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Figure 1: Example hippocampal (place) cell recorded while a rat navigates in a "four-room" 

scenario.  
The Figure exemplifies the data that will help address some of the fundamental questions of CDP7, e.g., How does 
the hippocampus form spatial maps of (hierarchically) structured environments? How do these change during learning 
and when task structure changes (e.g. when a previously available passage is closed)? See for details Section 3.
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Abstract: 

Humans and other animals are able to form sophisticated action plans; for example, 
planning routes to specific goal locations in spatial navigation. CDP7 studies the 
neuro-computational mechanisms of planning during spatial navigation in humans 
and rodents (as both species have excellent spatial navigation skills). In particular, 
it studies hierarchical planning - or how we subdivide our plans into "big chunks" or 
sub-goals (e.g. how to go from quarter to quarter in a city), rather than just consider 
step-by-step actions (e.g. specific sequences of left- and right-turns). To achieve 
these objectives, we designed spatial navigation tasks for humans and rodents, 
consisting in navigating and foraging in a hierarchically structured environment, 
composed of four rooms interconnected by corridors. Furthermore, we developed 
novel computational and robotic models that mimic navigation and planning 
abilities of humans and rodents. Our empirical results and computational models 
described within this document contribute to shed light into the mechanisms that 
we use to navigate and plan in structured environments. 
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1. Overview 
Humans and other animals are able to form sophisticated action plans; for example, planning routes 
to specific goal locations in spatial navigation. CDP7 studies the neuro-computational mechanisms 
of planning during spatial navigation in humans and rodents (as both species have excellent spatial 
navigation skills). In particular, it studies hierarchical planning - or how we subdivide our plans into 
"big chunks" or sub-goals (e.g. how to go from quarter to quarter in a city), rather than just consider 
step-by-step actions (e.g. specific sequences of left- and right-turns).  

We designed spatial navigation tasks that both species (humans and rodents) can perform, and which 
consist in finding rewards in a hierarchically structured environment: 4 rooms interconnected by 
corridors (the hierarchical structure is evident if one considers that specific places can be considered 
either individually, or at a higher level of abstraction, as part of a room).  

Furthermore, we developed novel computational models of planning during navigation, which we 
used to aid the analysis of human and rodent data, and used to control a robot that operates in the 
same "4-rooms" scenario as the humans and the rodents. The comparison of behaviour between living 
organisms (humans and rodents) and computational/robotic models is helpful in advancing our 
understanding of the neuro-computational principles of planning in complex environments. 

Our novel experiments in the 4-rooms scenario strongly suggest that humans exploit hierarchical 
representations of space to generalise efficiently across tasks; and shed light on both the 
computational principles (e.g. inference over structured task representations) and the neuronal 
underpinnings (e.g. neural dynamics in medial temporal lobe and prefrontal cortex) supporting 
navigational planning. 

In sum, the research conducted within CDP7 is advancing our understanding of the mechanisms of a 
key prospective ability - planning - that is still poorly understood at neural and computational levels. 
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2. Introduction 
We have an incomplete understanding of how the brain of humans and other animals supports 
prospective and future-oriented forms of cognition. For example, we do not know what behavioural 
strategies we use to address large combinatorial planning problems that defy exhaustive search; and 
what neuro-computational mechanisms support such strategies. 

CDP7 addresses the ways humans and rodents plan during spatial navigation, by using an innovative 
approach that integrates knowledge from these two species, as well as from computational and 
robotic models. It starts from the hypothesis that during navigation, humans and rodents plan using 
a hierarchical generative model of the task and its relevant states. To validate the hypothesis, CDP7 
tested humans, rodents and computational/robotic models in a (largely) common spatial navigation 
scenario: a "4-room"-environment, which has been long considered in AI studies of hierarchical 
planning.  

We performed a series of experiments that address both the behavioural signatures of planning 
during navigation and their neuronal underpinnings, using behavioural tasks, fMRI recordings (in 
humans) and single-cell hippocampal recordings (in rats). In parallel, we develop computational and 
robotic models of hierarchical planning during spatial navigation that both provide a quantitative 
characterisation of the project hypothesis and support model-based analysis of the experimental 
results. 

The rest of the document is centred on the description of the Key Results and Outputs of CDP7. 
Section 3 describes the results of the rodent studies in the 4-room scenario. Two test conditions, 
when compared to a baseline condition, allow us to assess the effect of a change in environmental 
hierarchy and connectivity on hippocampal place cells. While the analysis of this dataset is still 
ongoing, preliminary results suggest that these changes do not have a major effect on the place cell 
population. 

