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Executive Summary 

This document describes the achievements and work carried out in application areas 
emerging from the Human Brain Project’s (HBP) work in neuroscience, medicine and 
computing. The Subproject (SP) is structured into Work Packages (WPs) 11.1, 11.2 and 
11.3, which relate to the three areas described. The SP is scientifically rather disjunct, so 
this summary is structured according to the three WPs. 

Work Package 11.1 developed a retina model, to be used as a sensor as input for cortical 
models. The retina model has been successfully validated against neurophysiological and 
psychophysical data. The WP also developed a cortical model of visual processing, using 
HBP software tools. This cortical model has been validated against psychophysical data, 
and has been shown to match human behaviour in several situations. Finally, the HBP 
Neurorobotics tool chain was used to calibrate the simple neural network of the 
Braitenberg vehicle. 

Work Package 11.2 successfully delivered a standardised description format for biological 
signatures of brain diseases. The on-going study of the Alzheimer's disease (AD) phenotype, 
using machine learning methods and brain pathology, identified several subgroups or 
subtypes of AD. Therefore, the first standard description of the biological signatures of 
brain diseases was defined. The work then progressed to function 11.2.1.2: informatics-
based model for generating biological disease signatures. In this Task, other types of 
algorithms for building disease models were tested and benchmarked. An important aspect 
of this work is to design a method that can select the best features. 

Work Package 11.3 prepared for application cases from the Neuromorphic Systems. The 
industry Partner SAP AG (P47) is investigating the potential of spiking neural networks in 
business applications. For that purpose, we are preparing a PyNN application for use on 
Neuromorphic Systems. In addition, the CABot3 agent now runs on SpiNNaker. This is an 
agent that takes natural language commands, views the environment, executes plans, and 
learns a simple cognitive map. Two spiking associative memory (SAM) models were 
implemented and simulated with different parameter sets. Automatic performance 
evaluation tools were developed to analyse simulations, and the first benchmark data sets 
were generated. We have also performed a successful mapping of SAM models on the 
Heidelberg hardware emulator (ESS). With an interface to connect two ATIS cameras to 
SpiNNaker, it is now possible to transmit and process events provided from ATIS cameras. 
The maximum input flow rate has been estimated to 1.4 million events per second for each 
camera. Finally, we scaled-up the size of a spiking network for neuromorphic pattern 
recognition to several thousand neurons on a classical GPU-simulator. The network has 
been applied to odorant recognition from electronic nose recordings, and is now ready for 
neuromorphic use. 
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1. Introduction 

1.1 Overview of Subproject 11 Achievements 

1.1.1 WP11.1 

• One of the WP’s major achievements was the development of a retina platform that 
acts as a sensor for the cortical models. This platform has been validated against 
neurophysiological and psychophysical data, so that it can reproduce different retina 
models as needed. Another major achievement was the development of a cortical 
model of visual processing using HBP tools (e.g. NEST). This cortical model has been 
validated against psychophysical data, and has been shown to match human behaviour 
in several situations. A third major achievement was the successful use of the SP10 
Neurorobotics tool chain to calibrate the simple neural network of the Braitenberg 
vehicle. 

• Task 11.1.1: Using the retina platform and the cortical visual processing model, we 
explored properties of Weber’s Law for brightness perception. The retina model 
exhibits Weber-like processing of brightness information, and the cortical model has 
been shown preserve such representations.  

• Task 11.1.2: As a first test of the Neurorobotics tool chain, a Braitenberg vehicle 
experiment was developed in close collaboration with SP10. This demonstrates the 
interplay of virtual robots with a virtual environment under different light conditions. 
More detailed results will be reported in the resubmitted D11.4.2. 

1.1.2 WP11.2 

• The computer-aided diagnosis of AD has proven to be a promising method of early 
detection, an important condition for treating the disease more effectively. Most of 
the diagnostic tools that have been developed are based on the evaluation of magnetic 
resonance imaging (MRI) scans with multiple modalities. These are sometimes 
supplemented with additional information, such as positron emission tomography (PET) 
scans, or genetic or cerebrospinal fluid values to improve the classification accuracy. 

• Milestone 204, “standardised description format for biological signatures of brain 
disease”, was achieved. The on-going study of the AD phenotype, using machine 
learning methods and brain pathology, identified several subgroups or subtypes of AD. 
It therefore defined the first standard description of the biological signatures of brain 
diseases. The work then progressed to function 11.2.1.2: informatics-based model for 
generating biological signature of a disease. In this task, we tested and benchmarked 
other types of algorithms for building the disease model. An important aspect of this is 
to design a method that can select the best features. 

1.1.3 WP11.3 

• Task 11.3.1: SAP AG is working on two specific use cases to investigate the possibilities 
and potential advantages of algorithms based on spiking neural networks in business 
applications. For that purpose, a PyNN implementation is underway, preparing for 
upcoming use on the Neuromorphic Platform. 

• Task 11.3.2: The CABot3 agent now runs on SpiNNaker.  This is an agent that takes 
natural language commands, views the environment, executes plans, and learns a 
simple cognitive map. A simple virtual environment has also been developed. The 
agent exists in the environment, but all of its processing is done by neurons on 
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SpiNNaker. The virtual environment sends bitmaps and natural language user 
commands to the SpiNNaker board in the form of particular neurons spiking, and 
collects spikes from four neurons that correspond to the agent moving forward or 
backward, or turning left or right. 

• Task 11.3.3: We have progressed as follows: two people attended the January 2015 
SpiNNaker workshop in Manchester. Regarding interfaces, we are working on a modified 
version of the interfacing between SpiNNaker chips and FPGAs on the 48-chip 
SpiNNaker board. This will eventually allow us to maximise the event throughput to its 
physical maximum: 6 Meps to 64 bit events. We are still performing tests and 
characterisations in this respect, to make sure performance and reliability are 
satisfactory. Regarding PyNN descriptions of neurons models, we have three on-going 
descriptions. These are: (a) a slightly modified neuron model taken from the standard 
SpiNNaker library, that allows us to combine pairs of neurons to emulate positive and 
negative weight events from a single neuron; (b) a heavily modified neuron model 
which performs instantaneous events updates (no need to wait for the 1 ms global 
update step); and (c) a full population model of a convolution population directly 
emulating a large amount of neurons. Of these, (a) is fully compatible with the official 
PACMAN release, while (b) and (c) require a modified custom PACMAN version. We have 
performed some initial work to allow for fast parameter updates/perturbations. This 
will be required for Tasks on optimisations and mismatch characterisations, and hence 
is part of these Tasks. We have also performed some initial work on the feedback 
analyses Task, and tested some preliminary PyNN descriptions. 

• Task 11.3.4: Two SAM models in PyNN were implemented and simulated with different 
parameter sets. To analyse the simulations, we implemented automatic performance 
evaluation tools, and generated the first benchmark data sets. Following successful 
mapping of SAM models on the Heidelberg hardware emulator (ESS), we are now 
prepared for the use of the Neuromorphic Platform NM-PM in Heidelberg, and will fulfil 
our first Milestone on schedule.  

