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Showcase 3 – DEMO3.1 and Showcase 4 – DEMO4.1 
(D2.1 – SGA3) 

 

 
Figure 1: Showcase 3: Introducing TVB-AdEX 

TVB-AdEX is a novel method for effectively simulating human brain states 

 

 
Figure 2: Showcase 4: WhiskEye a visual tactile biomimetic robot 

Comments on Figure 2. The WhiskEye robot is integrated with a predictive coding model of primary and associative 
regions of the cortex that is available on the EBRAINS Neurorobotics Platform. 
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Abstract: 

Conscious and unconscious brain states differ both at baseline and in response to 
stimuli. Hallmarks of neural dynamics between brain states span spatio-temporal 
scales, from neuromodulators acting on ion channels to changes in communication 
between macroscopic brain regions. Developing a scale integrated understanding of 
neural computations performed in different brain states therefore remains 
challenging. Here, using conductance-based mean-field models constrained by 
human anatomy, we show that different scales spanning from cellular membrane 
conductances to state transitions in global brain dynamics associated with conscious 
and unconscious states can be simulated on a laptop using EBRAINS. Both 
spontaneous and evoked dynamics can be simulated for synchronous and 
asynchronous brain states, reproducing the typical brain-wide responses of these 
states, as found in experiments in human subjects (Showcase 3). 
Departing from such asynchronous, conscious brain states, cognition occurs. We 
perceive the world by attempting to match our predictions of how it should be 
against uncertain and incomplete observations through our 6 senses. Deep 
predictive coding networks are a machine learning approach that models this 
process at an algorithmic level of description. A novel multi-sensory network 
architecture based on interconnected but disparate primary sensory and associative 
cortices has been tested, using live data captured from a biomimetic robot and 
demonstrated as capable of place recognition comparable to conventional state-of-
the-art machine learning approaches. The network model and robot have been 
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included into the EBRAINS Neurorobotics Platform for long duration experiments, 
open science and access to other EBRAINS services (Showcase 4).  

Keywords: 
Mean-field model, AdEX neurons, full-brain simulations, human neural activity, 
human connectome, brain states, consciousness, predictive coding, neurorobotics, 
multi-sensory reconstruction, place recognition 

Target Users/Readers: 
Computational neuroscience community, computer scientists, consortium 
members, HPC community, neuroimaging community, neuroinformaticians, 
neuroscientific community, neuroscientists, platform users, researchers. 
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1. The WP2 Showcases in the context of SGA3 & the 
HBP 

WP2 aims to model and understand the different functional states of the brain network and their 
multiscale nature, ranging from unconsciousness (sleep, anaesthesia, coma) to consciousness, a 
baseline state for cognition to occur. Such an objective is better approached in a highly collaborative 
framework like the HBP, which brings together systematically acquired multiscale data and models 
across different scales. Furthermore, WP2 aims to understand how neurons and networks respond to 
sensory stimuli at the cellular, meso-scale and whole-brain levels, and how to integrate information 
from different sensory modalities and perform cognitive tasks, such as multisensory object learning, 
perception and object-directed behaviour, and to use this knowledge to further explore the 
relationship between consciousness and cognition. 

In this document, we include the first description of two Showcases that, although they do not 
illustrate all the ongoing work in WP2, are good representatives of our main research lines. Showcase 
3 illustrates well the interactions with WP1, since it uses the brain connectome and full brain model 
of The Virtual Brain, and integrates the data-driven models of different brain states and involved 
mechanisms explored in WP2. Showcase 4 is a good illustration of the interactions with WP3, since 
it investigates cognitive functions and contributes to the cognitive architectures of WP3 and uses 
neurorobotics to explore the environment, gather sensory data and give a body to the data-driven 
models of cognition. 

 

Figure 3: How Showcases 3 and 4 connect the work of WPs 1, 2 and 3. 