Section 4 describes the results of the human studies. In particular, the analysis of human behaviour 
indicates that humans exhibit strong forms of generalisation over hierarchical spatial structure. This 
strongly suggests that they are representing the 4-room environments hierarchically over multiple 
spatial scales, as predicted. This behavioural finding allows us to investigate the nature of the 
hierarchical representation in BOLD signals recorded whilst participants perform the task, with a 
focus on the medial temporal lobe and medial prefrontal cortex. 

Section 5 describes the results of the computational modelling studies. In particular, Section 5.1.2 
reports a novel computational model that characterises formally the neuronal circuit formed by the 
hippocampus and the ventral striatum; and explains how it supports goal-directed actions (from a 
probabilistic planning-as-inference perspective). Furthermore, it reports a novel computational 
model of the human study in the 4-room scenario described in Section 4. Section 5.1.3 reports the 
development and validation of two novel computational methodologies to support the analysis of 
spatial navigation data, at both behavioural and neural levels. Finally, Section 5.1.4 reports the 
development and validation of a robotic implementation of the above computational model of 
hippocampus and ventral striatum, within the Neurorobotic Platform (NRP) of SP10. 

The above findings are important from a scientific perspective, as they contribute to shedding light 
into one of our most advanced cognitive abilities - planning - which is still poorly understood. 
Furthermore, the above findings are important from a technological perspective, given the pressing 
necessity to develop artificial systems that do more than react to the current stimuli, and are able 
to think about the future and the consequences of their actions (e.g. self-driving cars; robots that 
operate in rich social contexts). 
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3. Key Results KRc7.1 Hierarchical navigational 
planning - rodent neurophysiology 

3.1 Outputs 

3.1.1 Overview of Outputs 

3.1.1.1 List of Outputs contributing to those models 

• Output 1: Design of a 4-room environment and of a working task protocol (C3050) 

• Output 2: Behavioural and electrophysiological dataset from hippocampal place cells in rats 
performing a “4-room” task (C3050)  

3.1.1.2 How Outputs relate to each other and the models (link to the 
Key Results) 

Output 1 is a prerequisite for Output 2. 

3.1.2 Design of a 4-room environment and of a working task 
protocol 

We designed a protocol to test the influence on rodent behaviour and hippocampal place cells of i) 
a change in the connectivity between rooms of a multi-compartment environment and ii) a change 
in the hierarchical organisation of these rooms. We also built and tested the actual maze in which 
this protocol would be run (Figure 2). In particular, we used doors that can be pushed open by the 
rats, which as far as we know have never been used before (Figure 3). These had to be carefully 
designed to make sure they were not too easy or too difficult to push, and that opening them did 
not impact the collection of neural signals. A detailed description of the design of the environment 
as well as of the paradigm will be included in a future research article. 

 
Figure 2: The 4-room maze 
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Figure 3: Example of rat pushing through door (source: Anyi LIU) 

 
Figure 4: An implanted rat with a head-cap protecting the recording implant  

For the protocol, we designed tests on the effect of a change of environmental connectivity / 
hierarchy on neural activity. Two different conditions are tested and the full protocol is presented 
in Table 1. Sessions are separated by breaks during which the rat is removed from the environment 
and placed on an elevated platform to rest with access to drinking water. For each session, the same 
sequence of rewarded boxes is used to try and make the behaviour as similar as possible between 
sessions. 

Table 1: Protocol summary (test sessions highlighted with dashed lines) 

Name S1 S2 S3 S4 S5 

“closed door” All doors open All doors open 1 door closed 1 door closed All doors open 

“one-way” All doors open All doors open All doors open 
one-way 

All doors open 
one-way All doors open 

By comparing the place cells’ activity between the “test” sessions (S3 and S4) and the “baseline” 
sessions (S1, S2 and S3) we can determine whether these changes are encoded in the activity of 
place cells. In the “closed-door” test, we expect local remapping, i.e. a change in the activity of 
cells which fire close to the place of the manipulation. In the “one-way” test, we expect either 
global remapping: most cells changing their place field (location of their firing) position, or general 
rate remapping: most cells changing their firing rate. 
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Table 2: Design of a 4-room environment and of a working task protocol Links 

Component Link to URL 

C3050 

Data Repository Data will be made available by the end of June 2020 

Technical Documentation Documentation will be made available  (as a preprint) by the end 
of June 2020 

User Documentation Documentation will be made available  (as a preprint) by the end 
of June 2020 

3.1.3 Behavioural and electrophysiological dataset from 
hippocampal place cells in rats performing a “4-room” 
task 

We trained 4 rats in the above-mentioned 4-room task and recorded electrophysiological signals from 
hippocampal pyramidal neurons (“Place cells”). Table 1 shows a preliminary count of place cells 
recorded in each condition. The recordings are ongoing with 3 more implanted rats to be recorded 
from, in order to collect enough data to perform robust analyses. 