• Task 11.3.5: All hardware implementations and the database were completed. With the 
interface that connects one ATIS camera to SpiNNaker (function 11.3.5.1), we are able 
to transmit and process ATIS camera events. This has been accepted as a Live 
Demonstration that will be presented at the IEEE International Symposium on Circuits 
and Systems (ISCAS) 2015 (Garrick ORCHARD, Xavier LAGORCE, Christoph POSCH, Steve 
FURBER, Ryad BENOSMAN. Live Demonstration: Real-Time Event-Driven Object 
Recognition on SpiNNaker). We are also able to transmit and process events provided 
by two ATIS cameras, using the interface to connect two ATIS cameras into SpiNNaker 
(function 11.3.5.2). The maximum input flow rate has been estimated to 1.4 million 
events per second, per camera. The stimulation platform (function 11.3.5.3) -a table 
XY- allows us to automatically acquire datasets of different patterns from one (or 
several) ATIS cameras, with different motions and speeds. The platform is able to 
reach more than 1 m/s. Above this speed, the data flow is irrelevant, because the 
sensor tends to saturate. This platform will be described in an article we expect to 
submit to a Special Issue in Frontiers of Neurosciences, on "Benchmarks and Challenges 
for Neuromorphic Engineering". The database (function 11.3.5.4) has been built using 
the aforementioned platform. Several data flows have been acquired for 
benchmarking. In addition, data flows have been acquired in natural environment 
conditions. A software interface has been developed with Matlab to allow users to 
visualise these data, and to analyse them in terms of activity, which is the principal 
criteria we will use to characterise the software implementations. Again, we are 
currently working on an article using a part of this dataset for a Special Issue in 
Frontiers of Neurosciences on "Benchmarks and Challenges for Neuromorphic 
Engineering". Technical reports on the hardware platforms have been provided as 
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scheduled. More details can be found at 
https://collaboration.humanbrainproject.eu/web/collab/wiki/-/wiki/Main/WP11.3. 

• Task 11.3.6: Thomas NOWOTNY’s group (University of Sussex – P112) achieved their 
intermediate goal of scaling up the size of a spiking network for neuromorphic pattern 
recognition to several thousand neurons on a GPU-simulator. They applied the network 
to odorant recognition from electronic nose recordings. An article that documents their 
findings is currently under review at a peer-reviewed journal. 

1.2 Overview of Subproject 11 Problems and Corrective Actions 

1.2.1 WP11.1 

• Milestone 202 (due Month 18) was to integrate the visual processing models with SP10’s 
Neurorobotics Platform. This Milestone was not reached on time, because the 
Neurorobotics Platform was not due to be released to the HBP until Month 18. Our 
corrective action was to engage with members of SP10 to plan our integration for when 
the platform is released. We hope to reach the Milestone four months after the release 
of the Neurorobotics Platform. This delay should not prove too troublesome for the WP, 
because other topics can be explored in parallel. 

• Task 11.1.1: The plan was to combine the retina and cortical models into a unified 
system. The team at Universidad de Granada (UGR – P58) has found a solution, but 
technical issues (perhaps missing libraries) stopped the solution from working at École 
Polytechnique Fédérale de Lausanne (EPFL – P1). We could not fully evaluate the 
systems until this technical problem was addressed, which finally happened in mid-
March. We should now be able to catch up on some KPIs, which we had fallen behind 
on. 

• Task 11.1.2: It proved difficult to create a full set of benchmarks for the Neurorobotics 
tool chain while its properties were still under development, but we should catch up 
once the Neurorobotics Platform is released in Month 18. 

1.2.2 WP11.2: 

• Task 11.2.1: The project is on schedule and no problems have occurred. 

1.2.3 WP11.3 

• Task 11.3.1: We expect a short delay in finishing the PyNN implementation. This will 
lead to an approximate two-month delay in completing Milestone 210. The revised 
timeline will fit with the expected availability of the hardware systems, and should not 
cause any further delay to the planned proof-of-concept implementation. 

• Task 11.3.2: Some of our internal waypoints are slightly behind schedule, but we hope 
to catch up on all aspects. One remaining problem is that we do not have a HICANN 
chip that we can use for our agent. Hopefully, progress will be straightforward once it 
arrives, but we will proceed with the simulator in the meantime. 

• Task 11.3.3: We are heavily dependent on the evolution of software support 
developments for SpiNNaker. Until this point, we have not encountered a major 
problem due to this, and we have been able to progress more or less as planned. At 
present, there is an issue with the new release of PACMAN, designed to support 
interfacing in real time with an external retina. However, we expect this problem to 
be solved in the near future. We still rely on previous PACMAN releases for retina 
interfacing. 

https://collaboration.humanbrainproject.eu/web/collab/wiki/-/wiki/Main/WP11.3
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• Task 11.3.4: The project is on schedule and no problems have occurred. 

• Task 11.3.5: The project is now on schedule and no further problems have occurred.  

• Task 11.3.6: Our initial plan to implement the pattern recognition network on the 
HICANN chip had to be postponed due to the limited availability of that chip. Instead, 
we are now using the SpiNNaker system as a basis for network hardware 
implementations.  
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2. Future Neuroscience (WP11.1) 

2.1 Application/Experimental Set-up and Results 

The retina platform has been evaluated against published neurophysiological data 
[1, 2, 3, 4, 5, 6, 7], that describe three significant features of retina processing: contrast, 
mean luminance adaptation, and chromatic opponency pathways (KPIs 11.1.1.1, 11.1.1.2, 
11.1.1.3, 11.1.1.4). The experiment setups implement the same set of synthetic visual 
stimuli (e.g. drifting sinusoidal gratings and flashes) used by neuroscientists to perform 
intracellular recordings of retina cells (KPI 11.1.1.5). Conference papers that have already 
been submitted [1, 2, 3] give the preliminary results of neural simulations. They also show 
the potential of this tool to feasibly reproduce different retina models, and to be easily 
connected with other HBP platforms, such as the NEST simulation platform being 
developed in SP6 (KPIs 11.1.1.6, 11.1.1.7). 

The LAMINART cortical model of visual processing  [8, 9] has been implemented in NEST 
(KPIs 11.1.1.8, 11.1.1.9, 11.1.1.10), which should enable it to integrate with the 
Neurorobotics Platform (KPI, 11.1.1.7). Cortical processing has been shown to preserve 
brightness information representations that come from the retina model, which is 
important for explaining some brightness percepts (KPIs 11.1.1.13, 11.1.1.15, 11.1.1.17, 
11.1.1.20). The model has also been shown to produce illusory contours in a way that 
mimics human perception (KPI 11.1.1.16). 

Task 11.1.2 ensures that the models being developed in Task 11.1.1 integrate smoothly 
with the Neurorobotics Platform. To do so, many SP10 meetings, and meetings 
between SP10 and WP11.1, were held. These established what features would be needed 
in the Neurorobotics Platform, and their properties. A first series of experiments using the 
complete Neurorobotics Platform tool chain has already been successfully completed. 

2.2 Interaction with Neurorobotics Platform 

The visual processing models have been designed with to use the Neurorobotics Platform. 
We have used HBP technologies that should integrate smoothly with the Platform and 
related technologies. To ensure integration, we have provided SP10 with guidance on 
necessary features for Future Neuroscience, and contributed to meetings on the Platform’s 
development. This guidance included informal discussions about the kinds of experiments 
that are likely to be performed by vision scientists, and the necessary properties of the 
simulation environment, such as how to measure simulated luminance. We anticipate even 
closer interaction when the Neurorobotics Platform is released in Month 18. 

2.3 Interaction with other HBP Subprojects 

Our work has focused on making a system that will integrate with the Neurorobotics 
Platform. Once the visual processing model is implemented in the Neurorobotics Platform, 
we anticipate that there will be many opportunities to work with other Subprojects, 
especially SP3, SP6, SP7 and SP9, which involve visual processing. 