2. Showcase 3: Brain Complexity and Consciousness 

2.1 Introduction 
Conscious and unconscious brain states differ, both at baseline and in response to stimuli, with 
hallmarks spanning spatio-temporal scales, from neuromodulators acting on molecular membrane 
channels to changes in global communication between brain regions. Developing a scale integrated 
understanding of neural dynamics and its effects on computations done by the brain in different 



    
 

D2.1 (D12) SGA3 M9 ACCEPTED 210504.docx PU = Public 4-May-2021 Page 6 / 14 
 

states will therefore require linking knowledge spanning ion channel currents (microscale) to the 
dynamics of brain-wide, distributed, transient functional assemblies (macroscale). Here, using 
mean-field models of conductance-based, adaptive exponential integrate-and-fire neurons with 
spike-frequency adaptation, constrained by human anatomy and empirically informed local circuit 
parameters, we report successful simulation of synchronous and asynchronous brain dynamics, thus 
connecting microscopic to macroscopic scales. Specifically, it has been previously observed that 
enhanced neuromodulation by acetylcholine during active brain states closes ion leak channels 
(blocking K+ M-currents), resulting in sustained depolarization of neurons and blocking spike-
frequency adaptation. Neuromodulation-induced depolarisation promotes asynchronous, irregular 
action potential firing. In contrast, low levels of acetylcholine during unconscious brain states allow 
membrane leak channels to open, leading to waves of synchronous depolarisation and 
hyperpolarisation. In this Deliverable, we present a scale integrated model that considers 
neuromodulation-induced microscopic changes and show that the resulting macroscopic signals are 
comparable to empirical human data comprising different brain states. This model opens the doors 
to personalised modelling of human brain states in health and disease, including restful and active 
waking states, as well as sleep, anaesthesia, and coma. 

Understanding consciousness is one of the grand challenges of contemporary neuroscience. Why does 
it fade and recover during transitions across physiological, pharmacological and pathological brain 
states? How can we determine whether a behaviourally unresponsive patient is conscious? Can we 
quantify consciousness levels? Can we use our multi-scale understanding of brain-state transitions to 
devise strategies to induce recovery of consciousness? A brain-based quantification of the levels of 
consciousness is of the utmost importance because, each year, intensive care medicine is called 
upon to treat millions of patients whose level of consciousness is difficult to assess due to severe 
brain injuries and disconnections. Detecting the fundamental mechanisms of consciousness is crucial, 
not only for better diagnosis, but also to guide recovery in an optimal manner. Finally, it is critical 
to provide tools - such as eye tracking or brain computer interfaces - to provide input and output 
channels for patients who have recovered consciousness but remain disconnected (e.g. locked-in 
patients). An equally urgent requirement comes from the field of anaesthesiology - 
pharmacologically induced alterations of consciousness – which is used in millions of patients every 
year. The effectiveness of this approach is limited by a lack of systematic understanding of the 
underlying circuit mechanisms and a lack of reliable brain-based measures of anaesthesia depth. 
Therefore, deeper understanding of consciousness also paves the way to engineering novel methods 
of tracking the results of pharmacological interventions, as well as engineering next-generation, 
non-pharmaceutical, direct methods for inducing states of non-responsiveness, with potentially 
fewer side effects and dangers. 

This showcase consists of a DEMO showing simulations of full brain activity, during spontaneous 
activity and after stimulation. Stimulation results in perturbed or evoked activity, with 
spatiotemporal interactions between areas that have a different fingerprint, corresponding to 
different brain states. These brain states can be physiological (sleep or awake), pharmacological 
(e.g. anaesthesia levels), or due to disorders of consciousness (e.g. traumatic brain injury). For these 
reasons, we have used the simulation capabilities offered by the Human Brain Project’s (HBP’s) 
EBRAINS neuroscience research infrastructure to make access to the models as wide as possible. The 
simulations delivered here at SGA3 Month 9 (M9 – December 2020) illustrate how emergent patterns 
of activity can be reproduced in silico and shed light on their microscopic underpinnings. These 
simulations are presented with qualitative and quantitative analyses pioneered in empirical data, 
for direct comparison to activity recorded during different brain states in actual human subjects. 

