Rev Neurosci 2015). We will also 
define mesoscopic measures for the goodness of fit for models that aim to reproduce 
cortical regions. 

2.6.1.5 Provenance 

T4.3.1 

2.6.2 O. Faugeras (INRIA) 

2.6.2.1 Introduction 

Our work challenges and extends earlier seminal work. We consider the problem of 
describing mathematically the spontaneous activity of V1 by combining several important 
experimental observations including (1) the organization of the visual cortex into a 
spatially periodic network of hyper columns structured around pinwheels, (2) the 
difference between short-range and long-range intracortical connections, the first ones 
being rather isotropic and producing naturally doubly periodic patterns by Turing 
mechanisms, the second one being patchy, and (3) the fact that the Turing patterns 
spontaneously produced by the short-range connections and the network of pinwheels have 
similar periods. By analysing the PO maps, we are able to classify all possible singular 
points (the pinwheels) as having symmetries described by a small subset of the wallpaper 
groups. We then propose a description of the spontaneous activity of V1 using a classical 
voltage-based neural field model that features isotropic short-range connectivity 
modulated by non-isotropic long-range connectivity. A key observation is that, with only 
short-range connections and because the problem has full translational invariance in this 
case, a spontaneous doubly periodic pattern generates a 2-torus in a suitable functional 
space which persists as a flow-invariant manifold under small perturbations, for example 
when turning on the long-range connections. Through a complete analysis of the 
symmetries of the resulting neural field equation and motivated by a numerical 
investigation of the bi-furcation of their solutions, we conclude that the branches of 
solutions which are stable over an extended range of parameters are those that correspond 
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to patterns with an hexagonal (or nearly hexagonal) symmetry. The question of which 
patterns persist when turning on the long-range connections is answered by (1) analysing 
the remaining symmetries on the perturbed torus and (2) combining this information with 
the Poincaré–Hopf theorem. We have developed a numerical implementation of the theory 
that has allowed us to produce the predicted patterns of activities, the planforms. In 
particular we generalize the contoured and non-contoured planforms predicted by previous 
authors. 

2.6.2.2 Model Description 

NOT APPLICABLE 

2.6.2.3 Model Data: Pinwheel V1 model 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 

• P26, Olivier Faugeras 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

• http://mathematical-neuroscience.springeropen.com/articles/10.1186/s13408-015-
0023-8 

• Description of algorithms/models/principles: 

o Code is written in Python 

o Name of DICs/software catalogue/or HBP github project entries. 

https://www.unic.cnrs-
gif.fr/owncloud/public.php?service=files&t=5f9067feb3f144ba9b34df7e24eb538d 

• Description of data: 

Not applicable 

• Completeness of data/algorithms/models: 

Not applicable 

• Outline state of validation work. 

We have verified that the model can account for many known visual hallucinations 

• Data Quality and Value: 

The model we have developed can be used in conjunction with experimentalists in order to 
verify the validity of some of the predicted visual hallucinations corresponding to 
spontaneous V1 activity. 

• Data/algorithm/model usage to date 

So far the model has only been used internally by the Inria group 

• Are the data/algorithms/models considered final? 

The model is not final: we plan to refine it to account for more biological data. 

2.6.2.4 Model Results 

The figure below shows the following: In the left column, two examples of cortical 
activations, as predicted by our model, overlaid on the Preferred Orientation map. The 
pinwheels are shown in white. In the right column: interpretation of these activations in 
cortical coordinates, obtained by pooling the different activated orientations around each 
pinwheel. See the reference below for more information. 
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Figure 36: 
Romain Veltz, Pascal Chossat, Olivier Faugeras. On the Effects on Cortical Spontaneous Activity of the 
Symmetries of the Network of Pinwheels in Visual Area V1. The Journal of Mathematical Neuroscience 
(JMN) 2015 5:11. Link: http://mathematical-neuroscience.springeropen.com/articles/10.1186/s13408-015-
0023-8 

2.6.2.5 Provenance 

Not applicable 

2.6.3 F. Chersi & N.Burgess UCL (WP3.4 and WP4.3) 

2.6.3.1 Introduction 

Spatial navigation, although one of the most common actions for humans and animals, is a 
complex task that involves the processing of a variety of sensory and proprioceptive stimuli 
(e.g. visual, vestibular and motor information), the storage and recall of memories about 
location and events, and the elaboration of plans. 

There is now an unparalleled literature concerning the neural representations involved in 
spatial cognition and a vast array of experimental data relating behavior in spatial 
navigation tasks to manipulations of the environment or learning procedure and to the 
operation or impairment of different brain systems.  
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There are two main mechanisms utilized in spatial navigation. The first one relies on 
following a well-learned sequence of actions, each depending on the previous action or a 
sensory cue (“response strategy”), the second one by following a flexible internal 
representation of spatial layout (“place strategy”). 

During the first phase of the HBP we have implemented a biologically inspired model of the 
two main circuits involved in spatial navigation, more precisely the hippocampus and the 
striatum. 

We have also developed a simple simulator of the environment and the rat that can be 
connected to a control architecture that guides its behavior. 

2.6.3.2 Model details 

2.6.3.2.1 The visual system 

The simulated rat has been endowed with a simple visual system that allows it to acquire 
two types of information about the environment: the color of the observed objects and 
their distance (from the observer). In the current implementation the visual field extends 
from -160 to +160 degrees and is subdivided into small regions  (see Figure 37), each 
assigned to one neuron. 

 

Figure 37: Schematic representation of the neural representation of the rat’s view 
field. 

Each region is associated to a specific neuron (numbered). When an object, e.g. the landmark, is spotted, 
neurons corresponding to the interested regions become active 

The transformed sensory representation will be encoded as a single layer of neurons that 
are mostly silent, with few neurons encoding the presence of an object in the view field, 
firing at a high rate.  

2.6.3.2.2 Neural architecture 

The neural circuits implemented in this model utilize firing rate-based neurons with 
synaptic currents. The behavior of each neuron is described by the following set of 
equations: 
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where Isyn is the total synaptic current, ν is the firing rate, τν  = 25 ms the firing rate time 
constant, νmax = 100 spk/s is the maximum firing rate, F() is the current-to-firing rate 
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transfer function, tanh+ is the positive part of the hyperbolic tangent, γ = 1.56· 109 is the 
slope of the (I-f) response function, I0 = 0.4 nA is the threshold for the input current below 
which the neuron does not fire. 

The hippocampal circuit 

The hippocampus has here been implemented as single layer of firing rate-based neurons 
with no lateral connections. For sake of simplicity we assume that its neurons encode the 
position of the agent in an absolute reference frame. The typical response function of 
place cells is a Gaussian-like activity profile centered on the receptive field. 

In the current model, we have implemented a mechanism that generates a new place cell 
whenever the distance to the closest field center is higher than a specific value.  

When the rat reaches the goal location (i.e. the hidden platform) the connections between 
the place cells and the goal cell (located in the striatum/nucleus accumbens layer) are 
strengthened proportionally to their firing rate according to the following Hebbian-like 
equation; 

 Δwij = η · νi
(HPC)·νj

(G) 

where wij is the connection weight between neuron i and neuron j, η is the learning rate, 
νi

(HPC) and νj
(G)  are the firing rates of the i-th neuron in the hippocampus and of the j-th 

goal neuron, respectively. 

The end result is the formation of a “goal surface” that has it highest value centered on 
the location in the environment where the object (i.e. the platform) is. This surface can 
be used to guide behavior. In particular, given the goal surface and the current coordinates 
of the rat, one can test adjacent positions in order to determine the gradient of the 
surface. If the surface is convex this method allows to iteratively find the path that leads 
to the maximum. 

 

Figure 38: "Value function" that encodes the position of a specific object through the 
superposition of multiple receptive fields. 
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2.6.3.2.3 The striatal circuit 

 

Figure 39:  Striatal circuit employed in this architecture that assigns (a value of) an 
action to each sensory input. 

The sensory input for the striatum is obtained by transforming the visual signals in the way 
described above. Note that the striatum does not receive information about the head 
direction, so the sensory vector is aligned to the heading direction and to a global 
reference point. 

Neurons in the transformed sensory layer project to neurons in the dorsal striatum in an 
all-to-all manner. The latter neurons represent the values of the possible actions 
associated with any given sensory state playing here the role of “critics” for the state-
action associations. 

The sensory and striatal neurons can be thought of as representing state-action 
combinations for reinforcement learning. 

In the current implementation the weights between the sensory and the striatum layer are 
updated by means of the Q-learning rule, as follows: 

 Qa =  νa
(STR)  = F[ ∑

=

N

i 1

νi
(Sens) ⋅ wi,a ] 

where Qa is the expected discounted return obtained by performing action a (in our case 
one of the 12 angles of rotation) in the current state, νa

(STR) is the firing rate of the 
striatum neuron corresponding to action a, F is the response function of the neurons, N is 
the total number of sensory neurons, ,νi

(Sens) is the firing rate of the active sensory neuron, 
and wi,a is the weight between the sensory neuron and the striatum neuron. 

At every time step the rat can use the available information about the current and the 
past Q values and a possible reward to update its internal model by means of the following 
equations: 

ΔQs-1,a-1 = η ⋅ [ R + γ · maxa’ ( Qs,a’) – Qs-1,a ] 
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 Δ wi,a-1 = ΔQs-1,a-1⋅ νi
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where Qs-1,a-1 is the Q value of action a-1  in state s-1, η  is the learning rate, R is the 
reward, γ is the discount factor, and maxa’ ( Qs,a’) is the maximum Q value that can be 
reached from the current state s computed on all possible actions a’. 

Note that the computation can only be done backwards in time, hence Qs-1,a-1, because the 
agent does not know the transition function between states and has to remember the last 
state and action. 

Additionally, Note that the striatum does not receive information about the head 
direction, so the sensory vector is aligned to the heading direction and not to a global 
reference direction. 

2.6.3.3 Results 

The above described architecture has been used to control a simulated rat in a variant of 
the Morris Water Maze described by Pearce et al. (1998). In this set up, in contrast to the 
original experiment, a landmark indicates the close-by location of a submerged platform.  

 

Figure 40: Left panel: Locations of the hidden platform (white circle) and the 
corresponding landmark (black circles). Right panel: Corresponding distribution of 

place cells across the water maze. 

At the start of each trial, the rat is placed in a location chosen randomly among the 
potential locations of the platform, obviously excluding the location where the platform 
actually is. 

Every 4th trial the platform and the landmark are randomly and conjunctively moved to 
one of the 8 locations shown in the left panel of 0ure 39. 

As the rat explores the maze, place cells specialize to cover the whole environment as 
shown in the right panel of Figure 39. 

When the rat is placed for the first time into the maze it has no knowledge about the 
location of the submerged platform and about the relation between the (visible) landmark 
and the platform, thus it initially randomly explores the maze. As it learns more about how 
to find the location of the platform, its behavior shifts from random to goal directed, 
utilizing the hippocampus and the striatum to make reasoned decisions. 

The movement of the rat is determined by the following set of equations: 
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 where s is the linear movement, v is the linear speed and is determined by the controller, 
θ is the rotation angle (relative to the direction of movement), ω is the angular speed and 
is determined by the controller. 

The complete navigation controller is composed of several components (see Figure 40). At 
the lowest level there is the obstacle avoidance mechanism that ensures that the rat does 
not run into walls and obstacles. It has the highest priority and is active at every time 
step. It utilizes the distance information provided by the sensory areas to produce a motor 
reaction that distantiates the rat from the obstacle. 

Besides this we have implemented a mechanism that every 250 ms triggers the decision 
procedure which selects a new movement direction. In particular, 5% of the times the 
decision is completely random. This ensures that the rat does not get trapped in cyclical 
movements. In the remaining 95% of the times, utilizing the mechanisms described above 
the hippocampus and the striatum each produce an output vector that contains the 
“values” (encoded as neuronal firing rates) of the 12 directions in which the rat can move. 

The final decision is taken by the prefrontal cortex that determines which direction most 
likely leads most rapidly to the goal location. In case none of the values is above a 
minimum threshold, a new direction is chosen randomly among the available ones. 

In order to render the simulations biologically more realistic we introduced a “neural 
computation time”, i.e. the time that a biological neural network would approximately 
take to execute the computations in the hippocampus, which in our case has been 
simplified and implemented algorithmically for sake of simplicity. 

 

Figure 41: Decision scheme for the navigation task. 
A low level controller has been implemented which assures that the rat avoids obstacles and walls. Every 
250 ms the controller engages the direction decision mechanism. In 5% of the cases a random direction is 
chosen. In the other cases the responses of the hippocampal and the striatal circuit are compared and the 
response with the highest value is chosen.  
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Figure 42:  Different types of behaviors and trajectories. 
Left panel: random exploration. Central panel: after several learning trials, when action is controlled 
predominantly by the striatum, the movement becomes straight in the direction of the hidden platform 
(the rat knows where to go). Even if the rat initially slightly misses the location it turns around and rapidly 
finds it. Right panel: at the beginning of the experiment the rat’s behavior is strongly driven by the 
hippocampus. As a result the rat initially tends to return to the previous location of the platform even if 
the landmark and platform are moved. After repeated failures the rat engages in exploratory behavior and 
eventually reaches the platform. 

The left panel in Figure 43 shows the average performance of 4 groups of 30 simulated rats 
over the course of 11 sessions, each composed of a set of 4 similar trials. Following the 
original experiment we have deactivated the hippocampus of 2 of the 4 four groups of 
animals. The corresponding results are indicated by the curves with the full dots. The 
curves with the full dots represent the performance of animals with intact hippocampus 
and striatum. The upper curve represents the performance on the first trial of each set, 
while the lower curve represents the performance on the fourth trial. As can be seen the 
performance on the first trial is much worse. This is because the hippocampus drives the 
choice mechanism to reach the location where the platform was previously situated (as 
opposed to the location where the landmark is). When the rat reaches that location and 
realizes that the platform is not present, it starts to unlearn the hippocampal goal coding 
in favor of a random search strategy. In a few trials the rat is able to learn the new 
platform location and the new goal representation. Note that the place cells do not 
remap, i.e. their place field remains stable, instead only their connections to the goal cells 
are modified. 

Rats with no working hippocampus are able to solve the task and reach the hidden 
platform in a time that is shorter the control rats on their first trial because in those 
specific cases the hippocampus misleads the rat to return to the presumed location of the 
platform which in fact has been moved elsewhere (see trajectories in Figure 42). 
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Figure 43:  Left panel: average performance of the rats expressed as the time required 
to reach the escape platform. Right panel: performance of real rats as recorded by 

Pearce et al. (1998) 

Figure 44 represents the percentage of choice type, whether based on a place strategy or 
on a response strategy, of all control rats in session 1, in session 6 (middle of the 
experiment) and in session 11 (end of experiment). As can be seen, as the rats spend more 
time in the maze solving the tasks they switch from a goal directed strategy to more 
stimulus-response one, indicating the formation of habits. 

As a comparison, in the right panel of Figure 44 we report statistics on the behavior of rats 
lesioned either in the caudate nucleus or in the hippocampus as found in the paper 
mentioned above. 

 

Figure 44: Behaviour of rats lesioned in caudate nucleus or hippocampus 
Left panel: distribution of strategy choices (response or place strategy) during session 1, session 6 and 
session 11. The last two approximately correspond to Test Day 8 and Test Day 16 in the graph in the right 
panel reporting the results of a similar experiment conducted by Packard and McGough (1996). 

Conclusion  

By examining the existing literature, we identified a simplified cognitive architecture of 
spatial navigation (Chersi and Burgess, 2014). We have implemented this architecture at 
the level of firing rate neurons and Hebbian and Reinforcement learning rules for synaptic 
plasticity and instantiated it in a simulated agent. Here we have validated the model by 
demonstrating that it is capable of reproducing some of the classic experimental tests of 
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spatial navigation. Our next steps will be to see how this same cognitive architecture 
generalizes to classic non-spatial tests of learning and planning (e.g. Daw et al., 2008).   

2.6.3.4 Provenance of the data: 

The data we utilized in our work was taken from 2 studies published by Packard and 
McGaugh (1996) and Pearce et al. (1998).  