2.4 Outreach 
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3. Future Medicine (WP11.2) 

Data Set Classification and 
clustering 

Informatics-
based model 

Algorithms and Benchmarks (1) Comments 

Research 
data from 
ADNI and 
3C: 
imaging, 
genetic 
and 
clinical 
variable  

Semi-supervised 
clustering 
algorithm 

Rules-based 
classification 

Six rules were 
derived for 
explaining AD 

Density-based algorithm 
compared to the use of state of 
the art “black box” methods  

The results 
show that low 
dimension 
factors can 
explain whole 
datasets 

Research 
data from 
ADNI and 
3C: 
imaging, 
genetic 
and 
clinical 
variable 

Support vector 
machine classifier 
trained on the 
pathology proven 
data and tested on 
the previous 
research data 
(ADNI) 

Automated 
diagnostic 

The results were compared to 
clinical diagnostic performed by 
neurologists (expert knowledge) 

The results 
show that 
automated 
biological 
based 
classification  
can identify 
clinically 
healthy 
controls at risk 
of dementia  

Research 
data from 
ADNI and 
3C: 
imaging, 
genetic 
and 
clinical 
variable 

Deep learning 
algorithm 

Automated 
feature 
learning 

Neural net/stacked auto-
encoder 

Compared atlas based features 
vs. random based features 

Compared to clinical label 

The results 
show that the 
algorithm was 
able to learn 
the best 
features for 
optimum 
accuracy 

(1): Please link to any kind of reference or description in text 

3.1 Model Set-up and Results 

Computer-aided diagnosis of AD has proven to be a promising method of early detection, 
which is an important factor in the effective treatment of the disease. Most of the 
diagnostic tools developed are based on the evaluation of MRI scans with multiple 
modalities, sometimes supplemented with additional information, such as PET scans, and 
genetic or cerebrospinal fluid values, to improve the accuracy of classification. 

Milestone 204 “standardised description format for biological signatures of brain disease” 
has been achieved. The on-going study of the AD phenotype, using machine learning 
methods and brain pathology, has identified several subgroups or subtypes of AD. This 
therefore defined the first standard description of biological brain disease signatures. The 
work progressed onto function 11.2.1.2: informatics-based model for generating biological 
disease signatures. In this task, we tested and benchmarked other types of algorithms for 
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building the disease model. An important aspect of this was to design a method that could 
select the best features. 

Function  Function Name  Possible KPI statuses  Current KPI 
status 

Target 

11.2.1.1  Description 
format for the 
biological 
disease signature  

Identify multimodal clinical 
data  

Data pre-processing  

Data aligned  

Feature selection  

All achieved M3 

M6 

M9 

M12  

11.2.1.2 Informatics 
based model for 
generating 
biological 
disease signature 

Implement test different 
algorithms 

Model configuration  

Benchmark algorithms   

Select algorithms 

All achieved M12  

M18  

M18  

M18 

3.1.1 Informatics-based Model One: Unsupervised Rule-based Clustering 

Objectives: There is a great amount of uncertainty regarding the accuracy of diagnostic 
classification in the early stages of AD. This is due to the underlying heterogeneity in 
etiologies leading to similar phenotypes. To explain the observed heterogeneity, we use a 
rule-based clustering algorithm, and identify homogeneous subgroups of patients. The 
hypothesis is that such subgroups have the same underlying causes.  

Methods: We used high resolution T1-weighted 3D data from the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) datasets, which included 66 healthy controls and 48 AD 
patients. Participants were matched for age and gender. Firstly, the data were normalised 
to a common template, using new segmentation and Diffeomorphic Anatomical 
Registration using Exponentiated Lie algebra (DARTEL) processing in SPM8. This allowed us 
to extract measures of Grey Matter volume (GMv) from each voxel. Next, we summarised 
the data into regions of interest, based on the AAL atlas (Figure 1).  

The rule-based algorithm aims to explain the variability between individuals, and describes 
a population by a group of “local over-densities”. These are defined as subspaces over 
combinations of variables. The algorithm performs an exhaustive search of the data space 
to predict the outcome variables; in this case, the health status of each subject in terms of 
the presence or absence of AD. In our experiment, the predictive variables are the 90 
brain region volumes, age, gender, and individual subject global volumes. 
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Figure 1: 3D view of the AAL Atlas 
The AAL atlas is composed of 45 anatomical regions for each brain hemisphere. In our sample, we extracted 
mean volumes of each anatomically defined region as features for analysis by the data-mining algorithm. 

Results: After convergence and cross-validation tests, Hypercube showed that the data 
could be explained by six different rules for AD patients, and five rules for healthy 
controls. Bringing these rules together maximises the difference between healthy controls 
and AD patients. At population level, this result shows that there are six ways of 
presenting with an Alzheimer phenotype. These six ways correspond to six different sets of 
regions (see figures 2 and 3). At individual level, nonlinear effects are captured by the fact 
that each participant can be explained by more than one rule (see Table 1 for the 
proportion of overlap between rules). Critically, in prediction mode, AD and control rules 
explain 98% of AD patients and 100% of controls.  

 
Figure 2: Anatomical Label of the Six Rules, and Proportion of Data Space Explained by 

Each Rule 

 

 
Figure 3: Brain Regions Contributing to Each Set of Rules  
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Table 1: Proportion of Subjects described by Two Rules 

Conclusion: The results show that there is more than one pattern of regional brain 
pathology characterised by an Alzheimer phenotype. The regions contributing to each set 
of rules or subgroups are very specific. Patients differ from controls according to a very 
systematic pattern, which involves regions known to show atrophy from pathological 
examination. Specifically, the results showed that firstly, the pattern of differences 
between AD patients and controls involved regions beyond the medial temporal lobes, 
secondly, that there is evidence for the existence of several subgroups of AD patients, and 
thirdly, that these subgroups can be predicted with high accuracy from a low number of 
deterministic rules. 

Given the small number of patients and variables included in the pilot study, we have 
concluded that it would be very worthwhile to carry out a further study. This would 
include a much greater number of subjects, and a considerably greater range, diversity, 
and amount of data describing their states. This follow-up would aim to confirm the 
preliminary results, and specify with greater precision how many sets of rules are needed 
to identify patients with the AD phenotype. Adding more data may result in fewer rules, if 
some of the patterns identified in our small pilot sample are idiosyncratic and replaced by 
a more consistent set of factors. The inclusion of new data and auxiliary variables 
(genetic, cognitive, etc.) would provide a smaller-grained, direct descriptive explanation 
of the underlying causative pattern identified in this preliminary analysis. 

3.1.2 Informatics-based Model Two: Enriched Automated Diagnostic Tools 

Objectives: It has been predicted that delaying AD onset by just one to two years would 
result in 9.5 to 23 million fewer symptomatic and dependent cases by 2050 [ 10 ]. 
Alzheimer’s Disease pathology, like that of Parkinson’s disease, precedes symptoms. This is 
demonstrated in the significant redundancy of brain organisation, with a resulting capacity 
for reorganisation in the face of pathology [11]. In light of this, it is legitimate to propose a 
strategy of preventive therapy for dementia patients. This would require accurate 
diagnosis prior to the onset of symptoms, or demonstrable signs and syndromes. Identifying 
accurate biomarkers, independent of symptoms, is critical to such a strategy. 

Methods: We built an automated classifier from a set of MRI scans that came from 
deceased, pathologically diagnosed individuals. This classifier was evaluated for its 
prognostic value on clinically categorised living people. Subjects were clinically diagnosed 
as either healthy control (HC) or AD, and then grouped by the presence or absence of AD 
related atrophy into probable AD or NC. Recent evidence suggests that a clinical diagnosis 
of AD has 70% sensitivity and 44% specificity when patients are followed to autopsy [12]. We 
compared the clinical diagnosis with one based on an AD-typical pattern of brain atrophy 
and biomarker profiles (genetic and proteomic), and aimed to correlate the results with 
clinical evidence of subsequent cognitive decline. We tested the idea that cognitively 
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normal people with an AD related brain atrophy pattern were at high risk for conversion to 
memory impairment and dementia. We evaluated the relative risk of such conversion, and 
compared it with other conventional AD risk factors, such as the Apolipoprotein E4 (APOE-
ε4) genotype, and AD-associated single nucleotide polymorphisms (SNP). 