Table 3: Preliminary number of unique place cells recorded in each testing condition 

Rat “closed-door” “one-way” 

35 8 6 

37 10 7 

38 51 43 

Total so far 69 56 

Our first observations are that 1) rats know about the connectivity of the environment and use this 
information to navigate, as is shown by a decrease in the number of attempts to push the closed 
doors with time, and 2) place cells remain mostly spatially stable when the connectivity of the 
environment changes. This doesn’t preclude subtler activity changes, induced by the connectivity / 
hierarchical change, that could be demonstrated by a more in-depth analysis of our dataset. 

Two example place cells are illustrated in Figure 5. (A) A place cell recorded in a “closed-door” 
manipulation (sessions 3 and 4, top door is closed). Top: path of the rat (in grey) and cell activity 
(in red) in each session. Bottom: “rate maps” of the cell’s activity in each session, i.e. firing rate at 
each location. Note how the spatial activity of this cell remains stable across sessions and even 
though a small activity change in activity seems to appear in the first test session (S3) this had 
actually already appeared in S2. (B) A place cell (from a different rat) recorded in a “one-way” 
manipulation (in S3 and S4, all 4 doors were closed anticlockwise, only allowing clockwise 
movements between rooms). Note how the spatial activity of this cell is also conserved across 
sessions and how, once again, a small activity change might be detected on the spike map in S3 but 
this is already visible in S2 so does not appear linked to our test manipulation. 
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A 
         S1                       S2                        S3                       S4                       S5 

 

B 

 

Figure 5: Example activity of place cells in the task, which show duplicated place fields in 
different rooms.  

(A-B): Two example place cells in our dataset, which have multiple place fields. See Section 3.1.3 for details. 

3.2 Validation and Impact 

3.2.1 Actual and Potential Use of Output(s) 

The designed protocol and collected data set are predicted to have an impact on both the spatial 
navigation scientific field as well as the computational modelling field. A critical manipulation was 
including conditions with open or closed doors, which permits assessing whether place cells remap 
as a function of changed transitions. In particular, the experiment permits comparing the predictions 
of different theories of hippocampal coding, including successor representation (SR), Boundary 
Vector Cell (BVC), and hierarchical coding (HC) models. For example, if CA1 place cells follow the 
SR model predictions, they should locally remap around a door with a changed connectivity; 
alternatively, if place cells are driven by BVCs, closing a door without changing its geometry should 
not affect place cells’ firing significantly. 
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3.2.2 Publications 

We expect to produce a biorXiv publication with this dataset by the end of June 2020. 

4. Key Result KRc7.2 Hierarchical navigational 
planning – human neuroimaging 

4.1 Outputs 

4.1.1 Overview of Outputs 

4.1.1.1 List of Outputs contributing to this KR 

• Output 1: Design of a video game environment that involves hierarchical spatial planning, and 
the collection of human behavioural data (C3040) 

• Output 2: Recording of fMRI data from a cohort of human participants during hierarchical spatial 
planning (C3040) 

• Output 3: Behavioural data for navigation in a hierarchical maze (C3041).  

4.1.1.2 How Outputs relate to each other and the Key Result 

Output 1 is a prerequisite for Output 2. Output 3 is stand-alone. 

4.1.2 Design of a video game environment that involves 
hierarchical spatial planning, and the collection of 
human behavioural data  

We designed a 3D video game environment in which participants learned to forage for 2 successive 
rewards in a 4-rooms environment. A link to the task can be found here1 and a representative image 
is shown below (Figure 6A). 

 
Figure 6: 3D video game environment for the human spatial navigation experiment. 

The task required participants to move through the environment and open boxes, 2 of which 
contained a rewarding stimulus, that could be converted to a real financial incentive, paid as a bonus 

                                            
1 http://185.47.61.11/sandbox/tasks/hannahs/martinitask/dataset_1/builds/peanuts_martinis/  

http://185.47.61.11/sandbox/tasks/hannahs/martinitask/dataset_1/builds/peanuts_martinis/
http://185.47.61.11/sandbox/tasks/hannahs/martinitask/dataset_1/builds/peanuts_martinis/
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at the end of the experiment. Rewards had to be collected before a timeout. The relationship 
between the two rewards was signalled by a contextual cue that appeared at the start of the block: 
in one context, the rewards were in parallel locations along the vertical axis, and in another they 
were in parallel locations along the horizontal axis (Figure 6B). Participants then performed a new 
task the next day with differing room identifiers (floor colouring) but the same relational pattern. 
We constructed the task so that their actions after obtaining the first reward would betray whether 
they had learned and generalised the hierarchical spatial structure. 