The data we produced is located at http://se/data/kit/edu/SP3/3.4.1/Simulation Results 

Self-analysis of the value and completeness of data (vs DoW): 

The utilized data is of great value and complete. The data produced by us is perfectly in 
line with the existing data. 

Indication of who has used this data so far and for what 

As far as we know, nobody has used our data yet. The TUM partner is interested in using 
our model (which for us is a different thing than data), but has still not practically started. 

We will collaborate with Manchester to get help on the implementation of our model on 
the Spinnaker board. 

2.6.3.5 Collaborations and interactions with other partners: 

University of Leeds (Marc de Kamps) 

University of Manchester 

University of Munich 

EITN Paris 

2.7 Task 4.3.2 Models of working memory and the effects of 
attention 

2.7.1 M. Tsodyks (WIS)  

2.7.1.1 Introduction 

There is hardly a cognitive task that does not involve working memory (WM), including 
visual processing, speech comprehension and episodic memory. In view of its fundamental 
importance in cognition, it is puzzling that WM capacity is extremely limited, ranging 
between 3 and 6 items for most of healthy human participants. In psychological literature, 
it is often postulated that the brain possesses a specialized buffer, or 'focus of attention', 
where memory items can be temporarily placed for short periods of time and removed 
when needed, and hence working memory capacity corresponds to the size of this buffer. 
The neuronal implementation of the focus of attention and its size, as well as the way 
memory items can be placed and removed from it, are not yet understood. The most 
popular hypothesis in theoretical modeling is that working memory is mediated by 
persistent activity of neurons encoding the corresponding items in long-term memory. The 
maximal number of items simultaneously active depends on the characteristics of the 
network in a complex way, but there does not seem to be a fundamental upper limit on 
WM capacity in this model. 

Recently, we proposed a synapse-based theory for short-term information storage in neural 
circuits. In this model, memory is retained by item-specific pattern of synaptic facilitation 
in recurrent connections between the corresponding neurons. Compared to the 
conventional model, this mechanism does not require neurons to fire with elevated rate 
for the whole duration of the memory task, resulting in a robust and metabolically more 
efficient scheme. Moreover, several items can be maintained in the WM via consecutive 
brief reactivations of the corresponding neuronal groups, such that at each time only one 
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item can be active, making the task of interpreting the activity by readout circuits more 
straightforward. Here we analyze this model with the goal of analytically estimating the 
maximal number of items that can be mainained in WM. The advantage of analytical 
expressions is that it allows one to make predictions about how WM capacity depends on 
the various synaptic, neuronal and circuit parameters that can potentially be tested by 
genetic manipulations. 

2.7.1.2 Model Description 

We consider a neural network model with long-term representations of memory items as 
interconnected neuronal ensembles with short-term plasticity (STP) of recurrent 
connections. To achieve an analytical hold on capacity estimation, we drastically reduce 
the complexity of the network to only leave the most essential features that allow it to 
function as working memory. We neglect the overlaps between different representaion so 
each item is represented by a single excitatory unit (cluster) with self-excitation reflecting 
the strenghened connections between neurons encoding a given item in long-term 
memory. Different clusters are only interacting via reciprocal connections to a common 
inhibitory pool. The role of the inhibitory pool is to orchestrate the activities of excitatory 
clusters, such that only one cluster (i.e., only one memory item) can be active at any 
single moment.  

Following the STP model developed in our previous work, recurrent connections are 

characterized by fixed 'absolute synaptic efficacy' and two dynamic variables; , which 

stands for release probability, and , the fraction of available neurotransmitter. If   
denotes the absolute synaptic efficacy between two excitatory neurons, then the 

instantaneous synaptic efficacy subject to STP is given by . Upon arrival of a spike, 

the release probability   temporarily increases due to the influx of calcium into the axon 
terminal of the presynaptic neuron, resulting in short-term facilitation. Meanwhile, the 

fraction of available neurotransmitters   decreases due to neural signalling consuming 

resources, resulting in short-term depression. After neuronal spiking,  returns to its 

baseline value   with a time constant , and  recovers to its maximum value   

with a time constant  . 

The resulting network model has 3 differential equations for each of  excitatory clusters 

(synaptic current and two STP variables  and for each cluster and one other 

equation for the inhibitory pool current : 

  

where τ  is the neuronal time constant, for simplicity taken to be the same for excitation 

and inhibition, and  is neuronal gain chosen in the form of a smoothed 
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threshold-linear function, also same for excitatory and inhibitory neurons.  is the 
constant background excitation that we assume to reflect the attentional state of the 
network (see below).   

2.7.1.3 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

• Description of algorithms/models/principles: 

o Format, language if applicable. 

Matlab 

o Name of DICs/software catalogue/or HBP github project entries. 

• Description of data: 

o Species, sex, age, number of specimen/subjects. 

o Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of 
entities, e.g. morphological characterisation of basket cells of the 
hippocampus. 

• Completeness of data/algorithms/models: 

o Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated 
data set/algorithms/models?  

The model itself fits what was expected, the analytical results exceed the expectations.  

o Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community 

o Give a short review (1–2 paragraphs) of data/algorithms/models generated by 
the community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

• Outline state of validation work. 

• Data Quality and Value: 

o Verification of data quality. 

o Your subjective analysis of the value of the data/algorithms for the users. 

Working memory is a fundamental component of many cognitive processes, so I hope the 
model can be used in many different contexts when studying cognition.  

• Data/algorithm/model usage to date: 

o Who has used the data/algorithms/models, for what? Please list a) Ramp-Up 
data (please use DIC name) used for validation or input, and the number and 
name of the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task 
number and name of the SGA1 Task that will use the developed 
models/approach to generate models, or c) Tasks that will build modelling tools 
that allow usage of the model/approach in SGA2. 

• Are the data/algorithms/models considered final? 

For the time being yes, but the model can be adapted to different contexts as mentioned 
above.  
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• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) 

The paper by Yuanyuan Mi and Misha Tsodyks ‘Synaptic theory of working memory 
capacity’ is about to be submitted.  

2.7.1.4 Model Results 

With proper parameters that are compatible with experimental measurements of inter-
pyramidal connections in the prefrontal cortex, our model can extract 4 items from long-
term memory by activating the corresponding clusters with transient external inputs, and 
retain them in WM in the form of brief reactivations which we call population spikes (PSs; 
see figure). Each time a certain cluster emits a PS, it triggers a modification in the 
instantaneous synaptic efficacy of recurrent connections within this cluster, characterized 
by transient depression and subsequent facilitation that maintains the corresponding item 
in WM until the next PS of the cluster (Fig. D). When 5 items were loaded, only 4 of them 
could be maintained successfully while the fifth one fades away (see Fig. E,~F), indicating 
that for this set of parameters, the capacity of WM is 4. 

 

Figure 45: Short term plasticity based working memory network model. 
A. Network architecture: a number of recurrent excitatory neural clusters, shown in different colors, 
reciprocally connected to an inhibitory neuron pool, shown in black. Each excitatory cluster represents 
one memory item. Within each excitatory cluster, recurrent excitatory connections exhibit short-term 
synaptic plasticity. B. Model of a synaptic connection with STP. In response to a presynaptic spike train 

(lower panel), the neurotransmitter release probability increases and the fraction of available 
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neurotransmitter decreases (middle panel), representing, correspondingly, synaptic facilitation and 

depression.  is the membrane potential (upper panel). 

C. Network simulation with four loaded memory items. Upper panel: Firing rates of different clusters after 
transient simulation. Four clusters are sequentially stimulated by brief external excitation (shaded colored 
rectangles). Different colors correspond to different clusters as in A. Following the stimulation, all four 
clusters continue sequential activation in the form of PSs. Lower panel: The instantaneous synaptic 

efficacy  for stimulated neural clusters during loading and subsequent reactivations. D. Same as C 
with five loaded items. The parameters are:  

   

We analytically estimated the maximum number of items that can be maintained in WM by 
the ratio of two temporal scales: (i) the maximal period maxT  of the limit cycle of the 

network, i.e. the maximal time between subsequent reactivation of each cluster; and (ii) 
the temporal separation between two consecutive PSs, referred to as st , the capacity of 

WM is given by the maximum number of PSs that can be accommodated in a single period 
of the limit-circle, i.e. by max / sC T t≈  . The resulting estimated expression for capacity is   

 

 

where G is a weak function of parameters. This analytical result was confirmed with 
numerical simulations of the model. The above expression shows that WM capacity is 
increasing with the time constant of synaptic depression in recurrent connections and 
decreasing with the neuronal time constants in the network. These analytical predictions 
could be amenable for experimental verifications by genetic manipulations of these 
parameters. The model also predicts that synaptic facilitation time constants determines 
the minimal duration of pauses that allows the stream of inputs to be segmented into 
different chunks. These effects could be relevant for many cognitive processes where 
chunking was shown to play a crucial role, such as e.g. speech processing. 

2.7.1.5 Provenance 

Not applicable. 

2.8 T4.3.3 Models of biologically realistic network states; 
wakefulness & sleep 

2.8.1 G. Deco (UPF) _ Cortical model of wake and sleep  

2.8.1.1 Introduction 

The group under Prof. Deco has started a collaboration with Prof. Dehaene (WP3.1) to 
examine dynamical markers of wakefulness in fMRI data.  

2.8.1.2 Model Description 

The cortex model is parcellated into 432 cortical and subcortical areas. The aim is to 
interpret fMRI data acquired from four anesthetized (propofol; deep: 31 trials, light: 25 
trials) and awake monkeys during quiet wakefulness (21 trials). To do so, we estimate 
directed effective connectivity from the data with the help of a recently developed whole 
brain model (cf. T4.3.1). It is based on a noise diffusion process and optimizes the 
correspondence between the functional connectivity (covariances of the fMRI time series 
data) and the intracortical interaction strengths. Details are provided in T4.3.1 and a 
recent publication: Gilson, Moreno-Bote, Ponce-Alvarez and Deco, Estimation of Directed 
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Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries in Cortical 
Connectome, PLoS Comput Biol (in press).  

2.8.1.3 Model Data 

• T4.3.3 for data analysis, T4.3.1 for model and code development, WP3.1 for 
experimental data. 

• Description of algorithms/models/principles: 

o Model and code described in T4.3.1; cf. www.unic.cnrs-gif.fr/owncloud. 

• Description of experimental data: 

o Secondary use of data published: P Barttfeld, L Uhrig, JD Sitt, M Sigman, B 
Jarraya, S Dehaene. Signature of consciousness in the dynamics of resting-state 
brain activity. PNAS (2015) 

o Parcellation of 432 cortical and subcortical areas. fMRI data acquired from four 
anesthetized (propofol; deep: 31 trials, light: 25 trials) and awake monkeys 
during quiet wakefulness (21 trials). 

• Completeness of data/algorithms/models: 

o The method and model have been verified on many datasets. 

o The data analysis focuses on information about the directed cortico-cortical 
connectivity to examine the information flow in the three states of 
wakefulness. This is supported by recent results about the spatio-temporal 
structure of fMRI time series (Mitra et al, eLife 2015). We aim to provide a 
mechanistic explanation to this phenomenological analysis. 

• The analysis is ongoing to uncover principles of cortical branching patterns that 
underlie the changes observed in fMRI. 

• Data/algorithm/model usage to date: 

o Algorithm developed and used by T4.3.1. 

• References: 

Barttfeld, Uhrig, Sitt, Sigman, Jarraya and Dehaene. Signature of consciousness in the 
dynamics of resting-state brain activity. PNAS (2015) 

Gilson, Moreno-Bote, Ponce-Alvarez and Deco. Estimation of Directed Effective 
Connectivity from fMRI Functional Connectivity Hints at Asymmetries in Cortical 
Connectome, PLoS Comput Biol (in press). 

Mitra, Snyder, Tagliazucchi, Laufs and Raichle. Propagated infra-slow intrinsic brain 
activity reorganizes across wake and slow wave sleep, eLife (2015) 4:e10781 

Tagliazucchi, von Wegner, Morzelewski, Borisov, Jahnke and Laufs. Automatic sleep 
staging using fMRI functional connectivity data. Neuroimage (2012) 63: 63-72 

Boly, Perlbarg, Marrelec, Schabus, Laureys, Doyon, Pélégrini-Issac, Maqueta and Benali. 
Hierarchical clustering of brain activity during human nonrapid eye movement sleep. PNAS 
(2012) 109: 5856-5861 

2.8.1.4 Model Results 

Fig. 46 shows the empirical FC for the 3 states. FC spatio-temporal information 
(covariances with various time lags of correlation, not just “spot” covariances) is used to 
extract information about the directionality of intracortical connections. This analysis sits 
in the context of ‘feedforward’ and ‘feedback’ pathways in the brain, namely from sensory 
to high-level areas. 
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Figure 46: Empirical FC for the three states of wakefulness. 
Here the spot covariances between the BOKD time series of all regions are represented. Data from 
Barttfeld et al, PNAS (2015).  

The model is tuned to individual sessions and statistical tests are used to assess the 
significant differences between the estimated connectivities in the various states. We 
focus on differences in the relative strength of feedforward and feedback connections that 
could serve as a marker for conscious and unconscious vigilance states. Initial results 
indeed indicate that asymmetry is generally larger during anesthesia and more pronounced 
in frontotemporal areas and midline structures (Fig. 47). This is in line with recent results 
(Mitra et al, eLife 2015); we aim to go beyond a phenomenological description and bring a 
mechanistic explanation for the observed changes in FC. Further analysis will examine 
whether different functional connectivity states as found by the group of Prof. Dehaene 
during both anesthesia and wakefulness are also accompanied by different effective 
connectivity profiles. 

 

Figure 47: Effective connectivity differences between anesthesia and awake states. 

Cortical areas are depicted as red circles and the blue lines reflect significantly stronger effective 
connectivity during anesthesia as compared to wakefulness with the preferred activity flow pointing into 
the direction of the arrow. 

With another set of human fMRI data during wake and sleep (Tagliazucchi et al., 
Neuroimage 2012; Boly et al., PNAS 2012), we examine the temporal and spatial dynamics. 
The focus is on distinguishing these two states with data analysis and model-based 
methods. The data analyses in Fig. 48, based on two different data sets, show significant 
differences in various measures between the two states: 

• The mean functional connectivity (FC), the mean over nodes of the Pearson correlation 
between the BOLD time series between each node, is significantly lower in slow-wave 
sleep than in awake. 
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• The global phase synchrony, the mean of the phase synchronisation over time, is 
significantly lower in sleep than in awake. 

• The integration, the length of the largest component in the binarized, thresholded FC 
matrices, is significantly lower in slow-wave sleep than in awake. 

The differences have been tested using permutation testing (p-value: 0.0099). 

 

Figure 48. Data analysis 
(i) Functional connectivity matrix for the awake state. (ii) Functional connectivity matrix for the sleep 
state. (iii) Integration measure as a function of the FC Threshold. 

The model-based analyses suggest that these results are due to a global shift of the 
dynamical system to the asynchronous regime during sleep (see Fig.49). The optimal fit 
between the empirical data and the model moves with increasing global coupling during 
sleep to more negative bifurcation parameter (p-value: 0.0099, permutation test), 
meaning asynchronous dynamics, whereas in the awake state the system stays closer to the 
edge of the bifurcation, the brink between asynchronous and oscillatory dynamics. 
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Figure 49. Parameter exploration of whole brain model 
(i) Model fit (Kolmogorov-Smirnov-Distance between the distribution of empirical FC values and simulated 
FC values) for the awake state: the optimal fit is the minimum KS-Distance. (ii) Model fit (Kolmogorov-
Smirnov-Distance between the distribution of empirical FC values and simulated FC values) for the sleep 
state: the optimal fit is the minimum KS-Distance. (iii) Simulated global phase synchrony and the optimal 
fit for both awake and sleep 

The profile of dynamical interactions will be used to constrain large-scale networks of 
neural-mass models or spiking neurons (SP6) to investigate transition between the activity 
patterns in wake and sleep, thanks to our estimation of biomarkers (connection strengths 
and excitability). 