Results: We used all 33 pathologically verified subjects to train an SVM classifier, and 
evaluated the performance using a leave-one-out cross-validation. We achieved 88% 
accuracy in diagnostic discrimination (sensitivity=88.8%, specificity=86.6%). The classifier 
was then used on ADNI subjects to predict pathological diagnoses based on anatomical 
patterns of atrophy. All ADNI subjects had been clinically diagnosed. By adding predicted 
pathological diagnoses, all subjects received a binary label that referred to clinical 
diagnosis and SVM prediction, e.g. “clinically healthy/predicted AD” or HC_AD. ADNI 
subjects fell into four groups: 275 clinical healthy controls with normal anatomical 
patterns: HC_HC, 192 clinical AD with an AD atrophy pattern: AD_AD, 91 clinically 
diagnosed AD subjects were classified as HC by the SVM, and 83 clinically diagnosed HC 
subjects had an AD-specific atrophy pattern.  

 

Figure 4: 
A shows a comparison of pathologically validated AD and HC revealed atrophy. B—E show group comparisons 
among ADNI subgroups. F compares the atrophy pattern of cognitively normal participants classified as AD 
(HC_AD) in the 3C study, to those classified as HC_HC. 
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Survival analysis: Clinical HC participants were followed for a median of 35.8 months. We 
examined whether people diagnosed as healthy (based on clinical scores) at their first visit 
developed memory impairment during follow-up, as a function of SVM predicted outcome 
(HC_AD vs. HC_HC). Five years after prediction at the first screening visit, clinical HC 
classified as AD patients had a survival rate of 66.6% (95% confidence interval [CI], 52% to 
83%) in terms of conversion to memory impairment or dementia. On the other hand, 
HC_HC had an 83% survival rate (95% CI, 76% to 89%). Log-rank testing showed a significant 
difference in conversion time between the two groups (p= 4.3e-03). 

All AD related factors were tested for associations with conversion to memory impairment 
or dementia using Cox’s proportional hazard regression. After adjustment for gender, age, 
APOE-ε4 genotype and education, we found that, cognitively, HC subjects with atrophy 
had a 2.5 times higher risk of developing memory impairment than those without.  

 
Figure 5: Survival Analyses 

Our methods identified that cognitively healthy individuals with atrophy have a 2.5 times higher risk of 
developing memory impairment than those without atrophy. 

Conclusion: Individuals with mismatched labels showed intermediate characteristics in 
both anatomy patterns and memory performance. This characterises different mechanisms 
related to AD. 

3.1.3 Informatics-based Model Three: Deep Learning for Automated Features 
Extractions 

Objectives: The increasing calculation power of computers has led to a rising interest in 
complex machine learning methods. In particular, the investigation of artificial neural 
networks with many hidden layers continuously results in promising new applications. 
These include image and face recognition [13, 14, 15], speech recognition [16, 17] and signal 
processing [18]. Very recently, these deep learning networks have also been used in the 
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classification of AD patients versus healthy control subjects, resulting in accuracies of up 
to 95% (20). 

Methods: We used MRI scans from the publicly available ADNI database. T1-weighted scans 
were used from 359 HCs and 284 mild AD patients. The groups were matched for age and 
gender. We tested two methods of feature extraction for training deep learning networks, 
both of which ensured the anonymity of the individual subjects, and resulted in 
manageable input vectors. The first of these was the classical ROI approach, using volumes 
of grey matter regions as input values. The second feature set consisted of a random set of 
two-dimensional sub-images extracted from each of the MRI scans. The pixel values of 
these patches were fed directly into the neural network for training and classification. The 
main difference between our study and previous attempts to use small sub regions for AD 
diagnosis, is that in our study, no preliminary group comparison was performed to select 
affected brain regions. On the contrary, proper analysis of the classification results, based 
on randomly located training patches, can be used to locate affected grey matter regions 
in individual AD patients.  

One of the most widely used deep neural networks for classification is the stacked auto-
encoder. An auto-encoder contains three layers, the first (input) and last (output) layer of 
which are identical and known. These are connected to the neurons in the middle layer 
(the hidden layer) by means of weight matrices 𝑊𝑗𝑗, where the indices refer to connections 
from layer 𝑖 to layer 𝑗. There are no connections between neurons in a single layer. For a 
certain input vector, each neuron in the hidden layer produces an output value defined by 
the relation 𝑦 = 𝑓(𝑊21. 𝑥 + 𝑏2). The value y is called the activation of a neuron. The 
function 𝑓 can take any form, but because of its saturation properties, and advantageous 
mathematical properties, mostly sigmoid functions (varying from 0 to 1) or hyperbolic 
tangents (varying from -1 to 1) are used. The value 𝑏2 is a bias linked to each neuron in a 
hidden layer. Its value has to be optimised, together with the weights in 𝑊𝑗𝑗. In a second 
step, the output vector 𝑦  is used as input to reproduce the original input layer: 𝑥� =
𝑓(𝑊32.𝑦 + 𝑏3). The aim of an auto-encoder is to minimise the difference between 𝑥� and 𝑥, 
by finding an optimal value for 𝑊𝑗𝑗 and 𝑏𝑗. This way, an initial input vector can be encoded 
and decoded using the optimal weight matrices and bias vectors. If the number of hidden 
neurons is lower than the number of elements in the input vector, an auto-encoder can be 
used as a data compression mechanism. For this type of training, only input values are 
required; it is therefore called unsupervised learning. 

Several of the hidden layers can be stacked in order to capture more complex properties of 
the input, and these deep structures have been used successfully in many classification 
tasks. The top layer represents the classification label of the input vector, and once again 
the weights in the network have to be optimised to obtain good agreement with the given 
labels. Since output values are now compared to known labels, this technique is referred 
to as supervised learning. 

Due to the very high amount of parameters to fit, training the entire neural network based 
on an input vector and a classification label is very slow, and often results in low quality 
local optima. However, it has been shown empirically that unsupervised pre-training of 
each individual layer, followed by a supervised optimisation of the entire network, yields 
good results. 
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Figure 6: Feature Extraction for a Stacked Auto-encoder Containing Two Hidden Layers 

Results: Using volumes of grey matter ROI defined by a brain atlas, HC subjects were 
correctly classified in 75% of cases, and only 7% were misclassified. The performance 
accuracy is lower for AD classification (57% correct vs. 19% misclassified), but the 
misclassified subjects actually show structural properties of the HC subjects (almost no 
atrophy in temporal and hippocampal areas). Additionally, the MMSE scores of misclassified 
AD subjects were significantly higher than those of the true AD subjects. This could mean 
that we have identified a subgroup, which needs a different label referring to a mild or 
early stage of the disease. 

The alternative approach for feature extraction, using random two-dimensional patches of 
normalised grey matter scans, resulted in distinctive results for HC and AD subjects. The 
most striking of these was the fact that patches from temporal and hippocampal regions 
performed much better for AD classification, whereas we noticed no significant variability 
in classification accuracy of individual patches for HC patients. It is, however, not 
straightforward to put a single label on a subject, due to the classification distribution of 
the patches. A possible approach might be to define a threshold of the number of correctly 
classified patches, above which the subject is supposed to be healthy. Based on our 
results, a possible threshold value might be 70%, leading to an accuracy of 84% for HC 
subjects, and 93% for AD subjects. 
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Figure 7: Results for Classification Based on Random Patches Used as Input Features  
Histograms of well classified patches (top) per group. Location of patches showing the percentage of 
correct classifications for HC (middle) and AD (bottom). The size and colour of the dots refer to the 
percentage of correct classifications. 
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Figure 8: Location of the Patches that Perform Best (green) and Worst (red) for AD 
Classification 

For clarity, only the central 𝟕 × 𝟕 voxels of the full 𝟐𝟕 × 𝟐𝟕 patches are displayed. 