This work contributes to several areas of active work in the HBP. Firstly, it contributes to modelling, 
because it is the first time biophysical network models (with sophisticated biophysical features such 
as adaptation and conductance-based interactions) have contributed to “biologically-realistic” 
mean-field models (displaying several activity states) and are integrated in EBRAINS to simulate, 
with computationally non-demanding methods, large-scale network-level (whole brain) simulations. 
Three distinct scales of modelling are thus integrated here: microscopic (network of neurons), 
mesoscopic (mean-field), and macroscopic (whole-brain). Secondly, this Showcase contributes to 
knowledge of Brain States, because the models simulate two fundamentally different brain states, 
asynchronous (wake-like) and synchronised (sleep-like) dynamics. Thirdly, this Deliverable 
contributes to research in Cognitive Function because the model captures how information about 



    
 

D2.1 (D12) SGA3 M9 ACCEPTED 210504.docx PU = Public 4-May-2021 Page 7 / 14 
 

stimuli are integrated by different brain areas, a situation which occurs uniquely in asynchronous 
states, consistent with the high-level sensory integration displayed by the brain in the awake state. 
Finally, the model delivered here is useful for contributing to knowledge of changes in dynamical 
complexity between brain states and helps identify mechanisms relating changes in relationships 
between structural and functional connectivity between different states. 

This work is of broad interest to computational neuroscientists, anaesthesiologists, neurologists, 
cognitive neuroscientists, and physicists. The generality of the tools offered by this Deliverable are 
due to the enormous flexibility of the models displayed in the showcase that offer the means to 
connect knowledge of brain function across spatio-temporal scales and identify microscopic 
mechanisms as key to physiological changes in global brain networks. 

This showcase is relevant for several downstream purposes. Firstly, this work is delivered in a manner 
consistent with the requirements of high-performance computing (HPC), allowing the scaling up of 
models to more detailed, higher-resolution representations of human brain activity, representations 
of personalised multi-scale brain activity, as well as parameter exploration and bifurcation analyses. 
These downstream HPC applications will enrich specific knowledge of individual variation in brain 
activity related to healthy and abnormal brain states. As such, this work will also bear clinical 
interest, as we will use the models delivered here to investigate states of consciousness, which will 
be used as a companion to better understand the results of empirical analyses of spontaneous human 
brain activity as well as that evoked by sensory stimuli and TMS stimulation in various states of sleep, 
anaesthesia, coma, and stroke (in conjunction with the HBP Work Package WP1). 

2.2 Technical Specification 
In the M9 version of Showcase 3, we deliver commented code and supporting documentation to 
simulate and analyse two different human brain states, first a state of asynchronous activity, which 
is close to the brain dynamics in EEG-activated states, often called “desynchronized brain state”, 
such as typically seen in an awake subject.  The second state simulated is slow-wave activity, which 
is more synchronised across the brain, and is reminiscent of slow-wave sleep (SWS). The showcase is 
written in Python and it is delivered in commented Jupyter Notebooks that will be made publicly 
available via EBRAINS and GitHub. 

This Deliverable is divided into two parts, both showing asynchronous and synchronous dynamics. 
The first part offers code to simulate spontaneous, ongoing, background dynamics in the absence of 
stimuli. In part one, the EBRAINS user can visualise the qualitative features of signals through figures 
embedded in the code, including the signals from one brain region alone and all brain regions 
together. Furthermore, plots of the firing rates are made in anatomical space, showing the activity 
of the 76 brain regions simulated here. The code ends by producing a Gif of firing rate dynamics 
through time. Further, quantitative features of the simulated spontaneous activity are examined 
through analyses also embedded in the code. These analyses show shifts between synchronous and 
asynchronous states consistent with empirical findings. The included analyses are histograms of the 
firing rates of excitatory and inhibitory mean-fields, power spectral analysis, correlation between 
structural and functional connectivity, functional connectivity matrices, Hilbert transform and 
calculation of Phase Lag Index. 