2.8.1.5 Provenance 

Data from WP 3.1 (Prof S Dehaene) and model from T4.3.1 (Prof G Deco, related team). 

2.8.2 A. Destexhe (CNRS) _ Models of biologically realistic network states 

2.8.2.1 Introduction 

Comparing waking and sleep states is the main source of knowledge for understanding how 
spontaneous activity in the brain affects neuronal responses and information coding. 
Understanding the role of spontaneous activity, and its interaction with sensory inputs, is 
crucial for understanding how information is represented and processed in the brain. In 
fact, spontaneous activity is a major aspect in which the brain and engineered information 
processing systems differ. EEG recordings from cortex and thalamus show very different 
patterns of spontaneous activity in different brain states. During slow wave sleep and 
anesthesia, the activity across large populations of neurons is dominated by a synchronous 
regular pattern, showing slow-frequency oscillations. In contrast, during waking and REM 
sleep, so called activated states, the population activity exhibits an asynchronous irregular 
network state with a highly complex dynamics. Intracellular recordings in vivo show that, 
in such complex dynamics, cortical and thalamic neurons are in a stable depolarized state 
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close to the firing threshold, embedded in a “noisy” irregular pattern of background 
synaptic activity which, occasionally, lead to neuronal spiking. It is during the apparently 
noisy dynamical regime, which characterizes activated states, that the main computational 
tasks are preformed. Ongoing spontaneous activity in the network is generated by the 
combination of intrinsic electrophysiological properties of single neurons and their synaptic 
interactions; it is globally affected by external neuromodulatory inputs and correlated with 
the functional state of the brain. Within this context, we are specifically working on 
understanding the role of correlations between pairs of neurons in information processing 
during different brain states. Pair-wise response correlations can arise when neurons 
received shared sensory inputs, but also when they are subject to correlated modulatory 
influences that are not sensory in origin.   

From published 2D multielectrode array recordings in human neocortex from epileptic 
patients during sleep, Peyrache et. al. (PNAS 2012) reported a detailed functional 
characterization of putative excitatory (E) and inhibitory (I) cells. The absolute value of 
the spatial correlation coefficient (CC) between homogeneous pairs, E-E and I-I, was 
reported. E-E correlations showed a marked exponential decay with distance while I-I 
correlations did not. However, synaptic connections between I neurons are believed to be 
more local than the E ones. This result opens a new intriguing question, which we aim to 
address in our model. First, we have implemented the data analysis presented in Peyrache 
et. al. by studying the impact of silent periods, or down states, in the network dynamics. 
Second, we are developing mechanistic spiking models of different brain states. We have 
designed topological balanced networks characterized by adaptive exponential integrate 
and fire neurons with conductance based synapses and a probability of connection which 
decays with distance, according to a Gaussian profile. We are still exploring the dynamics 
of the network in different parameter regimes and considering different implementations. 
To shed some light in the implementations we need to make, we are also developing a 
phenomenological model, which recast the qualitative features of the correlation-distance 
dependence observed in the data. 

2.8.2.2 Model Description 

In order to understand relevant aspects of the correlation-distance dependence of 
neuronal pairs during different brain states, we have first refined and implemented the 
data analysis presented in Peyrache et. al. We have refined the analysis by including the 
sign of the correlation coefficients to explore the impact of negative correlations between 
neuronal pairs. We have also included correlations between heterogeneous pairs, E-I, in 
our analysis. As an implementation, we have characterized up and down states from the 
multiunit activity; as expected, down states were more abundant during slow wave sleep 
than during awake or REM. With this characterization we could isolate the time intervals of 
activation, or up states, and compute pair-wise correlations only considering those. For 
this step, we followed Renart et. al. (Science 2010): every ISI of the MUA longer than 50 ms 
was associated with a down state, to create the margins of each down state we smoothed 
the MUA with a Gaussian density of width 10 ms and we set a threshold at 20% of its 
maximum of the whole recording session, the down state began at the first point in time 
within the associated ISI at which the smoothed MUA reaches a value under threshold, and 
ended at the first point in time within the ISI at which it reaches a value over threshold. 
The time intervals characterized as down states were removed from all spike trains and 
the up-state time intervals were merged together (unless they were shorter that 50 ms). 
From the resulting spike trains, we computed again the pair-wise correlations. We find 
that, considering positive and negative correlation coefficients, fluctuations between up 
and down states have a relevant impact on the magnitude of the correlation coefficient of 
E-E pairs, as we show below. Surprisingly, the correlation coefficients between I-I pairs, do 
not show to be affected by activated and silent fluctuations in the state of the network. 
We hope to be able to reproduce this behavior in a mechanistic model.      
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From the modeling perspective, we are, in parallel, developing a simulation and a more 
phenomenological model which conceptually recast the features to be implemented in the 
simulation. 

We use PyNN and the NEST simulator to design 2D topological balanced networks. The 
simulation is composed of N = 10000 neurons (80% excitatory and 20% inhibitory). The 
neurons are model as conductance-based adaptive exponential integrate-and-fire (AdEx IF) 
with a membrane time constant τ_m = 20 ms. The membrane potential spiking threshold is 
set to Vt=-50 mV, the reset potential to Vr=-60 mV and the refractory period to τ_ref = 5 
ms. These parameters were chosen as biologically realistic according to previous studies. 
Through adaptation regular spiking (excitatory) neurons and fast spiking (inhibitory) 
neurons are generated. The synaptic connections between neurons are modeled as 
transient conductance changes in which the synaptic time course is an instantaneous rise 
followed by an exponential decay. The synaptic time constants are τ_exc = 5 ms for 
excitation and τ_inh = 10 ms for inhibition and the reversal potentials are Eexc = 0 mV and 
Einh = -80 mV.  Every neuron is connected with the rest of the network with a connection 
probability that depends on the distance between two neurons in the network, according 
to a Gaussian profile with σ_exc and σ_inh the variances of the connectivity profile, i.e., 
the spatial spread of the Gaussian profile. For each neuron, the total number of synapses is 
fixed and the incoming connections are random. In Fig. 50 we show a diagram of the 
network.  

 

 

 
Figure 50: topological balanced network with conductance-based adaptive exponential 
integrate and fire neurons and a probability of connection which decays with distance, 

according to a Gaussian profile. 
On the other hand, we built a simple phenomenological model of pair-wised correlated 
neurons which receive a fraction of shared inputs from a pool of presynaptic neurons. The 
firing of a single neuron in the model is represented by a double-stochastic process. Each 
neuron have two types of variability: one is related to the Poisson-like variability inherent 
to spike generation and the other to random fluctuations in the (time-dependent) firing 
rate. The fluctuations could represent gain modulations in sensory systems or modulations 
of excitability (Goris, Movshon, and Simoncelli, Nature Neuroscience 2014). We assume 
that the time-course of gain fluctuations is the same for the whole population, but their 
amplitude varies from neuron to neuron. In other words, we can write the firing rate of the 

Sigma Exc     Sigma Inh 
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presynaptic pool as the product of a (Gamma-distributed) random process (with norm 1,), 
and the population-firing rate. The realization of the double-stochastic process is the 
numbers of spikes per bin given by a non-homogeneous Poisson distribution. Each neuron 
within a pair gets inputs from such gain-modulated population. Some of the inputs are 
common for both neurons, but others are not. We assume that with increasing distance 
neurons share a lower fraction of common inputs. 

2.8.2.3 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 

T4.3.3 UNIC/EITN, Alain Destexhe 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

• Description of algorithms/models/principles: 

− Format, language if applicable. 

PyNN and NEST simulator for the network simulation  

Python for the phenomenological model 

− Name of DICs/software catalogue/or HBP github project entries. 

• Description of data: 

− Species, sex, age, number of specimen/subjects. 

 

− Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of entities, 
e.g. morphological characterisation of basket cells of the hippocampus. 

 

• Completeness of data/algorithms/models: 

− Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models?  

− Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community 

− Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

• Outline state of validation work. 

• Data Quality and Value: 

− Verification of data quality. 

− Your subjective analysis of the value of the data/algorithms for the users. 

• Data/algorithm/model usage to date: 

− Who has used the data/algorithms/models, for what? Please list a) Ramp-Up data 
(please use DIC name) used for validation or input, and the number and name of 
the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task number and 
name of the SGA1 Task that will use the developed models/approach to generate 
models, or c) Tasks that will build modelling tools that allow usage of the 
model/approach in SGA2. 
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• Are the data/algorithms/models considered final? 

• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) 

2.8.2.4 Model Results  

In the simulation the parameters are tuned within the regime in which the network shows 
self-sustained asynchronous irregular activity (see Fig. 51). We have performed an 
exploration of the network dynamics mainly by varying the spatial spread of the Gaussian 
profile σ_exc and σ_inh (see Fig. 52).  

 

  

 
Figure 51: Raster plot and average firing rate obtained from the network simulation for 

σ_exc = σ_inh = 0.15.  

 

Figure 52: Parameter exploration of the network 

By varying σ_exc and σ_inh we compute the excitatory firing rate, the coefficient of variation of the inter-
spike interval (ISI CV) and the ration between the spatial decay of E-E pairs (τ_EE) and the spatial decay of 
I-I pairs (τ_II).   

The model is still in progress and we need to implement the network simulation in order to 
reproduce the pair-wise correlations-distance dependence obtained from the analysis of 
the data. As an example, we show in Fig. 53 the correlation coefficient versus distance for 
σ_exc = σ_inh = 0.15.  

CV ISI 
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Figure 53: Correlation coefficient versus distance of E-E pairs (blue) and I-I pairs (red) 
for σ_exc = σ_inh = 0.15.   

From the more phenomenological model, as expected (see Fig. 54), the correlation 
coefficient decreases when neurons have less synaptic inputs in common. But, the 
sensitivity of the correlation coefficient to this fraction depends on the firing rate. For fast 
firing neurons, the function decays much slower with distance, as we obtained from the 
data analysis.  In the mechanistic implementation, a pair of neurons is receiving 
conductance-based inputs from a shared pool of pre-synaptic inhibitory and excitatory 
neurons. The modulation of the gain will be implemented as the fluctuations of the 
inhibition and excitation, keeping the balance. The differences in the firing rate between 
the two post-synaptic neurons will be implemented by means of neuronal adaptation. 

 

Figure 54: Correlation coefficient as a function of shared inputs for different firing 
rates.  

2.8.2.5 Provenance 

NA 
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2.8.3 M. Diesmann/A. Morrison (JUELICH) _ Models of biologically realistic 
network states; wakefulness & sleep  

2.8.3.1 Introduction 

Acetylcholine (ACh) is an important neuromodulator in the regulation of brain states, 
including the sleep-wake cycle1,2. Since ACh is related to attention and arousal, and can 
modify the signal-to-noise ratio of sensory responses, understanding its actions can 
contribute to models of cognition. While both single-neuron and network effects of ACh on 
cortex have been measured experimentally, a model systematically linking these levels 
taking into account layer and cell-type specificity is missing to date. In this task, Jülich 
aimed to establish such a model. 

2.8.3.2 Model Description 

Jülich created a full-density spiking model of a cortical microcircuit to investigate how 
acetylcholine (ACh) influences cortical network dynamics. Layers 2/3, 4, 5, and 6 are 
modeled with an excitatory (E) and an inhibitory (I) population of leaky integrate-and-fire 
neurons each. The model is based on the cortical microcircuit model of Potjans and 
Diesmann3 but the numbers of neurons are adjusted to more closely reflect mouse barrel 
cortex. The numbers of neurons are [2/3E: 1700, 2/3I: 170, 4E: 1700, 4I: 170, 5E: 1100, 5I: 
110, 6E: 1300, 6I: 130]. Furthermore, the relative inhibitory synaptic weight is adjusted, as 
are the delays and synaptic weight distributions. The synaptic weight distributions are 
modeled as lognormal rather than the original Gaussian distributions. External Poisson 
input was applied to all neurons (independent across neurons) at rates found by an 
automatic procedure to yield realistic population-specific firing rates. The Poisson rates 
are [2/3E: 1129, 2/3I: 975, 4E: 1345, 4I: 1198, 5E: 2892, 5I: 2875, 6E: 1570, 6I: 1498] 
spikes/s. Table XXX lists the remaining parameters that differ with respect to the model of 
Potjans and Diesmann. 

Table 1: Parameters of the cortical microcircuit model 

Parameter Symbol Value 

Transmission delay from E neurons !! 1.2 ms 

Transmission delay from I neurons !! 0.7 ms 

Median excitatory synaptic strength !! 2.7 mV 

Mean excitatory synaptic strength !! 3 mV 

Median inhibitory synaptic strength !! 27 mV 

Mean inhibitory synaptic strength !! 30 mV 

Membrane time constant !!	 20 ms	

Membrane capacitance !!	 200 pF	

Leak potential !!	 −67 mV	

Synaptic time constant !!	 5 ms	

Cell-type-specific depolarizing and hyperpolarizing effects of ACh4,5,6 were taken into 
account by changing the resting membrane potentials by the following amounts: [2/3E: +1 
mV, 2/3I: +1 mV, 4E: -1 mV, 4I: 0 mV, 5E: +1 mV, 5I: +1 mV, 6E: +1 mV, 6I: +1 mV]. The 
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effects on layer 6 neurons are based on unpublished observations of Günter and Feldmeyer 
(Jülich). ACh can have opposite effects even on different inhibitory neuron types in a 
single layer, but we tried to take into account the main effects. 

ACh sparsifies cortical activity, with the most active neurons remaining active while the 
least active neurons become even less active7,8. Furthermore, ACh has been shown to 
weaken the synapses of several connection types, including excitatory connections onto 
excitatory neurons in layers 3-555,9,10. We hypothesized that the differential effects of ACh 
on the activity of low-rate and high-rate neurons are due to selective weakening of already 
weak synapses. Figure 55 shows the synaptic weight distributions in the model in the 
presence and absence of ACh.  

 

Figure 55: Distributions of excitatory synaptic weights in the model with (blue) and 
without (red) ACh. 

We quantified the neuromodulator (NM) effect as the mean firing rate of each neuron in 
the presence of ACh divided by its mean firing rate in the absence of ACh. In experiments 
where the cholinomimetic drug Carbachol was applied to mouse primary visual cortex, the 
distributions of effect sizes across neurons at several Carbachol concentrations were found 
to be negatively skewed8. We tested whether the same holds in our model. 

Another notable effect of ACh for which we tested is the decorrelation of spontaneous 
activity7.  

In terms of evoked activity, ACh is thought to increase the signal-to-noise ratio of 
responses to sensory stimuli11. Correspondingly, ACh enhances the strength of 
thalamocortical synapses via nicotinic receptors8. We simulated transient thalamocortical 
inputs by increasing the Poisson rates impinging on layer 4 neurons by 500 spikes/s for 100 
ms. In the control condition, thalamocortical synaptic strengths equaled the mean 
excitatory synaptic strength in the circuit. To model the condition with ACh, they were 

doubled. We quantified responses to thalamic stimuli as the difference in the peristimulus 
time histogram (PSTH) between spontaneous and driven conditions, and tested whether 
ACh enhanced these responses. 

The network was simulated with NEST 2.8 for 10 seconds of biological time and the first 
100 ms were discarded for the calculation of dynamical measures. 
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2.8.3.3 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 

Jülich model: This work was done by Andrei Maximov and Sacha van Albada. The 
responsible person is Abigail Morrison. 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

Python scripts are in a git repository administrated by Jülich 

• Description of algorithms/models/principles: 

o Format, language if applicable. 

PyNEST 

o Name of DICs/software catalogue/or HBP github project entries. 

not applicable 

• Description of data: 

o Species, sex, age, number of specimen/subjects. 

Not applicable 

o Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of 
entities, e.g. morphological characterisation of basket cells of the 
hippocampus. 

Simulations of a cortical microcircuit at cellular and synaptic resolution 

• Completeness of data/algorithms/models: 

o Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated 
data set/algorithms/models?  