Conclusion: The results show that low-level features extracted from the scans without any 
preliminary knowledge, combined with a fairly easy deep learning scheme, has promising 
classification potential. Apart from being able to classify single subjects (which is not 
possible using statistical methods such as VBM), additional conclusions such as the 
definition of subgroups or finding brain regions affected by a disease. 

3.2 Interaction with Medical Informatics Platform 

• This Task relies on data accessible through the Medical Informatics Platform (MIP) 
WP8.2, including data on the longitudinal study of the large cohort of “control” 
Alzheimer’s patients. 

• This task will identify biological signatures of brain disease, and ultimately, MIP end-
users will be able to query the construct. End-users will also be able to compare the 
derived biological signatures of disease to standard classification (e.g. ICD-10). 

• The next step is to create comprehensive, simple and causal models of brain diseases 
that can be run with live data collected by the MIP. The model will be executed locally 
within each hospital (preserving privacy). This step will allow us to collect additional 
clinical data for the definition of the subgroups.  
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3.3 Interaction with other HBP Subprojects 

This Task interacts with SP8 and SP5 to make available new disease ontologies, and to use 
the extent ontology for brain atlases.  

3.4 Outreach 

Abstracts submitted: 

• Jing Cui, Sandrine Muller, Valérie Zufferey, Juergen Dukart, Ahmed Abdulkadir, Stefan 
Klöppel, Bogdan Draganski, Kutalik Zoltán, Richard Frackowiak, Ferath Kherif. 
Computation based diagnosis reveals intermediate Alzheimer’s disease phenotypes. 
Joint Congress of European Neurology, Istanbul, Turkey, 31 May—3 June 2014. 
Accepted: oral presentation. 

• Jing Cui, Sandrine Muller, Valérie Zufferey, Juergen Dukart, Ahmed Abdulkadir, Stefan 
Klöppel, Bogdan Draganski, Kutalik Zoltán, Richard Frackowiak, Ferath Kherif. 
Computation based diagnosis reveals intermediate Alzheimer’s disease phenotypes: the 
follow up study. Organisation for Human Brain Mapping, Hamburg, Germany, June, 
2014. Accepted: poster presentation. 

Papers submitted/in preparation: 

• Jing Cui, Sandrine Muller, Valérie Zufferey, Juergen Dukart, Ahmed Abdulkadir, Stefan 
Klöppel, Bogdan Draganski, Kutalik Zoltán, Richard Frackowiak, Ferath Kherif. In 
preparation: “Computation Based Diagnosis Reveals Intermediate Alzheimer’s Disease 
Phenotypes.”  

• Jing Cui, Valérie Zufferey, Ferath Kherif. In press: “The Never-Ending Hunt for 
Neuroimaging Biomarkers”. 

• Bart Van Damme, Jing Cui, Bogdan Draganski, Ferath Kherif. In preparation: “MRI 
Feature Selection for Deep Learning Applied to the Classification of Alzheimer's 
Disease”. 

 

                                             

 

 

 

 

 

 

 

 

 



 

Co-funded by the 

 
 

 

SP11 D11.4.3 FINAL 30 Apr 2015 Page 22 / 36 
 

4. Future Computing (WP11.3) 

4.1 T11.3.1: Neuromorphic Data Mining Systems 

4.1.1 Application/Experimental Set-up and Results 

 

(1): Please refer also to the implementation status of network architectures in hardware description language 
(2): Please link to any kind of reference or description in text 

Use case one: Predictive Maintenance 

Introduction: Predicting when a piece of technical equipment, which is deviating or 
degrading from its normal operating conditions, will stop performing its intended function, 
is an important input into contingency planning. This time is usually known as the 
equipment’s remaining useful life (RUL). In recent years, predicting the RUL of machines 
has been an active field. Technical approaches to building models for the degradation of 
equipment can be put into different categories, one of which is the data-driven approach. 
This relies purely on the analysis of (sensory) data, usually by applying pattern recognition 
and machine learning techniques to detect changes in system states. 

Experiment Setup: The exponential behaviour of the fault evolution is common to almost 
all “Damage Propagation Models”. Assuming that an upper threshold describes the 
operational limit, after which the system can no longer be used, a Health Index Function 
was defined. 

The trained network was based on a modified CMAC algorithm. This algorithm quantised 
the input data, and then transformed them into an internal representation using a non-
linear transformation. In practical implementations, the CMAC is usually based on an 
equivalent representation, and presented as a look-up table. However, our implementation 
actually uses a neural network structure. The modified mapping to the internal 
representation leads to a sparse distributed representation, and the connections (weights) 
to the output layer are trained to match the desired target signal. 

Use Case Data Set Classification 
and 

clustering 

Informatics-based 
model(1) 

Algorithms and 
Benchmarks(2) 

Comments 

Predictive 
Maintenance 

Model data  Classification 
and 
prediction 

Network 
implemented in 
Python; PyNN 
implementation 
underway 

Modified CMAC  See details 
in text 

Hardware 
assisted 
NUMA job 
placement 

Real SAP 
HANA 
workload 
traces – 
learning 
supervised 
by 
simulation 
tool 

Classification  Classifier 
implemented in 
Python, classifier 
in PyNN, running 
on Neuromorphic 
HW available 

Standard machine 
learning classifier 
like Naïve Bayes 
and Neuromorphic 
classifier 
implemented (M. 
SCHMUKER 
T11.3.6) 

See details 
in text 
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Current State: The simulation environment is coded in Python, and initial tests to verify 
the validity of the approach have been performed. A PyNN implementation suitable for 
Neuromorphic use is currently being developed. It has not yet been finished, and therefore 
Milestone 210 needs to be delayed by one to two months. 

Use case two: HW assisted NUMA job placement in a combined OLTP/OLAP in-memory 
database  

Introduction: The SAP HANA in-memory database system is a very high performance system 
underlying most of SAP’s newer solutions. Conventional database systems rely on a 
particular efficient structuring of the data for a given task (i.e. indexes, prebuilt 
aggregates and features). In contrast, SAP HANA allows multiple simultaneous usage 
scenarios on the same consistent data sets. This is achieved through the effective use of 
brute force algorithms (i.e. to locate an item, search all items; to provide an aggregate 
value, sum all values on each request). To make such a flexible brute force approach 
efficient, clever low-level implementation techniques are employed. One central 
challenge of modern computer hardware is the placement of jobs within a machine, i.e. a 
classical computer separates storage (RAM) and processing (CPU), with different access 
paths and bandwidths across interconnects between them. Dynamically scheduling jobs 
onto a modern machine with hundreds of cores and thousands of concurrent jobs is 
challenging. This is because optimal scheduling is NP-hard, and actual hardware exhibits 
dynamic behaviour that introduces uncertainty and noise to the optimisation parameters. 
It is therefore infeasible for software to perform at the required speeds. 

Systems such as the “Omega” scheduling system at Google tackle these kinds of problems, 
but only for pure batch workloads, treating interactive jobs as isolatable error signals. 
With SAP HANA, we need to treat various kinds of jobs in a single integrated system at 
interactive (not batch) speeds. This is because HANA systems concurrently run anything 
from sub-millisecond interactive OLTP jobs, to multi-hour planning and optimisation runs. 
These are done simultaneously, in the same machine, and on the same datasets. 