We collected human data from over 250 participants on this multi-session task. The data are made 
available via the Open Science Foundation website2. They consist of the following: 

================================================================ 
Experiment A part 1 (N=140):  day1 blocked training 
Experiment A part 2 (N=79): day2 blocked training on different reward types 
================================================================ 
Experiment B part 1 (N=24): day1 intermingled trial sequence training 
Experiment B part 2 (N=16): day2 blocked training on different reward types 

We aim to consolidate these data with neural measurements before publication. However, we 
already included some example data in Figure 7. 

 
Figure 7: Example data from the human spatial navigation experiment. 

(A) Heatmap of percent time spent by participants at different positions. (B) Percent of correct first-room choices 
across subjects.  

 

Table 4: Design of a video game environment that involves hierarchical spatial planning, and 
the collection of human behavioural data - Links 

Component Link to URL 

C3040 

Data Repository 
Data are available via the Open Science Foundation website 
(https://osf.io/x6tge/) and EBRAINS 
https://wiki.ebrains.eu/bin/view/Collabs/sp2-collab/ 

Technical Documentation EBRAINS https://wiki.ebrains.eu/bin/view/Collabs/sp2-collab/ 

User Documentation EBRAINS https://wiki.ebrains.eu/bin/view/Collabs/sp2-collab/ 

                                            
2 https://osf.io/x6tge/?view_only=2ff667d34a1d4f03b3575f09749e940a  

https://osf.io/x6tge/?view_only=2ff667d34a1d4f03b3575f09749e940a
https://osf.io/x6tge/?view_only=2ff667d34a1d4f03b3575f09749e940a
https://osf.io/x6tge/
https://wiki.ebrains.eu/bin/view/Collabs/sp2-collab/
https://wiki.ebrains.eu/bin/view/Collabs/sp2-collab/
https://wiki.ebrains.eu/bin/view/Collabs/sp2-collab/
https://osf.io/x6tge/?view_only=2ff667d34a1d4f03b3575f09749e940a
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4.1.3 Recording of fMRI data from a cohort of human 
participants during hierarchical spatial planning 

We redesigned the 4-room task in a way that was optimised for the fMRI scanner. This involved 
changing the viewing perspective to a room-specific overhead view (Figure 6B) and introducing a 
“controller switch” whereby participants sometimes actively harvested rewards (as during 
behavioural training) and sometimes were moved through the maze towards rewards by an in-game 
AI controller. These careful design choices will allow us to conduct the analysis of spatial hierarchy 
in the hippocampus and other brain structures that constitute our work plan. Analyses of these data 
are ongoing. In Figure 8, we included an image of the fMRI task (Figure 8A) and of the medial 
temporal lobe ROI we are using (Figure 8B). We expect to have completed the analysis of the fMRI 
data before summer 2020. 

 
Figure 8: fMRI version of the human spatial navigation experiment.  

(A) Screenshot of the fMRI task. (B) Medial temporal lobe ROI. 

4.1.4 Behavioural data for navigation in a hierarchical maze 

We designed and tested an experiment that involved learning from scratch to navigate in a 
hierarchical maze. The maze was symbolic, i.e. only signalled by object cues (Figure 9A).  Different 
computational models make distinct predictions about how different training curricula should affect 
training. We tested these in a behavioural experiment involving >90 participants (Figure 9B). These 
data will be made publicly available shortly through the Open Science Foundation. 

 
Figure 9: Human experiment on learning to navigate in a hierarchical maze. 

(A) Object cues used in the study and their hierarchical structure. (B) Example (preliminary) results of the study. 
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Table 5: Behavioural data for navigation in a hierarchical maze - Links 

Component Link to URL 

C3041 

Data Repository Data will be made available through the Open Science 
Foundation and within the HBP platform by the end of June 2020 

Technical Documentation Documentation will be made available within the HBP platform 
by the end of June 2020 

User Documentation Documentation will be made available within the HBP platform 
by the end of June 2020 

4.2 Validation and Impact 

4.2.1 Actual and Potential Use of Output(s) 

The designed protocol and collected data set will be of interest to communities in both systems and 
theoretical neuroscience, with a focus on navigation, planning and reasoning. In particular, the data 
permit validating alternative models of hierarchical coding and abstraction. One example 
hierarchical model used to characterise the experimental findings is provided in Section 5.1.2. It 
describes the abstraction process in terms of Bayesian nonparametric methods and successfully 
characterises the generalisation ability of human participants to the study described in Section 4.1.2.   

4.2.2 Publications 

We expect to publish these data in 2020. 