This model was intended as a first, exploratory version and that is what was achieved. 

o Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community 

The project is being continued in Jülich outside the HBP to ensure preservation and 
extension of the knowledge gained. Once a more mature version has been developed, the 
code will be made available in a public repository, for instance github or Open Source 
Brain. 

o Give a short review (1–2 paragraphs) of data/algorithms/models generated by 
the community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

The model mostly uses data from the literature, but in addition some new, unpublished 
data from the group of Dirk Feldmeyer in Jülich. The latter determined cell-type-specific 
effects of acetylcholine on the resting membrane potential of neurons in cortical layer 6. 
These data help determine the parameter changes applied in the model. 

• Outline state of validation work. 

Based on parameter changes reflecting experimental results at the single-neuron level, 
several network effects were qualitatively reproduced. The work builds on an existing 
model of a cortical microcircuit that has been more extensively validated and used in 
several follow-up projects such as a multi-area model of macaque visual cortex that is also 
part of SP4. 
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• Data Quality and Value: 

o Verification of data quality. 

o Your subjective analysis of the value of the data/algorithms for the users. 

• Data/algorithm/model usage to date: 

o Who has used the data/algorithms/models, for what? Please list a) Ramp-Up 
data (please use DIC name) used for validation or input, and the number and 
name of the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task 
number and name of the SGA1 Task that will use the developed 
models/approach to generate models, or c) Tasks that will build modelling tools 
that allow usage of the model/approach in SGA2. 

• Are the data/algorithms/models considered final? 

No 

• No publications yet 

2.8.3.4 Model Results 

Simulations of the control condition without ACh-induced changes yield irregular activity 
with reasonable firing rates and a low level of synchrony (Fig. 56). 

  

Figure 56: Raster plot showing spike times of, from top to bottom, populations 2/3E, 
2/3I, 4E, 4I, 5E, 5I, 6E, and 6I. 

Simulations with parameters mimicking ACh effects give altered firing rates distributions 
compared to the control condition, with negatively skewed effect size distributions for 
layers 2-5 (Fig. 57). Furthermore, ACh decorrelates the spiking activity in these layers. 
Both effects are in line with experimental results7,8. 
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Figure 57: Effect of ACh on firing rate distributions of excitatory neurons. 
A-D: Neuromodulator (NM) effect quantified as the ratio of firing rates with and without ACh. Distributions 
across neurons for layer 2-6 are shown. E: ACh reduced mean pairwise cross-correlation coefficients 
between excitatory neurons in each of layers 2/3, 4, and 5. 

Also in line with experimental findings, ACh enhances responses to modeled transient 
thalamocortical inputs (Fig. 58). This enhancement is most prominent in layer 4. 

 



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 112 / 151 
  

Figure 58: ACh enhances thalamocortical responses  in the model, quantified as the 
difference between average driven PSTH and spontaneous rates. 

A-D: PSTH of thalamically evoked activity in layers 2-6 in control condition with no ACh-derived 
modifications. E: Total number of evoked spikes (calculated as an integral of PSTH) for layers 2-6 in 
control (black) and modified by ACh (grey) conditions. 

In conclusion, the Jülich model reproduces cholinergic effects on several aspects of 
spontaneous and evoked cortical activity. Future work will consider more systematic 
parameter scans, a more precise matching of parameter changes in the model to 
experimental results, and potentially a further distinction between subpopulations that 
undergo differential effects in response to acetylcholine. 

2.8.3.5 Provenance 

NA 

2.9 Task 4.3.4 Computational model of astrocyte-neuron interaction 
for future large-scale simulations  

2.9.1 ML. Linne (TUT) 

2.9.1.1 Introduction 

Recent evidence indicates that astrocytes actively participate in the functions of cortical 
synapses in vivo, and may therefore be crucial for understanding information processing, 
plasticity and learning in the cerebral cortex. Our goal in T434 was to develop a 
biophysically and biochemically detailed model of astrocyte-neuron interactions (ANI) to 
test the accumulating hypotheses about the involvement of astrocyte molecular signalling 
mechanisms in synaptic functions. We tailored the model for future large-scale simulations 
of mouse somatosensory cortex functions in vivo. The work utilizes our previous work in 
computational modelling of astrocytic and neuronal mechanisms in excitability, plasticity 
and long-term potentiation/depression (Manninen et al. 2010, Toivari et al. 2011, Hituri 
and Linne 2013, Linne and Jalonen 2014, Saudargiene and Graham, 2015). The ANI model 
incorporates key biochemical and biophysical mechanisms for the tripartite synapse, in 
other words for the pre- and postsynaptic elements of the synapse and the astrocyte. The 
model is utilized to simulate the time courses of various events, in response to various 
stimulation paradigms including plasticity paradigms, in postsynaptic terminal, and time 
courses of subsequent induction of increased calcium oscillations in astrocytes. In addition, 
the ANI model is planned to be used for the following purposes within the HBP: 

1) develop systematic algorithms in order to reduce the complexity of models, in 
collaboration with SP4 tasks and external collaborators, 

2) develop computing principles of astrocytes, in collaboration with SP4 tasks,  

3) develop neuromorphic chips, inspired by the ANI model, in collaboration with SP9 (the 
first T434-SP9 workshop was organized in Nov 2015), 

4) guide production of additional validation data on calcium transients in postsynaptic 
terminal and astrocyte in specific learning paradigms in SP1 and SP2. Several 
researchers are contacted through contacts organized by Prof. Katrin Amunds (SP2),  

5) integrate the developed ANI model as part of the molecular models of neuro-vascular-
glial coupling, developed by Dan Keller (T6.4.3.). First meetings and workshops were 
held in 2015: Geneva May 2015 and EITN Paris Dec 2015. 

6) promote advanced use of The Simulation Platform, in collaboration with SP5 and SP6, 
to validate ANI model using additional validation data (obtained in item 4). First 
meetings and workshops were held in 2015: Geneva May 2015 and EITN Paris Dec 2015, 
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7) integrate the ANI model as part of the somatosensory cortex simulation, in 
collaboration with SP6. 

We received funding in the competitive call in 2013. T434 started in M7 with institutional 
funding from TUT, and continued in M14 with HBP funding. 

2.9.1.2 Model Description: Astrocyte-neuron interaction model (ANI) model 

The astrocyte-neuron interaction (ANI) model is a detailed biophysical excitability model 
that involves the astrocyte, presynaptic and the postsynaptic terminals of the so-called 
tripartite synapse. The model describes key cell membrane, as well as intracellular 
calcium processes shown to take part in the information transfer in the synapse. We did 
not use a simple leaky integrate-and-fire type of approach for spikes, but instead use 
descriptions of voltage-gated conductance in order to better assess the time scales of 
events associated with cell membrane level events and events that occur inside the 
terminals. Moreover, the model includes key interactions between postsynaptic terminal 
and the astrocyte. Studies related to the selection of model components and 
reproducibility issues of T434 have already been accepted for publication in Manninen et 
al. 2016. Altogether 61 astrocyte models have been published through the year 2014 and 
our recent work (Manninen et al. 2016), with detailed analysis of model characteristics, 
provided us important insights into the development of the ANI model. 

Our hypothesis for the present ANI model is that a retrograde signalling mechanism, such 
as the one provided by endocannabinoids, is required in addition to neuro- and glio-
transmission to fully understand synaptic information transfer in a cortical synapse under 
study. One of the few models that describe both pre- and postsynaptic signalling, including 
the release of endocannabinoids, is the study by Zachariou et al. (2013). Moreover, the 
only existing astrocyte model that can take endocannabinoid as input is by Wade et al. 
(2012). These two modelling projects were used as the basis of the new ANI model which is 
extended beyond to incorporate detailed cell membrane level mechanisms. For details of 
model selection see Manninen et al. 2016).  

In short, we implemented the following mechanisms of the tripartite synapse: 

Presynaptic terminal: i) conventional cell membrane ionic currents (transient sodium 
current, delayed rectifier potassium current), ii) fraction of willing calcium channels, iii) 
fraction of bound G proteins (cannabinoid receptors).  

Postsynaptic terminal: i) conventional cell membrane ionic currents (sodium current, 
delayed rectifier type potassium current), ii) L-type calcium current, iii) AMPA receptor 
current, iv) PMCA pump (plasma membrane Ca2+-ATPase), v) intracellular calcium buffer, 
and vi) SERCA pump (sarco/endoplasmic reticulum Ca2+-ATPase).  

Astrocyte terminal: i) IP3 receptor channel, ii) SERCA pump (sarco/endoplasmic reticulum 
Ca2+-ATPase), and iii) leak current into the cytoplasm from the endoplasmic reticulum 
(ER). 

An example of the equations used for the astrocyte terminal is as follows: 

Cytosolic IP3 concentration in the astrocyte (Wade et al. 2011): 

[ ] [ ]
astroIP

astroastroastro IPIP
dt
IPd

3

3
*

33 ][
τ

−
=  

Cytosolic calcium concentration in the astrocyte (Li and Rinzel 1994, Wade et al. 2011): 
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Calcium flux through the IP3R (Li and Rinzel 1994, Volman et al. 2007, Wade et al. 2011): 
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IP3R gating variables (Li and Rinzel 1994, Wade et al. 2011): 
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The SERCA pump (Li and Rinzel, 1994, Wade et al. 2011): 
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Leak from ER (Li and Rinzel 1994, Wade et al. 2011): 
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astroleakERp _  adjusted such that net calcium flux from the ER is zero at the resting calcium 

concentration (Blackwell 2012). 

Each terminal and their submodules were first validated separately. The astrocyte-neuron 
equations provided by Wade et al. (2012) did not match the simulation results provided in 
their original publication. However, since we were only interested in the astrocyte 
terminal of Wade et al. (2012) model, a part that is commonly known as Li-Rinzel model 
(Li and Rinzel, 1994), we can strongly assume that the equations are exceptionally well 
validated. Additional validation of astrocyte responses were done based on results of 
Shigetomi et al. (2010). Equations taken from Zachariou et al. (2013) for the pre- and 
postsynaptic terminal were partly modified, for the reason that not all equations and 
parameter values are provided in the original publication. To validate the postsynaptic 
calcium transients we used data from Larkum et al. 2003 and Kaiser et al. 2004. Additional 
validation data was produced by T434 for the presynaptic vesicle release (Teppola et al. 
2015). There exist very few datasets to validate the model equations for intracellular 
signalling, but we partly used our previous modelling work to validate the models 
(Manninen et al. 2010, Toivari et al. 2011, Hituri and Linne, 2013). 

For details of the model, see the code available in EITN repositories (file name: 
T434_D464_ANImodel.m, which can be run in Matlab version R2010b to obtain the 
simulation results presented in Results section of this document).  
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2.9.1.3 Model Data 

• The group developing the model and group’s expertise: The task has been carried 
out by two computational modellers, Tiina Manninen (TUT, Finland; postdoctoral 
researcher) and Ausra Saudargiene (Vytautas Magnus University, Lithuania, collaborator 
of T434), Marja-Leena Linne (TUT, Finland) is responsible, and Riikka Havela (TUT; PhD 
student) provided expertise on biological data and computational models. Heidi 
Teppola (TUT; PhD student) provided additional biological expertise and Mikko 
Lehtimäki (TUT; MSc student of Prof. Linne) in model simplification/reduction. 
Rolandas Stonkus (Vilnius University, Lithuania; MSc student of Prof. Saudargiene) has 
additionally started work towards linking models developed in T434 to neuromorphic 
engineering in SP9. The group has the following expertise/ background education: 
Manninen (theoretical and computational modelling in neuroscience/ mathematics), 
Saudargiene (theoretical and computational modelling in neuroscience/ informatics), 
Linne (theoretical and computational modelling in neuroscience/ electrical 
engineering), Havela (computational modelling in neuroscience/ biochemistry and 
medicine), Teppola (electrophysiology/ biochemistry), and Lehtimäki (signal 
processing/computational biology). 

• Data, algorithms, tools and methodologies storage location(s): The Matlab code of 
the ANI model, as well as the publications produced by T434, are stored in the UNIC 
owncloud database. 

• Description of algorithms/models/principles: 

− Model format: Matlab (use Matlab version R2010b to obtain the simulation results 
presented in Results section of this document). 

− Name of DICs: ‘Astrocyte neuron interaction model’. 

• Description of data: 

− Species, sex, age, number of specimen/subjects: juvenile (appr. P16-21) rat and  
mouse data is used to validate the model. 

− Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of entities, 
e.g. morphological characterisation of basket cells of the hippocampus: Scale: 
cellular and molecular level computational models, as well as molecular reaction 
data and physiological data, is used to build and validate the model. 

• Completeness of data/algorithms/models: 

1) The models delivered at M30 are as anticipated. The here produced ANI model is a 
completely new approach and goes beyond the existing approaches. Since we also 
started simplification/reduction of models we exceed the anticipated results.  

2) The models produced by the whole scientific community during M1-30 are presented 
and analysed in detail by T434 and results are published in Manninen et al. 2016 (in 
press). In short, the research on astrocytes and on astrocyte-neuron signaling has 
resulted in several attempts to computationally model astrocytes’ roles in synaptic and 
neuronal network dynamics. We evaluated existing computational models developed 
for astrocyte functions and for astrocyte-neuron interactions. To the best of our 
knowledge, this study is the first to report detailed evaluation of astrocyte-neuron 
models. Models were characterized in detail to help their utilization in the future 
work. Based on our evaluation, we realized that the same component models were 
often used repeatedly in successive publications, with no spelled-out, explicit 
justification on how suitable the specific component model was for the study in 
question. Thus, most models describing the subcellular events of astrocytes had 
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limitations and shortcomings. A model typically describes a limited set of molecular 
mechanisms and provides explanations to a relatively narrow set of astroglial dynamics.  

We evaluated some of the models also by implementing the equations according to 
what was presented in the original publication, with an aim to reproduce the 
simulation results of the original publication. We discovered that many publications 
lack crucial details in how the models were presented, preventing the implementation 
of the models without first contacting the authors. Moreover, in some cases it was 
impossible, after several trials, to reproduce the simulated results of the original 
publication. This meant often that the equations and simulation results of the original 
publication did not match. 

Please see for more details the accepted manuscript (Manninen et al. 2016, in press).  

As a conclusion, the here produced ANI model is a completely new approach and goes 
beyond the existing approaches.  

• Outline state of validation work: 

The three terminals of the ANI model are validated with several sets of data obtained 
from the literature. Validation data is described in Model Description. We are in the 
process of establishing better data than what we have now on calcium dynamics in 
astrocyte processes, but this data does not exist in large quantities/is difficult to 
obtain. We are in the process of establishing collaborations with SP1 and SP2 and 
several external collaborators. 

• Data Quality and Value: 

− Verification of data quality: We have used several different sources (different 
research groups) of validation data. 

− Subjective analysis of the value of the data/algorithms for the users: We expect 
that the value of the ANI model will be large for the following reasons: the model is 
one of the first attempts to model the biophysical details of the synapse including 
the astrocyte component, the model is tuned to a specific brain region, and the 
model is described to the best of our capability (we define set of criteria how to 
define astrocyte-neuron models in our accepted T434 publication, Manninen et al. 
2016). 

• Data/algorithm/model usage to date: 

a) Ramp-Up data (please use DIC name) used for validation or input, and the number 
and name of the corresponding Ramp-Up Phase Task (and subsidiary group): DIC 
‘Astrocyte-neuron interaction model’, there is a plan that SP6 (Daniel Keller et al) and 
T423 (Gruning) will use the model.  

b) Task number and name of the SGA1 Task that will use the developed 
models/approach to generate models: T422 (Linne) of SGA1 will develop network 
models involving influences from astrocytes and the model produced by T434 of Ramp-
Up will be used as a core model. In SGA1, also SP6 (Daniel Keller et al) and T433 (Andre 
Gruning) will utilize the model. 

• Are the data/algorithms/models considered final: 

Models are final, but we may still replace some submodels of the postsynaptic terminal 
with more state-of-the-art submodels. These submodels are currently under validation 
in the group. Submodels describing the astrocyte terminal are final. 