Experiment Setup: We placed workload mixes onto a machine and trained a naïve Bayesian 
classifier to make “optimal” placement decisions for incoming jobs. These were based on 
the job’s properties, the placement of the data, and the current and predicted load of the 
machine’s CPUs, interconnects and memory modules. To generate the supervision signal 
for training, we used two different approaches. 

In the first approach, we used existing heuristic schedulers to place and orchestrate jobs, 
and had the classifier learn to mimic their behaviour. This, together with baseline 
approaches, such as round-robin or random schedules, provided the baseline against which 
we could measure improvement potential.  

The second approach used an elaborate whole system model to calculate step-by-step 
optimal schedules, and provide these as supervision feedback to the Bayesian classifier. 
This cannot be done in a real machine, and therefore required the implementation of a 
simulation environment to enable closed-loop interaction between the supervisor and the 
Bayesian classifier. 

Current State: The simulation environment is finished, and we are now in the process of 
running actual experiments. 

Milestones at M18: 

• MS210: implementation of network architectures in hardware description language. 

The implementation has started but not yet finished. Therefore, the completion of this 
milestone is delayed by one to two months. As with the slight delay in the previous Task 
“network architectures evaluated”, this delay should not lead to major problems, since 
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parts of the implementation can be tested when the Neuromorphic hardware platforms are 
released. For the second use case, we will use an available Neuromorphic classifier. 

4.1.2 Interaction with the Neuromorphic Systems 

The requirements imposed by the Predictive Maintenance scenario on Neuromorphic 
hardware are a combination of accuracy, processing speed and power efficiency, assuming 
that the processing will be de-centralised, i.e. close to the point of data creation, and not 
in a central backend. They requirements are: 

• Data streams need to be processed in real-time (limited local buffering). 

• Hardware variability and noise need to be controlled for the algorithm to work 
efficiently. 

The NUMA scheduling and placement problem was selected for a potential hardware 
implementation with the Neuromorphic systems. This is because: 

• The classifier needed is known to be efficiently implementable on the spiking neural 
chips. 

• The complexity of the classifier very likely fits into the rather limited neuron budget of 
the early chips. 

• The problem stresses the need for fast hardware response over accuracy. Scheduling 
the database jobs is a real-time task; otherwise query response times can be negatively 
impacted. 

We can estimate the required throughput of the Neuromorphic scheduling and placement 
solution from our workload traces. We can also derive the required latency and throughput 
parameters for potential interfaces between the Neuromorphic hardware and the HANA 
system. These requirements far exceed those of biological systems, and hence benefit 
from the much-faster-than-biology timing of the Neuromorphic hardware. As a typical 
query can generate execution plans containing hundreds to a few thousand individual sub-
jobs, a medium scale workload with 100 user queries per second needs to place 50000 jobs 
per second. Extreme use cases are heavy OLTP workloads with 3000—6000 user 
transactions per second, but typically there are much lower numbers of sub-jobs. 

4.1.3 Interaction with other HBP Subprojects 

• Discussions with Michael SCHMUKER (T11.3.6) about the classification algorithm. 

• Discussions with Eduardo ROS (T11.1.1) on Cerebella algorithms. 

4.2 Outreach 

None. 
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4.3 T11.3.2: Port CABot3 to Neuromorphic Chips and Extend 

4.3.1 Application/Experimental Set-up and Results 

Task No. Model (1) PyNN Implementation (2) Comments 

T11.3.2 Spiking neurons Runs on SpiNNaker Board Late, but Milestone 
reached 

(1): e.g. model uses spiking neurons 
(2): PyNN running in simulation, on NM-MC, NM-PM, or ESS 

This Task has managed to complete the agent and environment, and run the agent on 
SpiNNaker, with communication to the environment running on the attached PC. The 3D 
environment set-up is written in Python, and is also running on SpiNNaker. There are four 
rooms, connected by four corridors. Each room has a unique shape and colour (pyramid or 
stalactite, blue or red). The user types natural language commands into the environment, 
and those commands are sent to the SpiNNaker board. 

The last component completed was cognitive mapping. The user types in “explore”, and 
the agent explores the environment, associating each room with the shape inside it. The 
user then issues a command, such as "go to the room before the red pyramid", and the 
agent moves around the environment and stops at the appropriate room. This shows that it 
has learned the map. Testing has not been thorough, but the experiment typically works. 
The agent views the environment from the picture on the camera. This picture is then sent 
to the SpiNNaker chips. The agent follows plans, the goals of which are set by the NL 
commands. There are four actions that can be used to move the agent (left, right, forward 
and back). These are sent from the board to the environment. 

In summary: 

• Milestone 308 has been achieved. There are 20 subnets working. Binding is still not 
working for the parser, and this will require the development of new synaptic models 
for SpiNNaker and PyNN. 

• Progress has been made on learning visual objects in an environment, persistent Cell 
Assemblies (CAs), and caching plans. 

• We still need to explore using HICANN in Stockholm. 

4.3.2 Interaction With the Neuromorphic Platform 

Our system uses the SpiNNaker platform (SP9, NM-MC1) in a closed loop experiment. As 
such, it is a test-bed for the system for robotics applications (SP10). It also is extensible, 
so future systems can use this as a template to start developing neuromorphic agents. 

4.3.3 Interaction with other HBP Subprojects 

We have spoken with the Neurorobotics group, and asked to use their virtual environment. 
Unfortunately, it is not ready yet, so we have implemented our own virtual environment. 

4.3.4 Outreach 

None. 
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4.4 T11.3.3: Exploitation of Feedback in Ultra-fast Spiking Visual 
Architectures 

4.4.1 Application/Experimental Set-up and Results 

Task No. Model (1) PyNN Implementation (2) 

11.3.3.2 Spiking neurons n1, n2, n3 
models Running on NM-MC 

11.3.3.3 Spiking neurons of n3 models Running on NM-MC 

11.3.3.5 Spiking neurons of n2 models Running on NM-MC 

11.3.3.7 Spiking neurons of n3 models Running on NM-MC 

(1): e.g. model uses spiking neurons 
(2): PyNN running in simulation, on NM-MC, NM-PM, or ESS 
(3): If yes, please link to any kind of reference or description in text 

During this period, the group focused on two main aspects:  

• (a) More exhaustive PyNN descriptions for functions 11.3.3.2 (simulations for 
exhaustive optimisations), 11.3.3.3 (PyNN of feedback architectures), and 11.3.3.7 
(PyNN for mismatch), while porting them onto the Neuromorphic Computing Platform 
for function 11.3.3.5.  

• (b) Improving sensor interfaces, also for function 11.3.3.5.  

Regarding (a), we have so far three separate PyNN basic descriptions of a ConvNet 
recognition system. Each of these uses a different neuron model, and is also developed for 
a different PACMAN (SpiNNaker) version. Each of the three PyNN basic descriptions can be 
used for functions 11.3.3.2, 11.3.3.3, 11.3.3.5, and 11.3.3.7. The three different neuron 
models are as follows:  

• (n1) uses a single population model for each Feature Map in a ConvNet with 
instantaneous integrate-and-fire dynamics.  

• (n2) neurons are modelled individually with instantaneous integrate-and-fire dynamics. 

• (n3) neurons use a PyNN package integrate-and-fire model, slightly re-touched to allow 
for signed output events. 

Regarding (b), we have preliminary results on a higher speed SpiNNaker-FPGA interface 
that would allow for a speed of up to six mega events per second for 32-bit events. 