In Part 2 of the M9 Showcase 3, stimuli perturb the spontaneous activity of synchronous and 
asynchronous states, showing qualitative differences reminiscent of evoked human brain activity in 
different states of consciousness. In particular, stimuli evoke changes in brain dynamics that 
propagate relatively further in space and time during conscious compared to unconscious brain 
states. This phenomenon can be quantified using the Perturbational Complexity Index (PCI). One 
form of PCI [1] has been programmed into Part 2 to demonstrate similarities between the simulations 
and empirical data. 

The model is a bottom-up construction which started in SGA1 by conceiving spiking (AdEx) models 
of excitatory and inhibitory networks of the human brain [2-4]. These models were constrained based 
on micro-electrode data in humans. Population models were then derived for AdEx networks in SGA2 
using mean-field techniques. These mean-field models were shown to accurately capture the 
excitatory and inhibitory interactions in cerebral cortex. In SGA3, the mean-field models were 
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integrated in the Virtual Brain (TVB) using its EBRAINS implementation. The AdEx mean-field model 
can simulate asynchronous states (based on asynchronous irregular firing of neurons) and Up/Down 
states (which is the cellular correlate of slow waves). The TVB implementation of the mean-field 
models can thus simulate either desynchronised activity or slow-waves at the level of the entire 
human brain (whole-brain simulations). 

These TVB simulations can reproduce the main features of the TMS stimulation in human: brain 
responses tend to be stereotyped and with little propagation during sleep, which gives a low PCI 
value, while in awake subjects, the response is typically complex and propagates all across the brain, 
a situation which corresponds to high PCI values.  The Showcase 3 TVB-AdEx simulations qualitatively 
reproduce these observations (Figure 4 & Figure 5). These simulations can be run interactively in 
EBRAINS, where the user can change all parameters and simulate asynchronous awake-like and 
synchronous sleep-like brain responses. 

 
Figure 4: Spontaneous whole-brain activity in synchronous and asynchronous states 

Spontaneous whole-brain activity in synchronous and asynchronous states simulated with the EBRAINS 
implementation of AdEx mean-field models connected through TVB. 

 
Figure 5: AdEx-TVB simulations produce evoked activity and PCI measurements that change 

with simulated brain state 
Asynchronous activity (left) produces more complex brain responses with higher PCI values, while synchronized slow-
wave activities (right) gives simpler brain responses and lower PCI. 

A brief summary of the input, protocol and output of the showcase is outlined below: 

2.2.1 Input 
A human connectome determined from diffusion magnetic resonance imaging collected in the Human 
Connectome Project, which can be found in: 

https://zenodo.org/record/4263723#.X9vvhulKg1J (berlin subjects/DH_20120806) 

https://zenodo.org/record/4263723#.X9vvhulKg1J
https://zenodo.org/record/4263723/preview/tvb_data.zip#tree_item7
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and biophysically informed neuronal parameters are introduced into mean-field populations of AdEX 
neurons in the The Virtual Brain framework [5-6]. 

2.2.2 Protocol 
• Run TVB-AdEX in a Jupyter notebook. 

• Part 1: Spontaneous activity. All parameters can be varied, but here we explicitly change the 
spike frequency adaptation to generate asynchronous and synchronous states. 

• Part 2: Evoked activity. Perturbations are introduced into the model to understand differences 
in the brain responsiveness. In this code, we perturb the right pre-motor cortex and calculate 
the Perturbational Complexity Index, for qualitative and quantitative comparison to the 
experiments of Marcello Massimini and colleagues [7-9]. 

2.2.3 Output 
Part 1: Synchronous and asynchronous signals representing simulated spontaneous whole-brain 
neural dynamics, produced by varying levels of spike-frequency adaptation (b_e), representing 
physiological, molecular changes in neuromodulation between brain states.  

• Histograms 

• Power spectra 

• Correlation between structural and functional connectivity 

• Functional connectivity matrices 

• Hilbert transform and Phase Lag Index (PLI) 

Part 2: Signals representing simulated evoked activity resulting from the perturbation of a model 
node.  