5. Key Result KRc7.3 Hierarchical navigational 
planning – computational modelling  

5.1 Outputs 

5.1.1 Overview of Outputs 

5.1.1.1 List of Outputs contributing to this KR 

• Output 1: Model for look-ahead prediction and planning during spatial navigation (C3037) 

• Output 2: Model-based analysis of neural data obtained during goal-directed spatial navigation 
(C3036) 

• Output 3: Robotic model of hierarchical planning during goal-directed spatial navigation (C3035) 

(Note the work reported here relates to Tasks T4.3.4, T4.4.6, T4.5.4, whose leader is CNR).  

5.1.1.2 How Outputs relate to each other and the Key Result 

Output 1 is a prerequisite for Output 3. Output 2 is stand-alone. 
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5.1.2 Model for look-ahead prediction and planning during 
spatial navigation 

We developed a novel computational model of hippocampus-based spatial navigation, which tests 
the idea that the hippocampus and the ventral striatum jointly form a goal-directed controller – 
implemented in the model using Bayesian nonparametrics and planning-as-inference, see Figure 10. 
We showed that the computational model can address problems requiring look-ahead prediction and 
planning; and during learning, it develops internal codes having key characteristics of neurons in the 
hippocampus and the ventral striatum (as compared with single cell data from CDP7 members, 
PENNARTZ Lab). The model was fully described in Stoianov et al. (2018) -P1393 and the source code 
was released in open source format. In subsequent publications, we explored developments of the 
model that cover additional mechanisms beyond goal-directed spatial navigation, and namely 
behavioural habitisation (Maisto et al. (2019) - P1957) and exploration (Pezzulo and Nolfi (2019) - 
P1823).  

 
Figure 10: Schematic of the computational model of goal-directed navigation. 

(A) Sketch of systems-level circuit investigated in the study. (B) Sketch of the behavioural paradigm. (C) Example grid 
cells used in the model. (D) Illustration of the model, see Stoianov et al. (2018) -P1393 for details. 

Furthermore, we developed a novel computational model of the human spatial navigation task 
described in Section 4.1.2 (the 4-room scenario). The model leverages and extends the Bayesian 
nonparametric model of spatial navigation illustrated in Figure 10, with an additional mechanism 
that acquires hidden task rules (e.g. the fact that reward locations may be arranged horizontally or 
vertically). Figure 11 (A) shows the structure of the model, with three main components that develop 
latent internal codes based on contextual stimuli and learn their probabilistic dependencies - which 
afford probabilistic inference about task rules and reward location. Figure 11 (B) shows the 
behavioural results of the model, with an immediate transfer of learned task rules from day 1 to day 
2, as observed experimentally in humans (see Output 1 of Section 4). Figure 11 (C) shows the analysis 
of latent codes (S, Z and Y) developed in the three components of the model, using measures of 
mutual information (MI) and conditional mutual information (CMI). This analysis illustrates that the 
three components of the model develop latent codes that are sensitive to different kinds of 
information - that have to be integrated to successfully solve the task. These analyses are useful to 
compare with information content in different brain areas, as revealed by fMRI. The computational 
model is still unpublished and the current draft is online here3. We expect to publish a paper 
comparing hidden variables of the model (as emerged from the Bayesian nonparametric model) with 
neuronal codes in medial temporal lobe and prefrontal cortex (from the human fMRI experiment, 
see Section 4.1.3) before summer 2020. 

  

                                            
3 https://sites.google.com/site/giovannipezzulo/home/publications/filecabinet/CDP7-
four_rooms_task%20.pdf   

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxnaW92YW5uaXBlenp1bG98Z3g6NmI3NDYzNjI4YzUxNDllOQ
https://sites.google.com/site/giovannipezzulo/home/publications/filecabinet/CDP7-four_rooms_task%20.pdf
https://sites.google.com/site/giovannipezzulo/home/publications/filecabinet/CDP7-four_rooms_task%20.pdf
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(A) (B) 

  

(C) 

 

Figure 11: Schematic of computational model of human spatial navigation in 4-rooms tasks 
Schematic of computational model of human spatial navigation in 4-rooms tasks, reported in Section 4.1.2. (A) Sketch 
of the main components of the model. (B) Performance of the model during days 1 (blue) and 2 (red). (C) Analysis of 
the information content of latent states developed by the computational model. See3 for additional details. 

 

Table 6: Model for look-ahead prediction and planning during spatial navigation - Links 

Component Link to URL 

C3037 

Data 
Repository 

https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb59
2dfc42e216140e  
https://github.com/stoianov/MBRL/tree/1.0  

Technical 
Documentation 

https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb59
2dfc42e216140e  

User 
Documentation 

https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb59
2dfc42e216140e  

https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb592dfc42e216140e
https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb592dfc42e216140e
https://github.com/stoianov/MBRL/tree/1.0
https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb592dfc42e216140e
https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb592dfc42e216140e
https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb592dfc42e216140e
https://kg.ebrains.eu/search/instances/Model/ed0554b569a59e3ccabe81eb592dfc42e216140e
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5.1.3 Model-based analysis of neural data obtained during 
goal-directed spatial navigation 

This Output includes two novel computational methodologies for the analysis of spatial navigation 
data collected within CDP7 and beyond, at behavioural and neural levels.  