4.4.2 Interaction with the Neuromorphic Platform 

We are already running our architectures on the NM-MC platforms. We have two four-chip 
SpiNNaker boards and one 48-chip SpiNNaker board. Most of our tests are being conducted 
on the 48-chip board. This allows us to run simulations and tests very quickly. 

- For the feedback structure, we have started to use weak feedback connections from a 
later layer to an earlier layer. To assess the real benefits of feedback, we still need to 
make progress on the exhaustive optimisations of the fully feed-forward versions. So far, 
we are preparing the infrastructure to allow for feedback to be incorporated quickly. 
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4.4.3 Interaction with Other HBP Subprojects 

Our group maintains a strong interaction with Univeristy of Manchester (UMAN – P73) 
SpiNNaker group. Two of our members recently attended the SpiNNaker Workshop in 
Manchester, and we have three SpiNNaker boards in our lab (two four-chip ones and one 
48-chip one). We also collaborate with the group at Université Pierre et Marie Curie - 
Paris 6 (UPMC – P107) on computational aspects of event-driven systems for vision. 

4.4.4 Outreach  

LA Camuñas-Mesa, T Serrano-Gotarredona, B Linares-Barranco, “Event-driven sensing and 
processing for high-speed robotic vision, Biomedical Circuits and Systems Conference 
(BioCAS), 2014, IEEE, 516—519.  

T Iakymchuk, A Rosado, T Serrano-Gotarredona, B Linares-Barranco, et al., “An AER 
handshake-less modular infrastructure PCB with x8 2.5 Gbps LVDS serial links” 
International Symposium on Circuits and Systems (ISCAS), 2014, IEEE, 1556—1559. 

 

https://scholar.google.es/citations?view_op=view_citation&hl=es&user=yjeEP_EAAAAJ&sortby=pubdate&citation_for_view=yjeEP_EAAAAJ:k8Z6L05lTy4C
https://scholar.google.es/citations?view_op=view_citation&hl=es&user=yjeEP_EAAAAJ&sortby=pubdate&citation_for_view=yjeEP_EAAAAJ:k8Z6L05lTy4C
https://scholar.google.es/citations?view_op=view_citation&hl=es&user=yjeEP_EAAAAJ&sortby=pubdate&citation_for_view=yjeEP_EAAAAJ:b1wdh0AR-JQC
https://scholar.google.es/citations?view_op=view_citation&hl=es&user=yjeEP_EAAAAJ&sortby=pubdate&citation_for_view=yjeEP_EAAAAJ:b1wdh0AR-JQC


 

Co-funded by the 

 
 

 

SP11 D11.4.3 FINAL 30 Apr 2015 Page 28 / 36 
 

4.5 T11.3.4: Spiking Associative Networks for Neuromorphic 
Computing Systems 

4.5.1 Application/Experimental Set-up and Results 

Task No. Model (1) PyNN Implementation (2) Benchmarks evaluated (3) Comments 

11.3.4.1 Binary SAM PyNN/Nest simulations 12 None 

11.3.4.1 Analog SAM PyNN/Nest simulations 4 None 

11.3.4.4 Binary SAM PyNN/ESS 3 None 

(1): e.g. model uses spiking neurons 
(2): PyNN running in simulation, on NM-MC, NM-PM, or ESS 
(3): If yes, please link to any kind of reference or description in text 

In the first year of our project, the group implemented two spiking associated memory 
(SAM) models in PyNN (Function 11.3.4.1, KPI=2), and conducted many simulations with 
different parameter sets. To analyse the simulations, we implemented automatic 
performance evaluation tools (11.3.4.2), and generated the first benchmark data set 
(11.3.4.3, KPI=1). To prepare for the use of the Neuromorphic Platforms, we implemented 
the first SAMs on the Heidelberg virtual hardware emulator ESS (11.3.4.4). With the 
successful mapping of SAM models on the virtual hardware ESS, we fulfilled our first 
Milestone on time. The same holds for the planned KPIs. In summary, the project is on 
schedule. 

4.5.2 Interaction with the Neuromorphic Platform 

Following the successful mapping of SAM models on the Heidelberg hardware emulator, we 
are now prepared for the use of the Neuromorphic Platform NM-PM in Heidelberg. Because 
of the relatively long simulation times for NEST and ESS, use of the Neuromorphic 
Platforms is mandatory in respect to the planned parameter space explorations for this 
project. Therefore, we have a close cooperation with the Heidelberg group (neuromorphic 
system NM-PM1) at present, and will intensify our cooperation with the Manchester group 
(neuromorphic system NM-MC1) in the second half of the project.  

4.5.3 Interaction with other HBP Subprojects 

We interact with SP3, SP4 and SP6, in order to have a theoretical and biological basis for 
our spiking associative memory simulations. 

4.5.4 Outreach 

As our project is only in its first year, we have just started to publish the first results. 
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4.6 T11.3.5 (UMPC): Asynchronous Computational Retina 

4.6.1 Application/Experimental Set-up and Results 

Four "hardware" platforms are scheduled for the end of Month 19. These hardware 
implementations have been achieved: 

• Interface to connect one ATIS camera into SpiNNaker (function 11.3.5.1): we are able 
to transmit and process events provided by an ATIS camera. This result has been 
accepted as a Live Demonstration that will be presented at the IEEE International 
Symposium on Circuits and Systems (ISCAS) 2015 (Garrick ORCHARD, Xavier LAGORCE, 
Christoph POSCH, Steve FURBER, Ryad BENOSMAN). 

• Interface to connect two ATIS cameras into SpiNNaker  (function 11.3.5.2): we are able 
to transmit and process events provided by two ATIS cameras. The maximum input flow 
rate has been estimated to 1.4 million events per second, per camera.  

• Stimulation platform (function 11.3.5.3): a table XY allows us to automatically acquire 
datasets of different features with one or more ATIS cameras, with different motions 
and speeds. The platform is able to reach more than 1 m/s. Above this speed, the data 
flow is not useful, because the sensor tends to saturate. This platform will be 
described in an article we expect to submit into a Special Issue of Frontiers of 
Neurosciences about "Benchmarks and Challenges for Neuromorphic Engineering". 

• Database platform (function 11.3.5.4): several data flows have been acquired for 
benchmarking using the previously described platform. In addition, data flows have 
been acquired in natural environment conditions. A software interface has been 
developed under Matlab to allow users to visualise these data, and analyse them in 
terms of activity. This is the main criteria we will use. Again, we are currently working 
on an article using a part of this dataset for a Special Issue of Frontiers of 
Neurosciences about "Benchmarks and Challenges for Neuromorphic Engineering". 

Reports on these platforms will be provided as scheduled at the end of Month 19. 

4.6.2 Interaction with the Neuromorphic Platform 

Several tasks have been carried out to prepare for the implementation of our algorithm 
models into the SpiNNaker electronic board. Several articles present these preliminary 
results:  

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L.A., Furber, S.B., AND  
Benosman, R. (2015). A framework for plasticity implementation on the SpiNNaker neural 
architecture. Frontiers in Neuroscience, 8, 429. 

Lagorce, X., Stromatias, E., Galluppi, F., Plana, L.A., Liu, S.-C., Furber, S.B., & Benosman, 
R.(2015). Breaking The Millisecond Barrier On SpiNNaker : Asynchronous Event-Based 
Models With Microsecond Resolution And Plasticity. Frontiers in Neuroscience (under 
review). 

Himanshu Akolkar, Cedric Meyer, Xavier Clady, Olivier Marre, Chiara Bartolozzi, Stefano 
Panzeri, Ryad Benosman (2015), What Can Neuromorphic Event-Driven Precise Timing Add 
to Spike-Based Pattern Recognition?, Neural computation, March 2015, Vol. 27, No. 3, 
Pages 561—593.  