• Publications connected to the gathered data: 

Model construction: 
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Kim et al., 2013: For the postsynaptic part, we took the detailed biochemical reactions 
for activation of metabotropic glutamate receptors (mGluRs) and endocannabinoid 
production (2-arachidonyl glycerol (2AG)) from the model by Kim et al., 2013. In more 
detail, the reactions included glutamate binding to mGluRs, which then activates G 
proteins. Calcium (Ca), with or without the activated G protein, then binds and 
activates phospholipase C (PLC), which produces diacylglycerol (DAG) and inositol 
trisphosphate (IP3). DAG lipase then converts DAG into 2AG. Furthermore, DAG and Ca 
activate protein kinase C. 

Zachariou et al., 2013: To make the postsynaptic model more detailed, we decided to 
add the equations for postsynaptic plasma membrane Ca-ATPase (PMCA) pumps and 
diacylglycerol (DAG) degradation from the model by Zachariou et al., 2013. In addition, 
we modified the L-type Ca channel model by Zachariou et al. (2013) to fit better our 
purposes. 

Wade et al., 2012 and Li and Rinzel, 1994: We took the equations for astrocytic IP3, 
Ca, and fraction of activated IP3 receptors (IP3Rs) from the model by Wade et al., 
2012. Basically the equations for astrocytic Ca and fraction of activated IP3Rs 
originated from the work of Li and Rinzel, 1994. Astrocytic Ca concentration depends 
on IP3 and Ca -dependent Ca release, sarco/endoplasmic reticulum Ca-ATPase (SERCA 
pump), and leak current into the cytoplasm from the endoplasmic reticulum. The 
fraction of activated IP3Rs depend on Ca and IP3. IP3 concentration depends on 
postsynaptic 2AG concentration from the model by Kim et al., 2013. 

T. Manninen, R. Havela, and M.-L. Linne (2016). Computational models of astrocytes 
and astrocyte-neuron interactions: Categorization, analysis, and future perspectives. 
Accepted to Computational Glioscience: One of the goals of T434 was to evaluate 
existing models. This publication presents the characteristics of all astrocyte and 
astrocyte-neuron models and shows the reproducibility of the original simulation 
results for five models. The publication serves as an important background material to 
produce the ANI model in T434. 

Model validation: 

Kaiser et al. 2003: Data used to validate the calcium transients in the postsynaptic 
terminal. 

Larkum et al. 2004: Data used to validate the calcium transients in the postsynaptic 
terminal. 

H. Teppola, R. Sarkanen, T.O. Jalonen, and M.-L. Linne (2015). Morphological 
Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by 
Estradiol, Retinoic Acid and Cholesterol. Neurochem Res. 2015 Oct 30: The publication 
quantifies vesicle release in neuroblastoma cells and makes comparisons to astrocytic 
and other neuronal cells. The paper is used as background material in T434. 

 

2.9.1.4 Model Results  

The ANI model was simulated to assess a variety of calcium-related signalling mechanisms 
in a tripartite synapse. In the present work, we use postsynaptic stimulation with varying 
frequencies to activate the model and to illustrate its behaviour. We conclude that 
synaptic stimulation induces endocannabinoid production and delayed astrocytic calcium 
responses (Figure 59). We also conclude that the volume of the postsynaptic terminal 
(equivalent to spine) significantly affects the astrocytic calcium responses (Figure 60). 
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Figure 59: Simulation of the full ANI model by varying the frequency of the stimuli. 
Top) Postsynaptic calcium levels with 1, 5, and 10 Hz stimulation. Middle) Endocannabinoid (2-AG) 
production with 1, 5, and 10 Hz stimulation. Bottom) Astrocytic calcium responses with 1, 5 and 10 Hz 
stimulation. The results show that 5 Hz stimulation is required to induce marked changes in the 
intracellular calcium concentration of the model astrocyte. Similar changes in astrocyte calcium 
concentration have been observed in vivo in response to stimulation of astrocytes. 
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Figure 60: Simulation of the full ANI model by varying the frequency of the stimuli and 
the volume of the postsynaptic terminal (equivalent to spine). 

Increase in spine volume (increase in the radius, defining the volume of the postsynaptic terminal, from 
0.5 µm to 2 µm) causes significant changes in the astrocytic calcium responses. Substantial decrease in the 
amplitude of the calcium response is detected, together with a marked delay in the activation of the 
astrocytic response, in comparison to original 0.5µm radius. 

The model serves as a tool to test several other hypotheses stemming from the 
experimental community, including how transmission of information between astrocytes 
and neurons at synapses affects the neural network function in the cerebral cortex. 
Moreover, it helps in clarifying certain controversies in the field, such as the involvement 
of astrocytes in the induction and/or maintenance of long-term potentiation and 
depression (see, e.g., Agulhon et al. 2010, Navarrete et al. 2012). The time scales of the 
molecular signalling mechanism inherently present in the model provide a step towards 
bridging scales in the future neural network models that incorporate both the neuronal and 
astrocytic influences. 

We are also developing systematic methods to reduce the complexity of models. Model 
order reduction of molecular signalling mechanisms advances development of 
neuromorphic chips for astrocytes. 

In summary, towards the end of the Ramp-Up Phase the TUT Partner has developed the 
following models, methods and tools: 

1) We have provided guidelines how the astrocyte models should be described and 
presented. One publication is accepted. 

2) We have developed a detailed biophysical model of the astrocyte-neuron interactions. 
Manuscript in preparation. 

3) We are at the midst of applying new model order reduction methods that preserve, 
very closely, the calcium dynamics observed in the full (non-reduced) ANI model. 
Manuscript in preparation. 

In addition, T434 organized The Neuron-Glia Workshop at the European Institute of 
Theoretical Neuroscience (EITN) in 2015, in order to interact with the scientific community 
outside HBP. The workshop greatly helped to sort out relevant validation data for the 
benefit of T434 goals. 

2.9.1.5 Provenance 

The ANI model is yet a theoretical model which will be used to test various predictions in 
the field of glioscience. We have mainly used data from literature which we report 
carefully.  

We are currently negotiating with SP1 and SP2, initiated by Prof. Katrin Amunds (SP2), to 
initiate collaboration within the HBP. External collaborators are obtained through 
workshops organized at EITN and they include: Prof. Joachim Luebke (Julich; additional 
validation data on calcium transients in the postsynaptic terminal), Prof. Vladimir Parpura 
(University of Alabama at Birmingham, USA; calcium concentrations and calcium transients 
in astrocytes in vivo), and Prof. Cendra Agulhon (Paris Descartes University, France; 
calcium transients in astrocytes in vitro). Moreover, we are negotiating with Prof. Pierre 
Magistretti and Dr. Corrado Cali (T6.4.3.) on reconstructions of astrocyte morphologies.  
We expect to make all this data that is used to validate the model available. This would 
allow to track back the origin of data used for model construction and validation. 

2.10 Task 4.4.1 Principles of computation in single neurons and 
cortical microcircuits  
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2.10.1 W. Maass  (TUGRAZ)_ Brain-Inspired Computing Principles for 
Implementation in Neuromorphic Computing Systems 

2.10.1.1 Introduction 

This model addresses computational properties that emerge in cortical microcircuits 
through STDP and rewiring (spine dynamics). It also addresses the robustness of these 
emergent computational properties with regard to network lesions. Details of the model 
can be found in two publications: 

    D. Kappel, S. Habenschuss, R. Legenstein, and W. Maass. Synaptic sampling: A Bayesian 
approach to neural network plasticity and rewiring. Proc. of NIPS 2015: Advances in Neural 
Information Processing Systems, 2015.  

    D. Kappel, S. Habenschuss, R. Legenstein, and W. Maass. Network plasticity as Bayesian 
inference. PLOS Computational Biology, 11(11):e1004485, 2015. 

This model can readily be transferred to neuromorphic hardware developed in SP9, since it 
employs neuron models and microcircuit motifs that have already been implemented in 
neuromorphic hardware. 

2.10.1.2 Model Description 

This model was motivated by preceding work in neuroscience, where it was shown that 
networks of neurons do not typically assume a fixed setting of parameters and 
connections, but remain to some degree plastic even in the adult brain [Grashow, 2010, 
Marder, 2011, Marder and Taylor, 2011]. It provides a demonstration and mathematical 
insight into a resulting new perspective of network learning, where one assumes that the 
high-dimensional parameter vector θ of a biological neural network tends to move around 
within some low-dimensional manifold of the parameter space where all parameter vectors 
provide stable network function (degeneracy). 

The model proposes that this low-dimensional manifold is a manifestation of Bayesian 
learning: A biological neural network ! strives to find parameters !  that  

(1) satisfy a set of constraints (such as genetically encoded connectivity rules) 
mathematically modelled by a prior distribution p! ! , and  

(2), simultaneously maximize the fit between sensory experiences ! from the outside world 
and the network’s internal representation, quantified by the likelihood function p! !|! .  

Bayes rule allows us to make this learning goal precise: 

Learn the posterior distribution p∗ !|!  defined up to normalization by (1) 

p! !  p! !|!  .   

The posterior distribution Eq. (1) is not explicitly represented by any neural code in this 
model but implicitly in the stationary distribution of the permanently changing network 
parameters ! . The model demonstrates that stochastic local plasticity rules for the 
parameters θ!  enable a network to achieve the learning goal (1): The distribution of 
network parameters ! will converge after a while to the posterior distribution !∗ !|!  - 
and produce samples from it - if each network parameter θ! obeys the dynamics 

 dθ!  =  b !
!!!

p! ! + !
!!!

log p! !|! dt +  2b dW! , (2)  

where the learning rate b > 0 controls the speed of the parameter dynamics and dW! is a 
stochastic term that describes infinitesimal stochastic increments and decrements of a 
Wiener process W! (see Kappel et al. 2015 for details). We refer to this model for the 
temporal evolution of network parameters according to Eq. (2) as synaptic sampling. 
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The underlying continuous stochastic fluctuation dW! provides in this model a driving force 
that automatically moves network parameters (with high probability) to a functionally 
more attractive regime when the current solution performs worse because of 
perturbations, such as lesions of neurons or network connections. We demonstrate this 
inherent compensation capability in Fig. 1 for a generative spiking neural network with 
synaptic parameters !  that regulate simultaneously structural plasticity and synaptic 
plasticity (dynamics of weights). 

2.10.1.3 Spike-based Winner-Take-All network model 

Network neurons of the model network shown in Fig. 1A were modelled as stochastic spike 
response neurons with a firing rate that depends exponentially on the membrane voltage 
[Jolivet et al. 2006, Mensi et al. 2011].  

The membrane potential !! !  of neuron ! is given by 

 !! ! =  !!"! !! ! +  !! !  , (3)  

where !! !  denotes the (unweighted) input from input neuron !, !!" denotes the efficacy 
of the synapse from input neuron !, and !! !  denotes a homeostatic adaptation current 
(see below). The input !! !  models the influence of additive excitatory postsynaptic 
potentials (EPSPs) on the membrane potential of the neuron. Let !!! , !!! ,…  denote the 
spike times of input neuron !. Then, !! !  is given by 

 x! t =  ϵ(t −  t!! )!  , (4)  

where ! is the response kernel for synaptic input, i.e., the shape of the EPSP, that had a 
double-exponential form in our simulations: 

 ϵ s =  Θ s  e
!
!! − e

!
!!   , (5)  

with the rise-time constant !! = 2!", and the time constant of the falling edge !! = 20!". 
Θ !  denotes the Heaviside step function.  

The network neurons were subject to a soft winner-take-all (WTA) mechanism that 
normalizes the network activity (see below). The instantaneous firing rate !! !  of network 
neuron !  depends exponentially on the membrane potential and is subject to divisive 
lateral inhibition !!"# !  :  

 ρ! t =  !!"#!!"# !
exp(u! (t)) , (6)  

where !!"# = 100!" scales the firing rate of all neurons. Such exponential relationship 
between the membrane potential and the firing rate has been proposed as a good 
approximation to the firing properties of cortical pyramidal neurons [Jolivet et al. 2006]. 
Spike trains where then drawn from independent Poisson processes with instantaneous rate 
!! !   for each neuron. We denote the resulting spike train of the !th neuron at time ! by 
!!(!). 
Lateral inhibition. Divisive inhibition between the neurons in the WTA network was 
implemented in an idealized form [Nessler et al. 2013] 

 !!"# !  =  exp!
!!! (!!(!)) . (8)  

This form of lateral inhibition, that assumes an idealized access to neuronal membrane 
potentials, has been shown to implement a well-defined generative network model 
[Nessler et al. 2013]. 

Homeostatic adaptation current. Each output spike caused a slow depressing current, 
giving rise to the adaptation current !! ! . This implements a slow homeostatic mechanism 



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 122 / 151 
  

that regulates the output rate of individual neurons (see Habenschuss et al. 2012 for 
details). It was implemented as 

 β! t =  γ K(t −  t!! )!  , (7)  

where !!
!  denotes the ! th spike of neuron !  and !  is an adaptation kernel that was 

modelled as a double-exponential (Eq. 5) with time constants !! = 12! and !! = 30!. The 
scaling parameter γ was set to γ = −8. 

2.10.1.4 Synaptic sampling in spike-based Winner-Take-All networks as stochastic 
STDP 

The synaptic sampling framework outlined in Sec. Erreur ! Source du renvoi introuvable. 
s used here to model automatic adaptation and rewiring in recurrent networks. We used a 
single synaptic parameter θ!" per synapse. The synaptic efficacy w!" of a synapse was given 
by 

 w!" = exp θ!" − θ!  , (9)  

where θ! is a parameter that scales the synaptic weights. To model network rewiring we 
interpret synapses with negative synaptic parameters θ!" as disconnected (see Kappel et 
al. 2015, for details). 

To arrive at a concrete learning scheme in terms of synaptic sampling (Eq. 2) we define 
the probabilistic model p! !|!  that underlies the WTA network. It has been shown in 
[Habenschuss et al. 2013] that a WTA-network of the form given above implicitly defines a 
generative mode. In this generative model, inputs !! !  are assumed to be generated 
depending on the value of a hidden multinomial random variable encoded by the activity 
of the WTA circuit. 

The network implements inference in this generative model, i.e., for a given input !! ! , 
the firing rate ρ! t  of network neuron k is proportional to the posterior probability of the 
corresponding hidden cause (see Kappel et al. 2015 for details). An online maximum 
likelihood learning rule for this generative model was derived in [Habenschuss et al. 2013]. 
It changes synaptic weights according to  

 !w!" ! =  S!(t)(x! t − αe!!") , (10)  

where S!(t)  denotes the spike train of the postsynaptic neuron and x! t  denotes the 
weight-normalized value of the sum of EPSPs from presynaptic neuron i at time t . 
To define the synaptic sampling learning rule Eq. (2), we also need to define the 
parameter prior. In our experiments, we used a simple Gaussian prior on each parameter 
with mean µ = 0.5 and σ = 1. The derivative of the log-prior is given by     

 !
!!!"

log p! θ =  !!! (µ −  θ!" ) . (11)  

Inserting Eq. (10) and Eq. (11) into the general form (2), we find that the synaptic 
sampling rule is given by 

 dθ!" = b !
!! µ −  θ!" + Nw!"S!(t)(x! t − αe!!") dt +  2b dW!"  , (12)  

see [Kappel et al. 2015] for a detailed derivation. 

 

2.10.1.5 Simulation and data analysis 

Computer simulations of spiking neural networks were done in Matlab 2011b (Mathworks). 
In all spiking neural network simulations, synaptic weights were updated according to the 
rule Eq. (12) with parameters N = 100, α = !!! , and b = 10!! . In the simulations, we 
directly implemented the time-continuous evolution of the network parameters in an 
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event-based update scheme. Before learning, initial synaptic parameters were 
independently drawn from the prior distribution p! θ . 

For the mapping Eq. (9) from synaptic parameters θ!" to synaptic efficacies w!", we used as 
offset θ! = 3. This results in synaptic weights that shrink to small values (< 0.05) when 
synaptic parameters are below zero (disconnected synapses). In the simulation, we clipped 
the synaptic weights to zero for negative synaptic parameters θ!"  to account for retracted 
synapses (see Kappel et al. 2015 for details). 