• Generation of averaged signals from several seeds to resemble event-related potentials (ERPs). 

• Calculation of Perturbational Complexity Index in synchronous and asynchronous states. 

2.3 How to access the Showcase 
The Showcase 3 is located in the following EBRAINS Wiki Collaboratory:  

https://wiki.ebrains.eu/bin/view/Collabs/showcase-3-tvb-adex  

If you don’t have access to it, please contact one of the following: Alain Destexhe 
(destexhe@unic.cnrs-gif.fr), Jennifer Goldman (jennifer.goldman.mcgill@gmail.com) or Arnau 
Manasanch (manasanch@clinic.cat). 

To access the Showcase Demo 3.1 video: 

https://youtu.be/B9RlXpv8hEg  

If order to execute the DEMO, please follow these steps: 

• Go to lab.ebrains.eu and log-in with your EBRAINS account. 

• On the left, navigate to the following directory:  

• Drive/Shared with Groups/Showcase3; TVB-AdEX/tvb-adex-showcase3-git 

• To run the notebook for spontaneous activity, open the notebooks: 

o “Showcase3_part1_synchronous_TVB_AdEX_example_and_analysis.ipynb” 

o “Showcase3_part1_asynchronous_TVB_AdEX_example_and_analysis.ipynb” 

• To run the notebook for evoked activity: 

https://wiki.ebrains.eu/bin/view/Collabs/showcase-3-tvb-adex
mailto:destexhe@unic.cnrs-gif.fr
mailto:jennifer.goldman.mcgill@gmail.com
mailto:manasanch@clinic.cat
https://youtu.be/B9RlXpv8hEg
http://lab.ebrains.eu/
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o Open the notebook “Showcase3_part2_EvokedActivity_PCI.ipynb” 

• Follow the guidelines in each of the notebooks. 

• More information regarding the models, equations and parameters used can be found in the 
following preprint: https://www.biorxiv.org/content/10.1101/2020.12.28.424574v1. [10] 

2.4 Looking Forward 
The specifications of the Showcase 3 to be delivered in M21 are described in Output 2.3 (release 
date M9) 

Here, we show that known differences at the molecular and global levels in brain dynamics between 
brain states are easily relatable through mean-field models that represent local populations of 
neurons, connected based on experimentally-determined human structural connectomes. This 
region-based brain model replicates several qualitative and quantitative experimental observations 
of human brain states and shows that synchronous or asynchronous macroscopic dynamics can 
emerge at the whole-brain level from microscopic changes in neuronal membrane channels that 
promote or inhibit spike-frequency adaptation. 

The delivery of this model represents the first in a series of advances made possible by the 
implementation and sharing of this model. These simulations can next be scaled up and made more 
accurate by scaling down the size of model nodes representing hundreds of thousands of individual 
cortical columns in the human brain, instead of the rough 68 regions anatomical parcellation 
delivered here. Connecting this model with HBP HPC tools will further allow the exploration of phase 
space and further characterisation of transitions. 

The model presented here roughly reproduces synchronous and asynchronous states that have been 
previously observed experimentally to vary with consciousness. We will next explore more deeply 
changes between healthy brain states, including active and restful waking, REM and NREM sleep. 
The model will also be used to reproduce the dynamics of abnormal brain states associated with loss 
of consciousness, including coma and anaesthesia, as well as other dynamic diseases including 
epilepsy. In all simulations made possible by the delivery of this model, physiological phenomena 
including changes in functional connectivity and neural coding can be probed to further promote the 
harmonisation of experimental results and the foundations for future empirical discoveries. Beyond 
the ability to study commonly used, but often poorly understood, analysis methods for human neuro-
imaging, the delivery of this model also makes possible a new generation of methods that is informed 
from deep insight into the mechanisms generating transitions between brain states, and their 
consequences for neural information. 