The former is a novel computational model that directly incorporates the main hypothesis of CDP7, 
by casting the hippocampal formation as a (hierarchically structured) generative model and 
hippocampal spontaneous dynamics as generative replays from the model (Figure 12). In addition to 
illustrating a novel theory of hippocampal function (and especially hippocampal replays), the 
computational model can be used to perform model-based analyses of the statistics of hippocampal 
codes (e.g. place cells) and of replays observed while rodents navigate in structured environments 
(e.g. the 4-room scenario) and when they rest afterwards. The computational model is reported in 
the preprint Stoianov et al. (2020) - P2331; while the results of the model-based analyses of neural 
data are preliminary and yet unpublished. 

 
Figure 12: Schematic of the model of hippocampal formation as generative model. 

(A) Structure of the model. (B) Set up of the continual learning experiment. (C-D) Performance of the model. See 
Stoianov et al. (2020) -P2331 for additional details. 

The latter is a novel method to identify "motor primitives" in rodent spatial trajectories (i.e., 
elementary movement units that can be composed to reconstruct the animal's movements in space) 
using a machine learning technique: dictionary learning. We validated the "motor primitives" 
approach using an available dataset of rodent movements. Our results are reported in the preprint 
Donnarumma et al. (2020) - P2417 (in validation process). They show that the methodology permits 
the identification of structured behavioural patterns within rodent spatial trajectories (see Figure 
13); the identification of specific characteristics of the maze (e.g. complexity) or the animals' state 
(e.g. stereotyped behaviour) from movements; and the prediction of place and grid displacement in 
novel mazes. Figure 13 illustrates some aspects of the model; and namely, examples of motor 
primitives (a); fictive trajectories generated from the motor primitives (b); predicted displacement 
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of grid (c-d) and place cells (e-f) during spatial navigation. This methodology can be used by 
behavioural scientists and neuroscientists as an aid for behavioural and neural data analysis. 

 
Figure 13: Simulated data from computational model of rodent spatial trajectories  

(see Donnarumma et al. (2020) - P2417 (in validation process)).  

 

Table 7: Model-based analysis of neural data obtained during goal-directed spatial navigation - 
Links 

Componen
t Link to URL 

C3036 

Data Repository 
https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774f
d020fd  
https://github.com/stoianov/HDGM/tree/V1  

Technical 
Documentation 

https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774f
d020fd  

User 
Documentation 

https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774f
d020fd  

5.1.4 Robotic model of hierarchical planning during goal-
directed spatial navigation 

We embodied the computational model of goal-directed navigation (described as Output 3) in a 
Husky robot, simulated on the Neurorobotic Platform of SP10, in order to assess the scalability and 
robustness of the model and extend it to include more realistic (robotic) action-perception control 
loops. This work was conducted in collaboration with HBP partner Scuola Superiore Sant'Anna (SSSA); 

https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774fd020fd
https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774fd020fd
https://github.com/stoianov/HDGM/tree/V1
https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774fd020fd
https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774fd020fd
https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774fd020fd
https://kg.ebrains.eu/search/instances/Model/5d2ed7e2545226fa316f75774fd020fd
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further details are specified in SGA2 Deliverable D10.5.2 (D67.2 D48). The Husky robot was 
successfully tested in three different navigation scenarios, where it had to learn to navigate 
autonomously to goal locations (in red in Figure 14). The results of this work have not been published 
yet. However, they have been presented in a poster at the HBP Summit 2020 (M. Priorelli, M. Kirtay, 
I. P. Stoianov, G. Pezzulo, E. Falotico "The hippocampus-ventral striatum circuit model in the 
Neurorobotics Platform in navigation tasks") and in a conference paper accepted at the I-RIM 
conference https://i-rim.it/it/conferenza-i-rim/. 

   

Figure 14: Three scenarios where the neurorobotic model was tested. 

 

Table 8: Robotic model of hierarchical planning during goal-directed spatial navigation - Links 

Component Link to URL 

C3035 

Data Repository https://collab.humanbrainproject.eu/#/collab/78682/nav/532632 

Technical Documentation https://collab.humanbrainproject.eu/#/collab/78682/nav/532632 

User Documentation https://collab.humanbrainproject.eu/#/collab/78682/nav/532632 

5.2 Validation and Impact 

5.2.1 Actual and Potential Use of Output(s) 

The impact of the work conducted under this KRc7.3 is mainly scientific: it advances our knowledge 
of the computational and neural mechanisms supporting goal-directed navigation and planning; it 
extends the toolbox of data analysis methods (to target especially neural codes); and it demonstrates 
robotic implementations of autonomous, goal-directed navigation. 