Network model. In the network model shown in Fig. 61A we used two recurrently 
connected ensembles, each consisting of four WTA circuits, with arbitrary excitatory 
synaptic connections between neurons within the same or different ones of these WTA 
circuits. The parameters of neuron and synapse dynamics were as described in Sec. 
4.1.2.1. All synapses, lateral and feedforward, were subject to the same learning rule Eq. 
(12). Lateral connections within and between the WTA Circuit neurons were unconstrained 
(allowing potentially all-to-all connectivity). Connections from input neurons were 
constraint as shown in Fig. 1. The lateral synapses were treated in the same way as 
synapses from input neurons but had a synaptic delay of 5 ms. 

Network Inputs. The spoken digit presentations in Fig. 61 were given by reconstructed 
cochleagrams of speech samples of isolated spoken digits from the TI 46 dataset (also used 
in Klampfl and Maass, 2013, and Hopfield and Brody, 2001). Each of the 77 channels of the 
cochleagrams was represented by 10 afferent neurons, giving a total of 770. Cochleagrams 
were normalized between 0 Hz and 80 Hz and used to draw individual Poisson spike trains 
for each afferent neuron.  In addition 1 Hz Poisson noise was added on top. We used 10 
different utterances of digits 1 and 2 of a single speaker. We selected 7 utterances as 
training set and 3 for testing. One randomly selected utterance from the training set was 
presented together with a randomly chosen instance of the corresponding handwritten 
digit. Handwritten digit images were taken from the MNIST dataset [LeCun et al. 1998]. 
Each pixel was represented by a single afferent neuron. Gray scale values were scaled to 0 
– 50 Hz Poisson input rate and 1 Hz input noise was added on top. These Poisson rates were 
kept fixed throughout the duration of the corresponding spoken digits. After each digit 
presentation, a 50 ms window of 1 Hz Poisson noise on all input channels was presented 
before the next digit was shown. 

For test trials in which only the auditory stimulus was presented, the activity of the visual 
input neurons was set to 1 Hz throughout the whole pattern presentation. The learning 
rate b was set to zero during these trials. The PETH plots in Fig. 61B were computed over 
100 trial responses of the network to the same stimulus class (e.g. presentation of digit 1). 
Spike trains were filtered with a Gaussian filter with ! = 50 !" and summed in a time-
discrete matrix with 10 ms bin length. Maximum firing times were assigned to the time bin 
with the highest PETH amplitude for each neuron. 

2.10.1.6 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

• Description of algorithms/models/principles: 

− Format, language if applicable.  Matlab Code (2011b) 

− Name of DICs/software catalogue/or HBP github project entries. 

• Description of data: 

− Species, sex, age, number of specimen/subjects. 
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− Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of entities, 
e.g. morphological characterisation of basket cells of the hippocampus. 

• Completeness of data/algorithms/models: 

− Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models?  

− Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community 

− Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

• Outline state of validation work. 

• Data Quality and Value: 

− Verification of data quality. 

− Your subjective analysis of the value of the data/algorithms for the users. 

• Data/algorithm/model usage to date: 

− Who has used the data/algorithms/models, for what? Please list a) Ramp-Up data 
(please use DIC name) used for validation or input, and the number and name of 
the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task number and 
name of the SGA1 Task that will use the developed models/approach to generate 
models, or c) Tasks that will build modelling tools that allow usage of the 
model/approach in SGA2. 

• Are the data/algorithms/models considered final? 

• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) 

2.10.1.7 Model Results 

This model supports the study of the self-organization of connections and synaptic weights 
between hidden neurons, and resulting emergent computational properies. It addresses 
multi-modal sensory integration and association in a simplified manner (see Fig. 61A). Two 
populations of “auditory” and “visual” input neurons !! and !! project onto corresponding 
populations !! and !! of hidden neurons. Each of the two populations !! and !! consist of 
four WTA circuits (as described above) and receives exclusively auditory or visual inputs. In 
addition, arbitrary lateral excitatory connections between these “hidden” neurons are 
allowed. 

The synaptic parameters of this network where subject to learning via the parameter 
dynamics Eq. (12). One can test emergent associations between the two populations !! 
and !! of hidden neurons by presenting auditory input only and observing the activity of 
the “visual” hidden neurons. Fig. 61B shows the emergent activity of the neurons !! when 
only the auditory stimulus was presented (visual input neurons !!  remained silent). 
Assemblies of hidden neurons emerge that encode the presented digit (1 or 2). Top panel 
shows the average activity of all neurons from !! for stimulus 1 (left) and 2 (right) after 
learning, when only an auditory stimulus is presented. 

One can further demonstrate the generative aspect of the network by reconstructing the 
visual stimulus from the activity of the “visual” hidden neurons !! . Fig. 61B shows 
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reconstructed visual stimuli from a single run where only the auditory stimuli !! for digits 
1 (left) and 2 (right) were presented to the network. Digit images were reconstructed by 
multiplying the synaptic efficacies of synapses from neurons in !! to neurons in !! (which 
did not receive any input from !! in this experiment) with the instantaneous firing rates of 
the corresponding !!-neurons. 

To study the inherent compensation capability of synaptic sampling one can apply lesions 
to the network and study the compensation for these perturbations. Fig. 61C shows the 
first three PCA components of a subset of the network parameters for a trial in which two 
major lesions where applied to the network within a learning session of more than 7 hours. 
In the first lesion all neurons (16 out of 40) that became tuned for digit 2 in the preceding 
learning (see Fig. 61B) were removed. The lesion significantly impaired the performance of 
the network in stimulus reconstruction, but it was able to recover from the lesion after 
about one hour of continuing network plasticity according to Eq. (12) (see Fig. 61D). The 
reconstruction performance of the network was measured here continuously through the 
capability of a linear readout neuron from the visual ensemble to classify the current 
auditory stimulus (1 or 2). 

Insets at the top of Fig. 61D show the synaptic weights of neurons in !! at 4 time points 
!! , … , !!, projected back to the input. Network diagrams in the middle show ongoing 
network rewiring for synaptic connections between the hidden neurons !! and !!. Each 
arrow indicates a functional connection between two neurons. To keep the figure 
uncluttered only subsets of synapses are shown (1% randomly drawn from the total set of 
possible lateral connections). Connections at time !! that were already functional at time 
!! are plotted in gray. The neuron whose parameter vector is tracked in (C) is highlighted 
in red. The text under the network diagrams shows the total number of functional 
connections between hidden neurons at the time point. 

In the second lesion (transition to green in Fig. 61C,D) all currently existing synaptic 
connections between neuron in !! and !! were removed, and not allowed to regrow. After 
about two hours of continuing learning 294 new synaptic connections between hidden 
neurons emerged. These new connections made it again possible to infer the auditory 
stimulus from the activity of the remaining 24 hidden neurons in the population !!. The 
PCA analysis in Fig. 61C shows that after each lesion the network parameters migrate to a 
new manifold. 

Altogether this experiment showed that continuously ongoing synaptic sampling maintains 
stable network function and automatic self-repair in a recurrent network architecture. 
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Figure 61 Inherent compensation for network perturbations.  
A: The network received simultaneously spoken and handwritten representations of the same digit (1 or 
2). Stimulus examples for spoken and written digit 2 are shown at the top. These inputs are presented to 
the recurrent network through corresponding firing rates of “auditory” (!!) and “visual” (!!) input 
neurons. B: Assemblies of hidden neurons emerge that encode the presented digit (1 or 2). Neurons are 
sorted by the time of their highest average firing. Although only auditory stimuli are presented, it is 
possible to reconstruct an internally generated “guessed” visual stimulus that represents the same digit 
(bottom). C: First three PCA components of the temporal evolution of a subset of the network parameters 
!, while  two lesions were applied to the network. After each lesion the network parameters ! migrate to 
a new manifold. D: The generative reconstruction performance of the “visual” neurons !! for the test case 
when only an auditory stimulus is presented was tracked throughout the whole learning session, including 
lesions 1 and 2 (bottom panel). After each lesion the performance strongly degrades, but reliably 
recovers. 

2.10.1.8 Provenance 

NA 
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2.10.2 A. Destexhe (CNRS) _ Intergrative properties at the single neuron 
level 

The work in this task from CNRS partner is reported in Task 4.1.1 – it consisted in 
investigating the integrative properties of excitable dendrites and the effect of multiple 
interacting dendritic spikes. 

2.11 Task 4.4.2 Novel computing systems inspired by biology  

2.11.1 W. Maass (TUGRAZ) 

2.11.1.1 Introduction 

This model provides a tool for autonomous learning of working memory, input prediction, 
and sequence learning through STDP in a generic cortical microcircuit motif: recurrently 
connected populations of excitatory and inhibitory neurons. This microcircuit motif has 
already been implemented in neuromorphic hardware in SP9. Hence it provides additional 
functionality to such neuromorphic hardware. The model shows how  networks of spiking 
neurons in neuromorphic hardware can aquire through STDP important capabilities of 
Hidden Markov Models (HMMs). HMMs are standard tools in numerous engineering 
applications, from speech understanding to robot navigation. 

The basic principles of this model have been published in  

D. Kappel, B. Nessler, and W. Maass. STDP installs in winner-take-all circuits an online 
approximation to hidden Markov model learning. PLOS Computational Biology, 
10(3):e1003511, 2014.   

Variations and further application paradigms for this model are currently developed in 
Graz. 

2.11.1.2 Model Description 

We first define the spiking neural network model for the winner-take-all (WTA) circuit. The 
network consists of stochastic spiking neurons, which receive excitatory input from an 
afferent population and from lateral excitatory connections from competing neurons in the 
WTA circuit. To clarify the distinction between these connections, we denote the synaptic 
efficacies of feedforward and lateral synapses by different weight matrices !  and !, 
respectively. Thus, the membrane potential of neuron ! at time ! is given by 

 !! ! =  !!"! !! ! +  !!"! !! ! +  !!, (1)  

where !!"  !! !  and !!"  !! !  denote the time courses of the excitatory postsynaptic 
potentials (EPSP) under the feedforward and lateral synapses respectively, and !!  is a 
parameter that controls the excitability of the neuron. 

Divisive inhibition between the neurons in the WTA network was implemented in an 
idealized form [Nessler et al. 2013] 

 !!"# !  =  exp!
!!! (!!(!)) . (2)  

The instantaneous firing rate of neuron k at time t  is then given by 

 ρ! t =  !!"#!!"# !
exp(u! (t)) . (3)  

This probabilistic formulation allows us to derive parameter estimation algorithms and to 
compare them with biological mechanisms for synaptic plasticity. In [Kappel et al. 2014] 
we derive this algorithm for the WTA circuit and show that it evaluates to weight updates 
that need to be applied whenever neuron k emits a spike at time t, according to 

 !w!" ! =  ! (e!!!"x! t − 1)   and    !v!" ! =  ! (e!!!"y! t − 1) , (4)  
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where ! is a positive constant that controls the learning rate. Note that the update rules 
for the feedforward and the recurrent connections are identical, and thus all excitatory 
synapses in the network are handled uniformly. These plasticity rules are equivalent to the 
updates that previously emerged as theoretically optimal synaptic weight changes, for 
learning to recognize repeating high-dimensional patterns in spike trains from afferent 
neurons, in related studies [Habenschuss et al. 2013, Nessler et al. 2013]. 

The update rules consist of two parts: A Hebbian long-term potentiating (LTP) part that 
depends on presynaptic activity and a constant depression term. The dependence on the 
EPSP time courses makes the first part implicitly dependent on the history of presynaptic 
spikes. Potentiation is triggered when the postsynaptic neuron fires after the presynaptic 
neuron. This term is commonly found in synaptic plasticity measured in biological neurons, 
and for common EPSP windows it closely resembles the shape of the pre-before-post part 
of standard forms of STDP [Caporale and Dan 2008, Markram et al. 2011]. 

2.11.1.3 Model Data 

• Task(s)/group(s) responsible for generating algorithms/models/principles. 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

• Description of algorithms/models/principles: 

− Format, language if applicable:  Matlab Code (2011b) 

− Name of DICs/software catalogue/or HBP github project entries. 

• Description of data: 

− Species, sex, age, number of specimen/subjects. 

− Scale (brain, brain region, cells, molecules), features 
(morphology/physiology/expression, etc.), locations, and description of entities, 
e.g. morphological characterisation of basket cells of the hippocampus. 

• Completeness of data/algorithms/models: 

− Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated data 
set/algorithms/models?  

− Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community 

− Give a short review (1–2 paragraphs) of data/algorithms/models generated by the 
community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

• Outline state of validation work. 

• Data Quality and Value: 

− Verification of data quality. 

− Your subjective analysis of the value of the data/algorithms for the users. 

• Data/algorithm/model usage to date: 

− Who has used the data/algorithms/models, for what? Please list a) Ramp-Up data 
(please use DIC name) used for validation or input, and the number and name of 
the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task number and 
name of the SGA1 Task that will use the developed models/approach to generate 
models, or c) Tasks that will build modelling tools that allow usage of the 
model/approach in SGA2. 
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• Are the data/algorithms/models considered final? 

• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) 

 

2.11.1.4 Model Results 

Computer simulations demonstrate that the WTA circuit described above is able to learn to 
encode the hidden state that underlies the statistics of input spike trains presented to the 
circuit via the learning rule Eq. (4). We demonstrate this for a simple working memory task 
and analyse how the hidden state underlying this task is represented in the network.  

The task consisted of three phases: An initial cue phase, a delay phase and a recall phase. 
Each phase is characterized by a different input sequence, where the cue sequence defines 
the identity of the recall sequence. We used four cue/recall pairs in this experiment. The 
structure of this task is illustrated in Fig. 62A. The graph represents a finite state grammar 
that can be used to generate symbol sequences by following a path from Start to Exit. On 
each arc that is passed, the symbol next to the arc is generated, e.g. AB-delay-ab is one 
possible symbolic sequence. The symbolic sequences are presented to the WTA circuit 
encoded by afferent spike trains. Every symbol A, B, C, D, a, b, c, d, delay, is represented 
by a rate pattern with fixed length of 50ms. The delay symbol is unspecific to the 
sequence and it is thus necessary to memorize the cue phase throughout the delay phase 
in order to correctly predict the recall phase. We show that this working memory emerges 
automatically through unsupervised learning in our WTA circuit model, and that it is 
represented in the form of specialized neural assemblies that encode the input patterns 
and their temporal context. 

To show this, we trained a WTA circuit with 200 afferent cells and 100 circuit neurons by 
randomly presenting input spike sequences until convergence. In this experiment, the 
patterns were presented as a continuous stream of input spikes, without intermediate 
pauses or resetting the network activity at the beginning of the sequences. Training 
started from random initial weights, and therefore the observation and prediction model 
had to be learned from the presented spike sequences. Prior to learning the neural activity 
was unspecific to the patterns and their temporal context (see Fig. 62B). Fig. 62C shows 
the evoked activities for all four sequences after training. The output of the network is 
represented by the averaged network activity over 100 trial runs. The neurons are sorted 
according to the time of highest firing rates. Each sequence is encoded by a different 
assembly of neurons. This reflects the structure of the working memory that underlies the 
task. Since the input is presented as continuous spike train, the network has also learned 
intermediate states that represent a gradual blending between patterns. About 25 neurons 
were used to encode the information required to represent the hidden state of each 
sequence. 

This coding scheme installs different representations of the patterns depending on the 
temporal context they appeared in, e.g. the pattern delay within the sequence AB-delay-
ab was represented by another assembly of neurons than the one in the sequence BA-
delay-ba. Small assemblies of about five neurons became tuned for each pattern and 
temporal context. This sparse representation emerged through learning and is not merely a 
consequence of the inherent sparseness of the WTA dynamics. Prior to learning all WTA 
neurons are broadly tuned and show firing patterns that are unordered and nonspecific 
(see Fig. 62B). After learning their afferent synapses are tuned for specific input patterns, 
whereas the temporal contexts in which they appear are encoded in the excitatory lateral 
synapses (see Fig. 62D). These weights reflect the sparse code and also the sequential 
order in which the neurons are activated.  
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Figure 62: Emergence of working memory encoded in neural assemblies through 
approximate HMM learning in a WTA circuit through STDP. 