The present model is a generalisation of brain activity that can be further used to study individual 
variability. Human connectivity data and corresponding spontaneous and evoked dynamics are 
provided by the Human Connectome Project and by Marcello Massimini’s group, as well as inter-
region heterogeneity provided by The Big Brain. These data will serve as bases to study the variation 
of statistics within human populations and between populations within individual human brains for 
personalised brain modelling purposes. 

Finally, the anatomical backbone and functional parameters of this model can be substituted to 
study other animals. The Allen Institute offers a rich database of neuronal connectivity from axonal 
tracing studies in mouse, providing a ground truth to anchor connectivity determined in 
neuroimaging experiments, as well as providing models adapted to better understanding 
experiments performed in mice. In conclusion, this model delivers a biophysically-informed model 
that summarises microscopic to macroscopic dynamics and their differences between brain states 
that serves as precedent for the scale-integration of evolving neural network models, including those 
describing detailed neuronal morphologies. 

  

https://www.biorxiv.org/content/10.1101/2020.12.28.424574v1
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3. Showcase 4: Perception and Recognition of 
Objects and Scenes 

3.1 Introduction 
We experience changes in the world through our six senses. As we move, we predict how the changes 
in our multi-sensory experience should proceed. Perception is essentially a reconstructive process, 
by which the brain generates representations about what goes on in the world and improves these 
by comparisons to actual sensory inputs. If our predictions are wrong, then we attend to these 
inconsistences and act accordingly. Adopting the general principle of the brain as a prediction engine 
is attractive, as it potentially unifies many aspects of cognition such as perception, planning and 
attention. However, more concrete investigation is still required. In this showcase, we focus on an 
algorithmic-level description of the predictive brain, so called predictive coding networks, and in 
this first demonstration, we look at how they can be used to solve the real-world problem of multi-
sensory place recognition. 

A novel “Multi-modal deep Predictive coding Network” (MultiPredNet) has been constructed within 
the HBP and has been integrated with a mobile biomimetic robotic model of a rat - the “WhiskEye” 
- that can combine physical whisker tactile data and visual data from head mounted cameras to 
perform place recognition in a real-world arena. The network model contends the inter-relationship 
between visual, somatosensory and associative cortices and is inspired by an experimental 
neuroscience investigation into cross-modal object recognition in rat, also conducted within the 
HBP. 
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The WhiskEye robot is driven using a neural cognitive architecture based on functional models of 
basal ganglia, superior colliculus and cerebellum resulting in a tactile attention-driven behaviour in 
the robot inspired by observed rat behaviour. Visual-tactile views of the world are captured by the 
robot in synchrony with the whisking phase to initially train the MultiPredNet and then to infer 
location through the joint latent representations generated by the network. 

To measure performance in place recognition, we adopt Representational Similarity Analysis 
whereby the rank order of pose and representation distance between samples in a data set are 
compared. This has revealed that the MultiPredNet has equivalent performance in place recognition 
to state-of-the-art multi-modal variational auto encoders (a method used in AI). This is interesting 
to the neuroscience, machine-learning and robotics communities, as we demonstrate that a brain-
inspired model of self-learning can be applied to a hard robotics problem. Furthermore, the 
distributed and local learning rules of the MultiPredNet make it amenable to implementation in 
parallel computing such as neuromorphic hardware. MultiPredNet is also linearly extensible to 
integrate additional sensory input channels, directly addressing a current challenge in the training 
phase of multi–modal VAE systems allowing for self-contained learning and retrieval. 

To enable longer duration experiments for further validation and to provide access to the WhiskEye 
platform for other research groups, a virtual model has been instantiated into the Neurorobotics 
Platform (NRP) of EBRAINS. The whisker dynamics were approximated due to constraints of the 
current NRP world simulator; however, statistics from the physical whiskers have been incorporated 
into the model to improve realism. The code base for the multi-modal deep predictive coding 
network and data analysis tools are also available on the EBRAINS Knowledge Graph (KG), such that 
data sets gathered from the virtual WhiskEye can be used to train models and compare performance 
using the tools developed in this study. 