5.2.2 Publications 

• P1393 - Stoianov I., Pennartz, C., Lansink, C., Pezzulo, G. (2018) Model-based spatial navigation 
in the hippocampus - ventral striatum circuit: A computational analysis. PLoS Computational 
Biology, 14(9) e1006316 

Highlight for Output 1: This publication reports a novel computational model of spatial 
navigation, where hippocampal and ventral striatal dynamics implement look-ahead and 
planning, realised in collaboration with SP3 (PENNARTZ Lab). This publication validates Output 
1 with scientific peer review. Furthermore, the model described in this publication was 
implemented in the neurorobotic platform (Output 3). 

• P2331 - Stoianov I., Maisto D., Pezzulo G., (2020) The hippocampal formation as a hierarchical 
generative model supporting generative replay and continual learning. BiorXiv preprint 

Highlight for Output 2: This preprint publication introduces a hippocampal model that supports 
a dual use: first, it provides a novel theoretical explanation of cognitive map formation and 
hippocampal replays; second, it provides a novel computational method for the analysis of latent 

https://i-rim.it/it/conferenza-i-rim/
https://collab.humanbrainproject.eu/#/collab/78682/nav/532632
https://collab.humanbrainproject.eu/#/collab/78682/nav/532632
https://collab.humanbrainproject.eu/#/collab/78682/nav/532632
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representations formed during spatial navigation and of hippocampal spontaneous activity 
(Output 2).  

• P2417 in validation process- Donnarumma F., Prevete F., Maisto D., Fuscone A., van der Meer 
M., Kemere C., Pezzulo G. (2020) A framework to identify structured behavioral patterns within 
rodent spatial trajectories. Biorxiv preprint 

This preprint publication introduces a novel methodology to extract motor primitives from rodent 
spatial trajectories, to be used to analyse animal data at both the behavioural level (e.g., 
identification of path stereotypy and preferences) and the neural level (e.g. prediction of place 
and grid displacement in novel mazes). (Output 2) 

• P1957 - Maisto D., Friston K., Pezzulo G. (2019) Caching Mechanisms for Habit Formation in Active 
Inference. Neurocomputing 359, 298-314 

This publication provides a novel computational perspective on how behavioural habits are 
formed after (over)training and how they complement goal-directed navigation mechanisms 
based on the hippocampus. It therefore elaborates and extends the results of Output 1 beyond 
goal-directed spatial navigation, to also address behaviour routinisation. 

• P1823 - Pezzulo, G., Nolfi, S. (2019) Making the Environment an Informative Place: A Conceptual 
Analysis of Epistemic Policies and Sensorimotor Coordination. Entropy 21 (350) 

This publication provides a computationally-guided analysis of epistemic and exploratory 
behaviour, of the kind involved in the formation of a task space or a (hippocampal) cognitive 
map. It therefore elaborates and extends the results of Output 1 beyond goal-directed spatial 
navigation, to also address exploration. 

• P2130 in validation process- Pezzulo G., Donnarumma F., Maisto D., Stoianov I. (2019) Planning 
at decision time and in the background during spatial navigation. Current Opinion in Behavioral 
Science, 29, 69-76 

This review provides a novel conceptual overview of the neural and computational mechanisms 
supporting spatial navigation and planning, with a particular focus on the hippocampus. It is 
intended to present the results of Outputs 1, 2 and 3 to a wide scientific audience. 

• P1959 - Maranesi M., Bruni S., Livi A., Donnarumma F., Pezzulo G., Bonini L. (2019) Differential 
neural dynamics underling pragmatic and semantic affordance processing in macaque ventral 
premotor cortex. Scientific reports 9 (1), 1-11 

This paper widens the scope of the computational data analysis of Output 2, by targeting the 
neural mechanisms for planning object-directed actions (in monkeys).  

• P2006 - Gómez CM., Arjona A., Donnarumma F., Maisto D., Rodriguez Martinez E.I., Pezzulo G. 
(2019) Tracking the time course of Bayesian inference with Event Related Potentials: a study 
using the central cue Posner paradigm. Frontiers in Psychology 10:1424. doi: 
10.3389/fpsyg.2019.01424 

This paper widens the scope of the computational data analysis of Output 2, by targeting the 
neural mechanisms that permit estimating hidden context and surprise, in humans.  