The two first articles describe how to implement neuron models and precise timing based 
computations into the SpiNNaker’s board. The third article explains how precise timing-
based computation provided by a neuromorphic platform can increase performance results 
in high-level tasks, such as pattern recognition. Therefore, it demonstrates the usefulness 
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of an event-based and precise timing-based extraction of low-level information, such as we 
propose to do in this Task. 

4.6.3 Interaction with Other HBP Subprojects 

Our team is constantly interacting with Steve FURBER's team (SP9, SP13) about the 
SpiNNaker implementation, as reflected in the two first publications cited above, and in 
the ISCAS 2015's Live Demonstration. In addition, the work on the usefulness of precise 
timing based computations [19] was carried out in collaboration with Olivier MARRE (HBP 
CLAP project, SP4). 

4.6.4 Outreach 

Publications: 

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L.A., Furber, S.B., And 
Benosman, R. (2015). “A framework for plasticity implementation on the SpiNNaker neural 
architecture”. Frontiers in Neuroscience, 8, 429. 

Himanshu Akolkar, Cedric Meyer, Xavier Clady, Olivier Marre, Chiara Bartolozzi, Stefano 
Panzeri, Ryad Benosman (2015), “What Can Neuromorphic Event-Driven Precise Timing Add 
to Spike-Based Pattern Recognition?”, Neural computation, March 2015, Vol. 27, No. 3, 
Pages 561—593. 

Publications under review:  

Lagorce, X., Stromatias, E., Galluppi, F., Plana, L.A., Liu, S.-C., Furber, S.B., & Benosman, 
R.(2015). “Breaking The Millisecond Barrier On SpiNNaker: Asynchronous Event-Based 
Models With Microsecond Resolution And Plasticity”. Frontiers in Neuroscience  

Live Demonstration: 

Garrick Orchard, Xavier Lagorce, Christoph Posch, Steve Furber, Ryad Benosman. Live 
Demonstration: Real-Time Event-Driven Object Recognition on SpiNNaker, ISCAS 2015. 
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4.7 T11.3.6: Implementing a Spiking Classifier Network on HiCANN 

4.7.1 Application/Experimental Set-up and Results 

Task No. Model (1) PyNN Implementation (2) Benchmarks evaluated (3) Comments 

11.3.6 
eNose 
Classifier on 
GeNN 

No N/A  

11.3.6 
MNIST 
classifier on 
GeNN 

No N/A  

11.3.6 MNIST on 
SpiNNaker Yes  Testing phase 

(1): e.g. model uses spiking neurons 
(2): PyNN running in simulation, on NM-MC, NM-PM, or ESS 
(3): If yes, please link to any kind of reference or description in text 

The team completed work with the GPU-based neuromorphic classifier to classify 
continuous olfactory data (eNose sensor recording), and prepared and submitted a full 
journal paper to IEEE Transactions on Neural Networks and Learning Systems (TNNLS) 
covering this work. The paper is titled:  "A GPU-based neuromorphic classifier for 
chemosensing applications. 

We then adapted the classifier design, model parameters and code base to classify the full 
(10-digit) MNIST high dimensional dataset, comprising 60 000 training examples and 10 000 
testing samples. The adapted classifier was again implemented using GPU enhanced 
neuronal networks (GeNN). We are planning to submit the results as part of an abstract to 
the September 2015 Brain Informatics and Health conference. We plan to describe and 
demonstrate the application of the Sussex GPU neuronal simulation software (GeNN) to a 
large-scale data problem. 

Our next objective was originally to port the classifier for large, high-dimensional problems 
to the HICANN chip. However, due to the fact that the HICANN chip and the software 
infrastructure is still heavily evolving, we decided to first target the SpinNNaker 
architecture, which is readily useable in its current state. We have borrowed two small 
SpiNNaker boards from UMAN, with the view to borrow a large board when our application 
software is ready. 

We subsequently implemented and tested a prototype PyNN model of the classifier design 
for use on SpiNNaker boards. Most recently, we have begun implementing a 10 digit MNIST 
classifier test on SpiNNaker, with promising initial results. 

KPIs: 

• 11.3.6_sKPI_001: Approximately 600 checked in code revisions on software 
management system. 

• 11.3.6_sKPI_002: Number of neurons used in the software model. The largest model 
used for the MNIST classifier on GeNN uses around 25,000 neurons  

•  11.3.6_sKPI_003: Number of neurons used in the Spikey/HICANN hardware model. No 
HICANN access as of yet; for the SpiNNaker we have a model functional at around 2000 
neurons and anticipate this reaching at least 6000 before needing to upgrade to a 
larger board. 
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• 11.3.6_sKPI_004: Number of neurons used on the wafer-scale hardware model. Not 
implemented yet. 

• 11.3.6_sKPI_005: Number of classification problems to which the classifier network is 
applied. The developed classifier has been applied to four problems (eNose static, 
eNose continous, IRIS and MNIST 10 digit).  

4.7.2 Interaction with the Neuromorphic Platform 

We have two small (four-chip) SpiNNaker boards on loan, and are using them for our 
classifier system. We are planning to benchmark on a larger SpiNNaker board soon. We 
have access to the Spikey hardware in Heidelberg via remote login. We plan to obtain a 
Spikey-USB-board. We are still awaiting access to the HICANN. We are in constant email 
contact with the SpiNNaker and Spikey developers for feedback and feature requests. 

4.7.3 Interaction with other HBP Subprojects 

Dr. Diamond attended a five-day workshop at the University of Manchester on developing 
neuronal simulations using SpiNNaker. Michael SCHMUKER is providing a Benchmark 
(multivariate classification on Spikey) within Task 9.3.4 (SP9). 

4.7.4 Outreach 

Dr. Diamond attended a workshop for electronics-related researchers in the UK (eFutures). 
There he discussed current work and possible synergies with researchers form other UK 
institutions. Michael Schmucker presented his work on Spikey at the HBP Summit in 
October 2014. The results were also presented at a workshop at the Bernstein Conference 
2014, as part of a workshop presentation by T. Pfeil, UHEI, and in poster form. 
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Annex A: Milestones 

No. Milestone Name WP Month 
Due 

Month 
Achieved 

MS200 Preparation of simplified virtual sensor and motor models for 
virtual robots 11.1 6 6 

MS208  Specification of benchmark tasks 11.3 6 6 

MS201 Experimental design for the first experimental task 11.1 12 12 

MS204 Standardised description format for biological signatures of 
brain disease 11.2 12 12 

MS209 Evaluation of suitable network architectures for benchmark 
tasks 11.3 12 12 

MS310 Initial sensor interfaces operative 11.3 12 12 

MS315 Acquisition and interface platforms and database 11.3 12 20 est. 

MS308 CABot3 on SpiNNaker 11.3 15 18 

MS202 Implementation of virtual robot, environment and experiment 
complete 11.1 18 22 est. 

MS205 First draft informatics-based model generating a biological 
signature of a disease 11.2 18 18 

MS210 Implementation of network architectures in hardware 
description language. 11.3 18 20 est. 
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Annex B: Scientific Key Performance Indicators  
View SP11’s Key Performance Indicators (KPIs) on the KPI webpages hosted by the Science 
and Technology Office. 

https://flagship.kip.uni-heidelberg.de/jss/CollectKPI?uI=268&s=UJuR3AgTezrb&um=sPO&oSP=11
https://flagship.kip.uni-heidelberg.de/jss/CollectKPI?uI=268&s=UJuR3AgTezrb&um=sPO&oSP=11
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