Choosing the right commercial plumber can feel like navigating a maze of pipes and fittings – complicated and potentially messy if you make the wrong turn. Nobody wants a burst pipe flooding their business or a malfunctioning toilet scaring away customers. Thats why taking the time to find a reliable, skilled commercial plumber near you is crucial for preventing plumbing disasters and ensuring the smooth operation of your business.
Unlike residential plumbing, commercial systems are often larger, more complex, and require specialized knowledge. Think about it: a small leak in a home is a nuisance, but in a restaurant or office building, it can quickly escalate into a major disruption, impacting everything from employee productivity to customer satisfaction. This is where the expertise of a commercial specialist comes in. They understand the intricacies of high-volume water usage, complex drainage systems, and the unique plumbing needs of different businesses.
So, how do you find the right plumber for the job? Start with a good old-fashioned online search. Look for plumbers specializing in commercial services and check out their websites and online reviews. Word-of-mouth is powerful too – ask other business owners in your area for recommendations. Dont be shy about contacting several plumbers to get quotes and compare services. A reputable plumber will be happy to discuss your needs and provide a detailed estimate.
When evaluating potential plumbers, look for licensing and insurance. This protects you from liability in case of accidents or damage. Experience matters too – a plumber with a proven track record in commercial projects is more likely to handle your specific needs effectively. Finally, consider responsiveness and communication. A plumber who answers your calls promptly and keeps you informed throughout the process can save you time, stress, and ultimately, money. Choosing the right commercial plumber is an investment in the health and longevity of your business, so take your time, do your research, and choose wisely.
A burst pipe at 2 AM. A flooded restroom during the lunch rush. A sewer backup that threatens to close your doors. These are the nightmares that keep business owners up at night, and theyre precisely when you need emergency commercial plumbing services. No one wants to think about these scenarios, but being prepared can save you thousands of dollars in damages and lost revenue.
Finding a reliable commercial plumber for those urgent situations isnt something you want to do in the heat of the moment. Instead, take the time now to research local companies. Look for plumbers who offer 24/7 emergency services specifically for commercial properties. A residential plumber might be great for fixing a leaky faucet in your home, but commercial plumbing systems are often far more complex. Experience matters.
Check online reviews and ask other businesses in your area for recommendations. A good commercial plumber will understand the unique needs of businesses – minimizing downtime and disruption to your operations. They should be licensed, insured, and able to handle everything from minor repairs to major system overhauls. Dont hesitate to ask about their experience with different types of commercial properties, like restaurants, offices, or retail spaces.
Once youve identified a few potential plumbers, keep their contact information readily available. Post it near your main water shut-off valve or save it in your phone. In an emergency, every second counts. Having that number on hand can make all the difference in mitigating damage and getting your business back on track. Think of it as an insurance policy for your plumbing system – a small investment of time now for potentially huge savings down the road.
Cost of Commercial Plumbing Services: What to Expect
Commercial plumbing services are essential for any business, ensuring proper sanitation, water supply, and waste disposal. However, unlike residential plumbing, the complexity and scale of commercial systems often lead to higher costs. So, what should you expect when budgeting for these services?
Several factors influence the final price tag. The most obvious is the scope of the project. A simple drain clog will naturally cost less than a complete bathroom renovation or a new water heater installation. The type of service also plays a role. Emergency calls, often involving after-hours work and specialized equipment, typically command a premium. Similarly, specialized services like backflow prevention testing or grease trap cleaning will have unique cost structures.
Accessibility is another key consideration. If plumbers have to navigate tight spaces, work at heights, or deal with challenging pipe configurations, the labor costs can increase. The materials required also contribute significantly to the overall cost. High-quality, durable fixtures and pipes are essential for commercial settings, but they come at a price. Geographic location also matters. Plumbing rates tend to be higher in metropolitan areas with higher operating costs.
Finally, the plumbers experience and reputation influence pricing. Highly experienced and reputable plumbers often charge more, but their expertise can save you money in the long run by preventing future problems. Its always wise to get multiple quotes from different plumbers before making a decision. Dont hesitate to ask about their experience, licensing, and insurance. A detailed quote should outline all costs, including labor, materials, and any potential permits or inspection fees.
While cost is a significant factor, it shouldnt be the sole determinant. Prioritizing quality and reliability is crucial for commercial plumbing. A cheap fix might seem appealing in the short term, but it could lead to more costly repairs down the line. Investing in a reputable plumber with a proven track record can provide peace of mind and ensure the long-term health of your plumbing system.
Maintaining Your Commercial Plumbing System: Preventative Maintenance Options
Nobody wants to think about plumbing until theres a problem, and in a commercial setting, a plumbing issue can mean lost revenue, unhappy customers, and a hefty repair bill. Thats why preventative maintenance for your commercial plumbing system is not just a good idea, its essential. Investing a little time and money upfront can save you a major headache down the line.
So, what does a good preventative maintenance plan look like? Its a combination of regular inspections and proactive measures tailored to your specific business needs. For example, restaurants will have different requirements than an office building. A good first step is to schedule regular inspections with a licensed plumber. They can identify potential problems early on, like a small leak that could eventually cause significant water damage. Think of it like taking your car in for an oil change – it’s a small cost that prevents major engine trouble.
Beyond inspections, there are several things you can do yourself. Regularly checking for leaks under sinks and around toilets is a simple but effective practice. Make sure your employees know who to contact if they spot a problem. Implementing a drain cleaning schedule can prevent clogs and backups, especially in businesses that deal with grease or food waste. Consider using drain screens to catch hair and debris before they go down the drain. For businesses in colder climates, winterizing your pipes is crucial to prevent freezing and bursting.