6. Conclusion and Outlook  
In CDP7, we studied navigational planning in humans and rodents by combining behavioural, neural, 
computational modelling and robotic approaches. The central questions we addressed were whether 
living organisms (humans or rodents) organise their planning hierarchically (e.g. plan in terms of sub-
goals rather than in terms of step-by-step action sequences) and what kind of neuro-computational 
mechanisms are required for such hierarchical planning (e.g. forms of structure learning that permit 
developing useful task abstractions).  

To address these challenges, we designed coherent human, rodent and robotic tasks in a common 
spatial navigation scenario – called the “4-room” scenario – which has been long considered an ideal 
scenario to study hierarchical plans in AI. 
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Our experiments in CDP7 tested whether (and how) rodents, humans and computational 
models/robots represent hierarchical task structure and use it for adaptive decision and 
generalisation to novel situations where (part of the) structure is preserved. The focus on two 
different species (humans and rodents) and computational/robotic models permits addressing 
different, complementary facets of this question. 

Our rodent experiments in the 4-room scenario aim at elucidating the neuronal underpinnings 
supporting hierarchical spatial coding and planning, by testing the effect of a change in 
environmental hierarchy and connectivity on hippocampal place cells; see Section 3. While our 
analyses are still ongoing, the preliminary data suggest that the most immediate aspects of place 
cell coding (place fields) are not immediately influenced by changes of connectivity. Yet we have 
developed a suite of computational methods that permit testing sequential coding in the 
hippocampus, beyond place fields; and these novel analysis tools (that we are testing) hold the 
promise to unveil the mechanisms permitting rodents to flexibly reuse and generalise spatial 
knowledge. 

Our human experiments in the 4-room scenario tested the ability of humans to learn hidden task 
regularities (e.g. that pairs of rewards could be found at predictable locations, arranged horizontally 
or vertically) and exploit them to generalise to novel situations, where some superficial features of 
the task (e.g. colour and reward identity) changed, but hidden regularities (e.g. horizontal or 
vertical arrangement) did not; see Section 4. Our results strongly suggest that we humans use 
hierarchical spatial structure to generalise rapidly to novel situations that have analogous (hidden) 
regularities. The behavioural results also paved the way to the development of an fMRI version of 
the 4-room scenario, which aims to shed light on the neuronal mechanisms supporting the 
representation and use of hierarchical task structure (analyses are ongoing).  

Our computational modelling and robotic experiments complement the human and rodent 
experiments, by permitting to develop and test mechanistic hypotheses on hierarchical task 
representations and planning. These activities comprised several computational models that test 
spatial navigation from different perspectives; see Section 5. One model addresses the hippocampus 
– ventral striatum circuit during spatial navigation, and was successfully embodied in the 
Neurorobotic Platform (NRP), hence demonstrating its scalability and potential to explain 
sophisticated navigational skills. A second model directly simulates human data on spatial navigation 
in the 4-room task collected in CDP7, in order to investigate the putative computational mechanisms 
affording hierarchical structure learning and generalisation in humans. When tested in the 4-room 
scenario with a protocol analogous to the human experiment, this second model shows the same 
transfer learning ability as humans and develops latent codes that code for key spatial and structural 
property of the task. This model therefore suggests candidate mechanisms for human structure 
learning and generalisation, which we are testing by comparing and "aligning" model predictions and 
human data. A third model directly implements one of the key assumptions of CDP7 – that the 
hippocampus functions as a generative model, to learn hierarchical spatial codes for maps and 
sequences – and provides a novel perspective on internally generated hippocampal sequences (and 
replays).  

Taken together, these rodent, human and computational studies offer a number of novel results and 
insights that greatly advance our understanding of planning during spatial navigation – and more 
broadly, how we learn task structure to generalise to novel tasks and think about the future. The 
collaborative work conducted during CDP7 has already produced several novel theoretical, empirical 
and computational advancements, as testified by the results shown in this report and the 
accompanying papers (published or to be released soon). Given the time constraints of CDP7 (which 
lasted only 2 years), some implications of our studies remain to be fully developed and some analyses 
are still ongoing; including most prominently the analyses of neural data – which will be consolidated 
and finalised within SGA3.  

Another impact of CDP7 relates to scientific dissemination. Three PIs of CDP7 (Giovanni PEZZULO, 
Cyriel PENNARTZ, Chris SUMMERFIELD) together with another HBP partner (Lars MUCKLI) co-
organised a 2-day workshop entitled "Predictive coding, inference and unsupervised learning" at the 
European Institute for Theoretical Neuroscience, 16-17 Jan 2019. Details on the workshop can be 
found here: https://eitnconf-160119.sciencesconf.org/  

https://eitnconf-160119.sciencesconf.org/
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