A: Illustration of the input encoding for sequence AB-delay-ab. The upper plot shows one example input 
spike train (blue dots) plotted on top of the mean firing rate averaged over 100 trials. The lower panel 
shows the finite state grammar graph that represents the simple working memory task. The graph can be 
used to generate symbol sequences by following any path from Start to Exit. In the first state (Start) a 
random decision is made, which of the four paths to take. On each arc that is passed the symbol next to 
the arc is emitted (and provided as input to the WTA circuit in the form of a rate pattern).  B,C: Evoked 
activity of the WTA circuit for one example input sequence before learning (B) and for each of the four 
sequences after learning (C). The network activity is averaged and smoothed over 100 trial runs (grey 
traces) the blue dots show the spiking activity for one trial run. The neurons are sorted by the time of 
their highest average activity over all four sequences, after learning. For each sequence a different 
assembly of neurons becomes active in the WTA circuit. Dotted black lines indicate the boundaries 
between assemblies. D: The lateral weights that emerged through STDP. The neurons are sorted as in 
(B,C). Each neuron has learned to fire after a distinct set of predecessors, which reflects the sequential 
order of assembly firing. The stochastic switches between sequences are represented by enhanced 
weights between neurons active at the sequence onsets. 

2.11.1.5 Provenance 

NA 
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2.11.2 J. Dambre (UGent)  

2.11.2.1 Introduction 

Throughout the ramp-up phase, UGent has investigated how brain-inspired computing 
principles can help to generate building blocks of robotic motor control and gait 
generation. This work is aimed in particular at highly compliant robots, for which detailed 
analytical dynamical and kinematic models are not easily obtained. In those cases, the 
controller should autonomously learn how to interact with and control the robot dynamics. 
Since this learning has to be done with the actual physical robot in the loop, this is only 
feasible if it requires as little adaptation of the controller as possible, and is therefore 
likely to converge more rapidly. This is the mean reason why UGent has focused on 
reservoir computing, a brain-inspired computation paradigm in which the desired 
computation is obtained by optimally exploiting the dynamics that are available in a 
dynamical system (a reservoir, consisting of neural network and/or physical system). This 
is achieved by observing a large set of internal dynamical responses of the system and 
optimally combining them to the desired output signals. The term embodied reservoir 
computing refers to those cases in which the physical robot’s dynamical response is 
explicitly used as part of the ‘reservoir’.  

A first contribution of UGent that was reported previously in HBP consists of a reservoir 
computing mixture-of-experts model that can predict robotic ‘proprioceptive’ sensor 
outputs and that was learnt and experimentally validated on a highly compliant tensegrity 
robot [UGent1]. This model also contains latent variables that can be used to classify, e.g.,  
properties of the terrain the robot was moving on. A second, previously reported 
contribution of UGent focuses on how embodied motor control and gait generation can be 
learned in a biologically plausible way, i.e., when the ‘fitness’ of the controller is 
evaluated based on external observations of the body’s (loco)motion and the individual 
desired actuator signals for motors or muscles are not know. In this setting, UGent has 
evaluated the use of noise-based Reward-modulated Hebbian learning to optimise the 
output signals of reservoir computing in general, as well as for certain embodied motor 
control tasks involving a highly compliant tensegrity robot [UGent2]. This work has shown 
that our approaches that are based on reservoir computing using traditional machine 
learning techniques and supervised learning are transferable to biologically plausible 
neural systems. 

The final contribution of UGent in this context, and the one reported  in what follows, 
involves the demonstration of partially embodied tunable gait generation on the Oncilla 
compliant quadruped robot. For highly compliant robots, it was previously shown that a 
reservoir computing approach using only the body as a reservoir is adequate for obtaining 
embodied gait generation. The morphology of quadrupedal robots has previously been used 
for sensing and for control of a compliant spine, but never for gait generation. However, 
our work shows that the less compliant nature of the Oncilla robot gives rise to the need 
for a partially embodied approach, in which the body needs to be augmented with 
additional dynamic computation to obtain a suitable reservoir. Part of the aim of this work 
was to study in which ways the body needs to be augmented, and in particular whether it 
is lacking in memory or in computational (nonlinear) richness. For this reason, in the 
present work, the augmentation consists of the combination of explicit memory with an 
untrained memoryless neural network (extreme learning machine), but similar results 
could equally be achieved by an untrained recurrent neural network. This work has led to 
the demonstration of  the Oncilla robot walking in a stable way, including tenability of the 
gait frequency and  the walking direction (steering). Although in this case known desired 
actuator patterns were used, no simulation was involved and the gait generation 
controllers were learnt directly on the physical robot. This work was published in 
[UGent3].   
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The next step in this line of research (SGA1 – T10.4.5) will be the extension to more 
complex (higher DOF) robots, the conversion to more biologically plausible neural networks 
and the re-introduction of reward-based biologically plausible learning in the context of 
the neurorobotics subproject. 

2.11.2.2 Model Description : Quadruped Embodied gait generation 

In earlier work it was shown that for a tensegrity robot, a linear transformation from the 
sensor signals to the motor signals was enough to generate stable locomotion. The idea 
behind this is that the body of the robot itself has computing power, and that this power is 
being harvested by using it as a reservoir. This embodiment of computation allows the 
robot to generate stable locomotion without the requirement to explicitly use the state of 
its compliant elements in a digital control algorithm. On our robot however, we found that 
we could indeed generate a gait this way, but that it was not stable and did not always 
return to its limit cycle. In other words, the robot’s internal dynamics in response to the 
environment do not exactly match the required dynamics for stable gait generation. 
However, the fact that they suffice to generate a close but unstable approximation 
indicates that the mismatch is not very large. Therefore, we propose to digitally add 
additional transformations to the sensor signals. In this way, the computations are still 
partially embodied in the morphology of the robot. In this setting, we want to quantify the 
minimal complexity of these transformations as expressed by their memory and nonlinear 
complexity. The next paragraphs describe its parts in more detail. 

Linear Transformation 

The aim of the linear transformation is to find the MxN transformation matrix W that  
ptimally maps the Nx1 vector of the N normalized input signals x to the Mx1 vector of the 
M output signal ^y: 

ˆy = W . x 

Optimality is defined as the minimisation of the mean squared error (MSE) between the  
output signals ˆy and the target output signals y. This can be achieved by using linear 
regression. To achieve the right bias, we add a constant signal to the inputs x. This 
approach is limited to one-shot learning. In order to continue optimizing this relation while 
running, we will use the recursive least squares (RLS) algorithm, an online method for 
linear regression.  

Adding Non-Linear Dynamics 

Between the robot body and the linear transformation, we now add an additional  
transformation layer in order to increase the richness of signals received by the linear 
transformation. In order to be able to separately explore the  need for memory and 
nonlinearity, we introduce two separate modules: a nonlinear layer and a memory buffer. 

The nonlinear transformations are generated by introducing a hidden layer of H nonlinear 
neurons, each of which receives a random mixture of the sensor signals (again augmented 
with a constant bias signal). This technique is known as Extreme Learning Machines (ELM). 
We initialize all elements in the weight matrices of the ELM by sampling them from the 
standard normal distribution. These elements are not optimized. 

The memory buffer of length B is added to each nonlinearly transformed signal, such that 
the RLS algorithm obtains direct access to the signals from previous time steps in xrls(t). 
xrls thus contains all signal values from a small time window in the past. This allows us to 
explore a further richness of the dynamics which were added by the morphology of the 
robot. The resulting detailed controller architecture is schematically represented in Figure 
63. 
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Figure 63: Schematic of the control system. 
The signals measured in the motor encoders are first  normalized, are then sent through a layer of hidden, 
untrained neurons, the outputs of these neurons are buffered and a linear transformation is performed on 
these buffered signals to generate the motor signals. It is only this linear transformation which is learned 
through a linear regression method (RLS). 

Experimental setup 

We want our robot to realise a stable gait based on the feedback from the 8 rotary 
encoders. Using these sensors, the proposed controller must be trained to derive a motor 
command which is sent to the end-effectors. In sequential operation, this should result in 
the robot moving with a stable gait. The training procedure outlined in this section enables 
the controller to discover the relation between the received sensor signals and the output 
it needs to generate at that moment. As target signals, we use motor signals for stable 
gaits resulting from previous work. We have the robot trot at a frequency of 1.7 Hz, 
corresponding to a speed of about 0.76m/s. Before each experiment, the robot runs for 5 
seconds with this gait, using the desired signal as input, in order to reach steady state. 
During these 5 seconds, we measure the mean and the standard deviation of the sensor 
signals. These are used to normalize the input signals such that they have a mean of 0 and 
a standard deviation of 1. After normalization, we add Gaussian noise with an amplitude of 
0.01 to each input signal for regularization during training. 

In the first training phase, the linear combination is optimized using RLS. As a result of this 
training, the control system finds a relation between the input and the output signals, but 
it fails to find a stable attractor. Every time the robot has a small error in the output 
signal, this error is reflected in the input signals of the next time step. Since the controller 
has never learned to handle those errors, they accumulate and destabilize the attractor. 
For the controller to learn to deal with its own errors, we add a second training phase, 
with RLS still active. In this stage, the output signals sent to the motors are mixtures of 
the target signals and the signals generated by the linear transformation. The fraction of 
the target signals is reduced over time until it becomes zero. After this phase, the RLS 
learning is switched off and the resulting gait is evaluated. 

We thus split up the learning process into multiple phases: 

1) The normalization phase: We wait for transient effects caused by starting from standstill 
to fade out, and when we record the average and variance of each sensor to normalize 
them. This stage takes 5 s. 



 

Co-funded by  
the European Union 

 

 

 

 

SP4_D4.6.4_FINAL.docx PU = Public 31-Mar-2016 Page 134 / 151 
  

2) The first training phase: We send the teacher signal to the motors, and use RLS to learn 
the relation between these outputs and the normalized inputs from the sensors. This stage 
takes 10 s, unless noted differently. 

3) The second training phase: The motor signals are mixed between the teacher signal and 
the signals generated by the linear transformation. The RLS-algorithm still updates Wrls. 
This stage takes 10 s.. 

4) The running phase: The robot stops optimizing the linear transformation, but continues 
to run and where we test the stability of the attractor. 

2.11.2.3 Model Data 

• Responsible  T 4.4.2, UGent 

• Data, algorithms, tools and methodologies storage location(s) (and links?) 

Source code: 

https://www.unic.cnrs-
gif.fr/owncloud/index.php/s/204531670df05930ffbec2504376325c/download?path=%2F&fil
es=Oncilla-workstation.tar.gz 

Paper: 

https://www.unic.cnrs-
gif.fr/owncloud/index.php/s/204531670df05930ffbec2504376325c/download?path=%2F&fil
es=IROS_2015_Jonas.pdf 

Video of walking robot: 

https://www.unic.cnrs-
gif.fr/owncloud/index.php/s/204531670df05930ffbec2504376325c/download?path=%2F&fil
es=oncilla.wmv 

• Description of algorithms/models/principles: 

o Source code for the experiments: Python (note: this code can only be used in 
combination with the Oncilla robot) 

o DICC card: “Embodied gait generation quadruped” 

• Description of data: 

o Source code for the experiments on embodied gait generation for quadruped 
Oncilla robot 

• Completeness of data/algorithms/models: 

o Completed and published  

o Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community 

o Give a short review (1–2 paragraphs) of data/algorithms/models generated by 
the community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it. 

• This work was experimentally validated on the physical robot 

• Data Quality and Value: 

o Verification of data quality. 

o We expect that the approach followed in this work is portable to other 4- or 6-
legged robots. The combination of source code and published paper should 
suffice to achieve this. 
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• Data/algorithm/model usage to date: 

o a) Ramp-Up data: DICC card: “Embodied gait generation quadruped”, only used 
by UGent, the approach has since been applied to a second and even more 
compliant quadruped robot. 

o b) Task number and name of the SGA1 Task that will use the developed 
models/approach to generate models:  SP10 – task 10.4.5 

• Are the data/algorithms/models considered final? Within their own right: yes, but 
extensions and improvements will be made in SGA1 

• Publication: 

“Developing an embodied gait on a compliant quadrupedal robot”,  

Jonas Degrave, Ken Caluwaerts, Joni Dambre and Francis Wyffels, Proceedings of  

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 
4486-4491 

2.11.2.4 Model Results 

To evaluate our approach, we optimized a controller with H = 50 hidden nodes and a time 
window B of 5 time steps (44 ms or 7.5% of the gait period). For these settings, an 
attractor was found that generated a stable gait and was able to return to its limit cycle 
after stopping. The resulting attractor is depicted in Figure 64.  

In order to prove that this result is reproducible on different setups, we trained the Oncilla 
robot to perform a walking gait. For this situation, we again used H = 50 hidden nodes, but 
we had to increase the time window B to 12 time steps (103 ms or 17.5% of the gait 
period). The resulting attractor is shown in Figure 64. We also needed to increase the 
length of the first and second training stage to 30 s. The fact that we needed to increase 
both B and the training time is explained by the increased complexity of a walking gait. In 
this gait, each leg has a different phase which means that there is less dependence 
between the motor signals that need to be generated. Therefore, we had to increase the 
number of inputs to the RLS layer to the maximum we could compute in real time. 
Additionally, we needed to increase the training time to find the proper relation between 
the inputs and the outputs. 
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Figure 64 Robot trajectories 
On the left, the trajectory of the robot’s right hind leg in the joint space is shown while the robot is 
performing a trotting gait (top) or walking gait (bottom), with qhip and qknee being the angle measured 
over time by the hip and knee encoder respectively. These were recorded during the first 5 seconds of the 
first training stage. A higher angle means the leg is moved to the front or the knee is extended.  
On the right, the same trajectory is shown, but with the learned controller, with B = 5 and H = 50 on top 
and B = 12 and H = 50 on the bottom. These were recorded between 25 and 30 seconds into the running 
stage. 

Since our approach was reproducible, we consequently tried to reduce the parameters for 
the easier trot gait to identify the point at which the controller fails to find a stable 
attractor. We first reduced the number of hidden neurons H. It makes little sense to have 
H < 12, since we have 12 independent outputs to generate. We found that with 12 hidden 
neurons, we needed B to be at least 16 time steps (115 ms or 20% of the gait period) for a 
stable gait. Secondly, we removed the buffer (B = 0), and searched for the minimal 
number of hidden neurons required for finding a stable attractor. We found that without a 
time window, we need at least H = 128   32 hidden neurons. Thirdly, we tried to reduce 
the training time. For this, we used a controller without a buffer and with H = 250 hidden 
neurons. We found that 1.18 s, or two gait periods are enough for both the first and second 
training stage, or 2.36 s in total. In this paper, we demonstrated how an embodied control 

Conclusions 

We have demonstrated how an embodied control system with memory-less nonlinear 
feedback can generate a stable trot on a compliant quadrupedal robot. When adding 
memory in the feedback loop, the complexity of the nonlinear feedback can be reduced. 
Our feedback controller, based on extreme learning machines, learns the desired relation 
between the input and the output signals in the time span of only a couple of strides. 

We have shown that this method can be extended to other gaits, such as a walk, when 
increasing the training time and the model complexity. The incorporation of either 
additional memory or additional non-linearities contribute approximately equally to the 
controller performance. The parameter that mainly determines the performance is the 
number of signals that is fed into the the linear transformation. 
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As our controller was trained directly on the actual robot, we did not have to rely on a 
simulation model, which is often unreliable on a compliant robot. In addition, the 
controller optimisation was fast, happened entirely online and automatically. We believe 
that the proposed method can provide a useful tool for transferring knowledge from open 
loop to closed loop control. 

2.11.2.5 Provenance 

T4.4.2 

2.12 Task 4.4.3 Closed-loop analysis of population coding  

2.12.1 O. Marre (UPMC) 

2.12.1.1 Introduction 

The purpose of this task was to better characterize the sensitivity of the retina to 
perturbations of the stimulus, in order to find models that give a good account of the 
sensitivity of the retinal network.   