The goals of the next phase of this Showcase will be aimed at the development of different 
computational models at different levels of biological realism, and models with extended cognitive 
capacities. These models can serve as connection between the computational strategies used by the 
WhiskEye robot and the ones associated with behaviour during a multisensory task in rats. More 
specifically, a spike-based model of a predictive coding network will be evaluated, and will be 
extended to architectures for e.g. categorisation, feature integration and view-invariance. 
Moreover, an interactive demo will be built, integrating experimental data from electrophysiology 
and human brain imaging with model simulations in a video. This will require further use of EBRAINS, 
including both the NRP and KG as used here, but the High-Performance Analytics and Computing 
Platform and Neuromorphic Computing Platform will also be required. 

3.2 Technical Specification 
The Multisensory Predictive Coding Network (MultiPredNet) combines three predictive coding 
networks: a visual sensory network, a tactile sensory network and a joint-modal associative network. 
Each is composed of the same basic components and network architecture, but with a different 
number of layers and neurons in each. The MultiPredNet will be trained using datasets captured from 
the WhiskEye robot as it explores the environment driven by the model of rat behaviour described 
above. Once trained, the network can be validated against datasets captured by the WhiskEye as it 
explores novel environments that have structural similarities to the original training environment. 
To measure the performance of the network in place recognition, we compare the rank order of 
ground-truth pose distance between samples in the dataset with the rank order of distance between 
inferred joint representations across the sampled dataset. A summary of the interaction with 
EBRAINS and the workflow for the demonstrator is visualised in Figure 6 below. 

To generate data from the WhiskEye to train and test MultiPredNet, a virtual model of the WhiskEye 
has been ported into the EBRAINS NRP. The user can clone an instance of the full WhiskEye 
experiment into their own experimental folder to explore the control architecture and modify 
parameters. The WhiskEye platform can be situated in the standard arena used to gather the initial 
data set or into custom made environments defined by the user. The control architecture of the 
physical WhiskEye has been mapped into the Closed Loop Engine of the NRP, such that it has a 
synchronous time coupling with the world simulator. This will allow for extensions to the architecture 
including interfacing with the NEST simulator and the SPINNAKER neuromorphic platform. To collect 
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a dataset, the user simply needs to press record in the NRP user GUI; this will gather the messages 
passed on the required ROS topics into a timestamped data archive called a ROSBAG. 

The raw ROSBAG data files gathered from the WhiskEye experiment on the NRP then need to be 
converted into training and test sets for the MultiPredNet. The scripts to do this will be available for 
download from the EBRAINS KG, alongside existing baseline datasets for comparison. The 
MultiPredNet training and test code will also be available on the KG, hosted as git repositories along 
with the analysis scripts to generate figures and performance metrics. 

 
Figure 6: Workflow diagram of Demo 4.1 

Comments on Figure 5. WhiskEye experiments launched on the EBRAINS NRP to generate datasets. MultiPredNet 
source code referenced from the KG can be trained, tested and evaluated. Analysis tools will generate figures 
illustrating, for example, place recognition performance (lower right) and ground truth pose of WhiskEye (lower left). 

3.3 How to access the Showcase 
To access the Showcase Demo 4.1 video:  

https://youtu.be/0blgdAE1cbk  

To access the WhiskEye experiment on the EBRAINS NRP: 

https://neurorobotics.net/access-the-nrp.html 

(*Note: WhiskEye experiment will be included in NRP release 3.1 due M9-10) 

https://youtu.be/0blgdAE1cbk
https://neurorobotics.net/access-the-nrp.html


    
 

D2.1 (D12) SGA3 M9 ACCEPTED 210504.docx PU = Public 4-May-2021 Page 14 / 14 
 

To access the model code base (data parse scripts, MultiPredNet code and analysis tools) for 
Showcase 4: 

https://kg.ebrains.eu/search/instances/Model/2164c2b9bbb66b42ce358d108b5081ce 

3.4 Looking forward 
The specifications of the Showcase 4 to be delivered in M21 are described in Output 2.3 (release date M9). 