In our approach we have found that several subtypes of retinal ganglion cells could be 
modelled with a cascade model of two layers. This model allows predicting not only the 
responses of ganglion cells to stimuli inside their receptive field, but also outside, for 
surround stimulation. The model is described below.  

We found that ganglion cells extract two different features from the stimulus depending on 
its position compared to their receptive field. For Stimuli inside their receptive field, they 
were highly sensitive to the absolute position of the object, while outside of their 
receptive field, they were mostly sensitive to the velocity of the object.  

2.12.1.2 Model Description 

For the firing rate rk(t) of the k-th neuron, the equation of this model is:  

 

where S represents the visual stimulus, V the connectivity from the photoreceptors to the 
bipolar cells, f and g are non-linear functions (of the form f(x) = log(1+ exp(x))), W is the 
connectivity matrix from subunits to ganglion cells. Parameter values were fitted to the 
data using a gradient descent similar to (McFarland and Butts, 2013).  

2.12.1.3 Model Data 

Task(s)/group(s) responsible for generating algorithms/models/principles: WP 4.4.3 

• Data, algorithms, tools and methodologies storage location(s) (and links?): model in the 
SP4 repository 

• Description of algorithms/models/principles: 

o Format, language if applicable: matlab program 

o Name of DICs/software catalogue/or HBP github project entries: NA 

• Description of data: NA 

• Completeness of data/algorithms/models: 

o Comparison of data set/algorithms/models anticipated versus those actually 
delivered in M30—to what extent does it fall short or exceed the anticipated 
data set/algorithms/models?  It corresponds to what was anticipated.  

rk(t) = g(
X

j,⌧2

Wj,k,⌧2f(
X

i,⌧1

Vi,j,⌧1S(i, t� ⌧1 � ⌧2))) + bk
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o Current data set/algorithms/models versus a projected full data 
set/algorithms/models to be generated by the research community: NA 

o Give a short review (1–2 paragraphs) of data/algorithms/models generated by 
the community over the past 30 months, and how these validate the 
data/algorithms/models gathered by the HBP Task, and/or complement it: NA 

• Outline state of validation work. The model has been validated on rodent retina 
recordings  

• Data Quality and Value: 

o Verification of data quality: fit to some real retina data.  

o Your subjective analysis of the value of the data/algorithms for the users. This  
model can be used to provide realistic spiking input from the retina to models 
of the thalamo-cortical network.  

• Data/algorithm/model usage to date: 

o Who has used the data/algorithms/models, for what? Please list a) Ramp-Up 
data (please use DIC name) used for validation or input, and the number and 
name of the corresponding Ramp-Up Phase Task (and subsidiary group), b) Task 
number and name of the SGA1 Task that will use the developed 
models/approach to generate models, or c) Tasks that will build modelling tools 
that allow usage of the model/approach in SGA2: T 4.4.2 in phase 2.  

• Are the data/algorithms/models considered final? Yes, as model for single retinal cells 
responding to objects moving with complex trajectories.  

• Publications connected to the gathered data (please put in parenthesis a short 
description how they are connected, e.g. description of method used generate data, 
analysis results, models built using the data, etc.) For the full model, the manuscript is 
in preparation. Some preliminary experimental data can be found in Marre et al (2015).  

2.12.1.4 Model Results 

We have shown that predicting the responses of ganglion cells of several subtypes is 
possible with a two-layer model, while a linear model did not work in that case (Figure 
65). If the stimulus is a randomly moving bar, we have been able to fit a network model 
composed of two layers to the neural responses. Each layer combined a linear filtering and 
a non-linear function. This model can predict the responses of individual ganglion cells to 
new sequences of randomly moving bar.  

 

Figure 65: Schematic of model used & example of response prediction 
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A: schematic of the model we used. The stimulus (here, a randomly moving bar) is filtered by different 
subunits. For each of these units the result of the filtering goes through a non-linear function. These 
outputs are pooled linearly, and this weight sum goes through another non-linear function. The final 
output predicts the responses of ganglion cells to this dynamical stimulus. B: an example of prediction of 
the response of a subtype of ganglion cell (blue) and the prediction using a cascade model (red). The 
prediction performance is high (pearson coeff 0.72).  

We developed a method to characterize the computations performed by a network is to 
determine what changes in the input can be reliably distinguished based on the network 
outputs, and what changes cannot be distinguished. This defines the discrimination 
capacity of the network, i.e. its sensitivity to some changes, and its invariance to others. 
In some preliminary analysis we have developed a method to analyze a multi-layered 
model by local linear approximation. Starting from an initial stimulus, we linearized the 
input-output function in a local neighborhood around this point of the stimulus space. We 
then used the Fisher Information Matrix to estimate how sensitive is the model to change 
in all directions of the stimulus space:  

 

 

Figure 66: sensitivity (defined from the Fisher information matrix) as a function of the 
cell position relative to the stimulus.  

This matrix quantifies how much change there will be in the model response R, when the 
stimulus S is changed along a given stimulus direction. We can thus estimate if the model 
will be particularly sensitive to changes in a chosen direction D of the stimulus space by 
computing TD I(S) D, which we define as the sensitivity of the model. We used this tool to 
understand the function of the cascade model described before, where the retina 
responded to a randomly moving bar. With this analysis, we showed that cells activated by 
distant stimulus are not very sensitive to change in the stimulus mean position, but carry 
information about the velocity of the bar. On the contrary, cells close to the stimulus are 
very sensitive to the mean position. Therefore, cells close to the stimulus signal the exact 
position of the stimulus, while distant cells use a code that is more “position-invariant”. 
This gives a characterization of the separation and invariance property of the retinal 
network.  

2.12.1.5 Provenance 
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Annex C: Installation Procedure 

4.1.1.1.1 Third Party Dependencies  

It is necessary to install ROOT (http://cern.root.ch). ROOT is a powerful analysis platform 
that has similar capabilities as MATLAB, but is optimized for high end performance. Under 
Unix systems, this is straightforward. For almost all UNIX-like distributions there is a 
binary. This can be installed in a directory of your choice. If you have sudo or root 
permission, you can opt to have ROOT installed under /usr/local, thereby making the 
framework available to all users. It is also possible to install the package locally. 
Regardless of whether you install the package locally or under /usr/local, the top of the 
ROOT directory structure is always a directory called root.  

Alternatively, you can compile the package from source, using the configure script in the 
top directory of the download. There is a comprehensive description on how to do this: 
https://root.cern.ch/building-root. Make sure you have all the prerequisites installed that 
are listed at https://root.cern.ch/build-prerequisites.  

Make sure that the version you use is configured with --enable-python, --enable-table and -
–enable-mathmore. You can use Python to inspect the simulation results, and convert them 
to numpy objects if you feel the need.  

Whether you install ROOT locally or system-wide, make sure that the script 
root/bin/thisroot.sh is sourced, e.g. issue the command: source ~/root/bin/thisroot.sh if 
you have installed the package in your home directory. You have to do this every time 
before you use ROOT, so it is worth to include in a .bashrc file or equivalent.  

You will also need:  

• The GNU Scientific Library, GSL for short  

• A recent (> 1.48) version of BOOST.  

  

4.1.1.2 Procedure  

Whether you down load the tar file or checkout the code from the repository, you will 
have a top directory called ’miind-git’. This is the MIIND_ROOT. Where you place this is 
immaterial. Perform the following steps:  

 

Directly below ’code’, create a directory called ’build’. This ’build’ directory will be at the 
same level as ’apps’ and ’libs’.  

’cd build’  

’ccmake ..’  

Indicate whether you want a Release or a Debug version, by set- ting the 
CMAKE_BUILD_TYPE field.  

You may have to indicate where ROOT is. CMake is intelligent enough to work out where, 
once you have provided the location of the root excutable.  

Configure (’c’)  

Generate the Make file (’g’)  

Quit (’q’)  

Type ’make’  
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The libraries will built in build/libs, the excetuables in buid/apps. In general, you want set 
your PATH and PYTHONPATH such that they include the path to 
MIIND_ROOT/python. CMake can be used directly from the command line, e.g.:  

cmake path_to_miind_src -DENABLE_MPI=TRUE -
DCMAKE_BUILD_TYPE=Debug -DMPIEXEC=/opt/local/bin/openmpirun 

To compile the project type: ’make’. To build the documentation type: ’make doc’  

4.1.1.2.1 A Clean Ubuntu Install  

We start with a clean Ubuntu 14-04 machine. Install the following packages with sudo apt-
get install:  

• g++ (this should be at least g++ 4.8, which you should get by default.)  

• python-scipy • cmake-curses-gui  

• libboost-all-dev • libgsl0-dev • git  

Do not use a Ubuntu package for ROOT! It does exist, but misses a few libraries that MIIND 
depends on. Go to the ROOT web site: http://root.cern.ch, go to Download and click on 
the most recent version. Download the Ubuntu binary and unpack it in a directory of your 
choice. Issue the command source cwd/root/bin/thisroot.sh, where ’cwd’ should be 
replaced by the name of the directory where you unpacked. If you now type root anywhere 
in a shell, ROOT’s CINT interpreter should start and a splash screen should appear. Exit 
CINT by typing .q. Start a Python shell, and type import ROOT. This module should now 
load without any comment. You may want to incorporate the source command described 
above in a .bashrc file or equivalent. 
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Annex B : Publications 

FROM UMB 

Ness, Remme, and Einevoll (2015). Active subthreshold dendritic conductances shape the 
local field potential: http://arxiv.org/pdf/1512.04293v1.pdf 

 

FROM ULEEDS 

Frank van der Velde and Marc de Kamps, Combinatorial Structures and Processing in Neural 
Blackboard Architectures, NIPS 2015 workshop: Cognitive Computation: Integrating neural 
and Symbolic Approaches 

 Yi Ming Lai and Marc de Kamps, Population Density Equations for Stochastic Processes with 
Memory Kernels, under review in Phys. Rev. E 

Marc de Kamps, Using your MIIND, http://miind.sf.net/tutorial.pdf 

Marc de Kamps and Yi Ming Lai, A General Solution Method for Two-Dimensional Population 
Density Equations, In Preparation 

 

FROM UCL 

Chersi F., Burgess N., 2015. The cognitive architecture of spatial navigation: Hippocampal 
and Striatal contributions. Neuron 88: 64-77. 

 

FROM TUT 

Publications related to HBP (HBP acknowledged). Publications are indicated with bold-
cursive in the text. 

[1] T. Manninen, R. Havela, and M.-L. Linne. Computational models of astrocytes and 
astrocyte-neuron interactions: Categorization, analysis, and future perspectives. Accepted 
to Computational Glioscience.  

[One of the goals of T434 was to evaluate existing models. This publication presents the 
characteristics of all astrocyte and astrocyte-neuron models and shows the reproducibility 
of the original simulation results for five models.]. 

[2] H. Teppola, R. Sarkanen, T.O. Jalonen, and M.-L. Linne. Morphological 
Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, 
Retinoic Acid and Cholesterol. Neurochem Res. 2015 Oct 30.  

[The paper quantifies vesicle release in neuroblastoma cells and makes comparisons to 
astrocytic and other neuronal literature. The paper is used as background material in 
T434]. 

[3] Tiina Manninen*, Ausra Saudargiene*, Riikka Havela, Marja-Leena Linne. 
Computational model of astrocyte-neuron interactions in a cortical synapse. Manuscript in 
preparation. * Equal contribution. 

[4] Mikko Lehtimäki, Tiina Manninen, Riikka Havela, Marja-Leena Linne. Method for 
reduction of dimensionality in neural calcium dynamics models. Manuscript in preparation. 
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D. Kappel, B. Nessler, and W. Maass. STDP installs in winner-take-all circuits an online 
approximation to hidden Markov model learning. PLOS Computational Biology, 
10(3):e1003511, 2014.   

D. Kappel, S. Habenschuss, R. Legenstein, and W. Maass. Synaptic sampling: A Bayesian 
approach to neural network plasticity and rewiring. Proc. of NIPS 2015: Advances in Neural 
Information Processing Systems, 2015.  

D. Kappel, S. Habenschuss, R. Legenstein, and W. Maass. Network plasticity as Bayesian 
inference. PLOS Computational Biology, 11(11):e1004485, 2015. 

 

FROM UGENT 

Publications connected to the gathered data:  

"Developing an Embodied Gait on a Compliant Quadruped", Jonas Degrave, Ken Caluwaerts, 
Joni Dambre, Francis wyffels,  proceedings of  IROS, Sept. 28 - Oct. 2, 2015  

(publication of the approach and the experimental results) 
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Annex C: Installation Procedure 

4.1.1.1.1 Third Party Dependencies  

It is necessary to install ROOT (http://cern.root.ch). ROOT is a powerful analysis platform 
that has similar capabilities as MATLAB, but is optimized for high end performance. Under 
Unix systems, this is straightforward. For almost all UNIX-like distributions there is a 
binary. This can be installed in a directory of your choice. If you have sudo or root 
permission, you can opt to have ROOT installed under /usr/local, thereby making the 
framework available to all users. It is also possible to install the package locally. 
Regardless of whether you install the package locally or under /usr/local, the top of the 
ROOT directory structure is always a directory called root.  

Alternatively, you can compile the package from source, using the configure script in the 
top directory of the download. There is a comprehensive description on how to do this: 
https://root.cern.ch/building-root. Make sure you have all the prerequisites installed that 
are listed at https://root.cern.ch/build-prerequisites.  

Make sure that the version you use is configured with --enable-python, --enable-table and -
–enable-mathmore. You can use Python to inspect the simulation results, and convert them 
to numpy objects if you feel the need.  

Whether you install ROOT locally or system-wide, make sure that the script 
root/bin/thisroot.sh is sourced, e.g. issue the command: source ~/root/bin/thisroot.sh if 
you have installed the package in your home directory. You have to do this every time 
before you use ROOT, so it is worth to include in a .bashrc file or equivalent.  

You will also need:  

• The GNU Scientific Library, GSL for short  

• A recent (> 1.48) version of BOOST.  

  

4.1.1.2 Procedure  

Whether you down load the tar file or checkout the code from the repository, you will 
have a top directory called ’miind-git’. This is the MIIND_ROOT. Where you place this is 
immaterial. Perform the following steps:  

 

Directly below ’code’, create a directory called ’build’. This ’build’ directory will be at the 
same level as ’apps’ and ’libs’.  

’cd build’  

’ccmake ..’  

Indicate whether you want a Release or a Debug version, by set- ting the 
CMAKE_BUILD_TYPE field.  

You may have to indicate where ROOT is. CMake is intelligent enough to work out where, 
once you have provided the location of the root excutable.  

Configure (’c’)  

Generate the Make file (’g’)  

Quit (’q’)  

Type ’make’  
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The libraries will built in build/libs, the excetuables in buid/apps. In general, you want set 
your PATH and PYTHONPATH such that they include the path to 
MIIND_ROOT/python. CMake can be used directly from the command line, e.g.:  

cmake path_to_miind_src -DENABLE_MPI=TRUE -
DCMAKE_BUILD_TYPE=Debug -DMPIEXEC=/opt/local/bin/openmpirun 

To compile the project type: ’make’. To build the documentation type: ’make doc’  

4.1.1.2.1 A Clean Ubuntu Install  

We start with a clean Ubuntu 14-04 machine. Install the following packages with sudo apt-
get install:  

• g++ (this should be at least g++ 4.8, which you should get by default.)  

• python-scipy • cmake-curses-gui  

• libboost-all-dev • libgsl0-dev • git  

Do not use a Ubuntu package for ROOT! It does exist, but misses a few libraries that MIIND 
depends on. Go to the ROOT web site: http://root.cern.ch, go to Download and click on 
the most recent version. Download the Ubuntu binary and unpack it in a directory of your 
choice. Issue the command source cwd/root/bin/thisroot.sh, where ’cwd’ should be 
replaced by the name of the directory where you unpacked. If you now type root anywhere 
in a shell, ROOT’s CINT interpreter should start and a splash screen should appear. Exit 
CINT by typing .q. Start a Python shell, and type import ROOT. This module should now 
load without any comment. You may want to incorporate the source command described 
above in a .bashrc file or equivalent. 

 