In the next stages of SGA3, Showcase 4 will increasingly focus on the development of computational 
models able to provide predictions and insight at different levels of biological and behavioural 
complexity, including models with a strong focus on neural dynamics, biologically plausible 
architectures and learning rules, and cognitive and/or behavioural aspects from the point of view of 
the predictive coding framework. These models will be linked to the ones developed for Showcase 
4.1 and will make increasing use of experimental data from rats and humans which has been or is 
being collected; for example, in the Pennartz and Düzel labs. 

A first step in this direction will consist of developing brain-based deep neural network architectures 
for visual and tactile predictive coding for constructing sensory representations from sensory inputs. 
These architectures mimic the overall structure of the visual and somatosensory cortical systems. 
The current version of this model is constituted by a three-layered spiking neural network, trained 
using biologically plausible (Hebbian) learning rules to classify visual images (MNIST data set) and 
generate internal top-down predictions which match the bottom-up sensory input, or which generate 
the corresponding prediction errors to drive further learning. The network includes a fast route 
relaying coarse-grained information on the gist of a scene, which triggers image-specific priors in 
top layers of the hierarchy. 

As a direct expansion to the previous model, we will build a model with an ability for view-invariant 
object categorisation and recognition in a predictive coding framework. This model will first reach 
preliminary levels of translation and possibly rotation or translation-invariance, to later progress to 
include two simultaneous modalities (corresponding to visual and tactile stimuli) and different stimulus 
features. This module will provide a computational framework to be used by the Whiskeye robot in 
the EBRAINS NRP. 

Finally, we will develop a more biologically realistic spiking cortical column model, constrained by 
available connectivity data from the literature and the KG. The model will include details on different 
neuron types, postsynaptic receptors, and cortical layers. For the final stages of the showcase, 
biologically plausible learning rules will be introduced to perform predictive coding for multisensory 
tasks, and different patterns of activity such as multi-stability or oscillations will be analysed. 

3.5 References 
[1] Pearson MJ, Salman M “Active Whisker Placement and Exploration For Rapid Object 

Recognition”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 
Macau, China, 2019, pp. 672-677 doi: 10.1109/IROS40897.2019.8968517 

[2] Struckmeier O, Tiwari K, Salman M, Pearson MJ, Kyrki V “ViTa-SLAM: A Bio-inspired Visuo-Tactile 
SLAM for Navigation while Interacting with Aliased Environments” in IEEE International 
Conference on Cyborg and Bionic Systems 2019. P2128 

[3] S. Dora, C. Pennartz, S. Bohte, “A Deep Predictive Coding Network for Inferring Hierarchical 
Causes Underlying Sensory Inputs”, International Conference on Artificial Neural Networks, 
Springer, Cham, 2018. P1522. Available at: 
https://pure.ulster.ac.uk/ws/files/77756390/ICANN_submission.pd 

[4] Pennartz CMA, Dora S, Muckli L, Lorteije JAM “Towards a unified view on pathways and functions 
of neural recurrent processing”. Trends in Neurosciences 2019 42: 589-603. doi: 10.1016 
/j.tins.2019.07.005. P1916 

https://kg.ebrains.eu/search/instances/Model/2164c2b9bbb66b42ce358d108b5081ce
https://kg.ebrains.eu/search/instances/Model/2164c2b9bbb66b42ce358d108b5081ce
https://pure.ulster.ac.uk/ws/files/77756390/ICANN_submission.pd

	1. The WP2 Showcases in the context of SGA3 & the HBP
	2. Showcase 3: Brain Complexity and Consciousness
	2.1 Introduction
	2.2 Technical Specification
	2.2.1 Input
	2.2.2 Protocol
	2.2.3 Output

	2.3 How to access the Showcase
	2.4 Looking Forward
	2.5 References

	3. Showcase 4: Perception and Recognition of Objects and Scenes
	3.1 Introduction
	3.2 Technical Specification
	3.3 How to access the Showcase
	3.4 Looking forward
	3.5 References