Another key aspect of preventative maintenance is knowing your system. Understand where your main water shut-off valve is located so you can quickly stop the flow of water in an emergency. Keep records of past plumbing repairs and maintenance to identify recurring issues. If you’ve had multiple drain clogs in the same area, it might indicate a bigger underlying problem.
Finally, choose your plumbing partner wisely. Find a reputable and licensed plumber who understands the specific needs of commercial properties. Don’t be afraid to ask questions and get multiple quotes. A good plumber will be happy to discuss preventative maintenance options and tailor a plan that fits your budget and requirements. Remember, a well-maintained plumbing system is vital for the smooth operation of your business. Investing in preventative maintenance is an investment in your peace of mind.
Plumbing is any system that conveys fluids for a wide range of applications. Plumbing uses pipes, valves, plumbing fixtures, tanks, and other apparatuses to convey fluids.[1] Heating and cooling (HVAC), waste removal, and potable water delivery are among the most common uses for plumbing, but it is not limited to these applications.[2] The word derives from the Latin for lead, plumbum, as the first effective pipes used in the Roman era were lead pipes.[3]
In the developed world, plumbing infrastructure is critical to public health and sanitation.[4][5]
Boilermakers and pipefitters are not plumbers although they work with piping as part of their trade and their work can include some plumbing.
Plumbing originated during ancient civilizations, as they developed public baths and needed to provide potable water and wastewater removal for larger numbers of people.[6]
The Mesopotamians introduced the world to clay sewer pipes around 4000 BCE, with the earliest examples found in the Temple of Bel at Nippur and at Eshnunna,[7] used to remove wastewater from sites, and capture rainwater, in wells. The city of Uruk contains the oldest known examples of brick constructed Latrines, constructed atop interconnecting fired clay sewer pipes, c. 3200 BCE.[8][9] Clay pipes were later used in the Hittite city of Hattusa.[10] They had easily detachable and replaceable segments, and allowed for cleaning.
Standardized earthen plumbing pipes with broad flanges making use of asphalt for preventing leakages appeared in the urban settlements of the Indus Valley civilization by 2700 BC.[11]
Copper piping appeared in Egypt by 2400 BCE, with the Pyramid of Sahure and adjoining temple complex at Abusir, found to be connected by a copper waste pipe.[12]
The word "plumber" dates from the Roman Empire.[13] The Latin for lead is plumbum. Roman roofs used lead in conduits and drain pipes[14] and some were also covered with lead. Lead was also used for piping and for making baths.[15]
Plumbing reached its early apex in ancient Rome, which saw the introduction of expansive systems of aqueducts, tile wastewater removal, and widespread use of lead pipes. The Romans used lead pipe inscriptions to prevent water theft. With the Fall of Rome both water supply and sanitation stagnated—or regressed—for well over 1,000 years. Improvement was very slow, with little effective progress made until the growth of modern densely populated cities in the 1800s. During this period, public health authorities began pressing for better waste disposal systems to be installed, to prevent or control epidemics of disease. Earlier, the waste disposal system had consisted of collecting waste and dumping it on the ground or into a river. Eventually the development of separate, underground water and sewage systems eliminated open sewage ditches and cesspools.
In post-classical Kilwa the wealthy enjoyed indoor plumbing in their stone homes.[16][17]
Most large cities today pipe solid wastes to sewage treatment plants in order to separate and partially purify the water, before emptying into streams or other bodies of water. For potable water use, galvanized iron piping was commonplace in the United States from the late 1800s until around 1960. After that period, copper piping took over, first soft copper with flared fittings, then with rigid copper tubing using soldered fittings.
The use of lead for potable water declined sharply after World War II because of increased awareness of the dangers of lead poisoning. At this time, copper piping was introduced as a better and safer alternative to lead pipes.[18]
The major categories of plumbing systems or subsystems are:[19]
A water pipe is a pipe or tube, frequently made of plastic or metal,[a] that carries pressurized and treated fresh water to a building (as part of a municipal water system), as well as inside the building.
Lead was the favoured material for water pipes for many centuries because its malleability made it practical to work into the desired shape. Such use was so common that the word "plumbing" derives from plumbum, the Latin word for lead. This was a source of lead-related health problems in the years before the health hazards of ingesting lead were fully understood; among these were stillbirths and high rates of infant mortality. Lead water pipes were still widely used in the early 20th century and remain in many households. Lead-tin alloy solder was commonly used to join copper pipes, but modern practice uses tin-antimony alloy solder instead in order to eliminate lead hazards.[20]
Despite the Romans' common use of lead pipes, their aqueducts rarely poisoned people. Unlike other parts of the world where lead pipes cause poisoning, the Roman water had so much calcium in it that a layer of plaque prevented the water contacting the lead itself. What often causes confusion is the large amount of evidence of widespread lead poisoning, particularly amongst those who would have had easy access to piped water,[21] an unfortunate result of lead being used in cookware and as an additive to processed food and drink (for example as a preservative in wine).[22] Roman lead pipe inscriptions provided information on the owner to prevent water theft.
Wooden pipes were used in London and elsewhere during the 16th and 17th centuries. The pipes were hollowed-out logs which were tapered at the end with a small hole in which the water would pass through.[23] The multiple pipes were then sealed together with hot animal fat. Wooden pipes were used in Philadelphia,[24] Boston, and Montreal in the 1800s. Built-up wooden tubes were widely used in the US during the 20th century. These pipes (used in place of corrugated iron or reinforced concrete pipes) were made of sections cut from short lengths of wood. Locking of adjacent rings with hardwood dowel pins produced a flexible structure. About 100,000 feet of these wooden pipes were installed during WW2 in drainage culverts, storm sewers and conduits, under highways and at army camps, naval stations, airfields and ordnance plants.
Cast iron and ductile iron pipe was long a lower-cost alternative to copper before the advent of durable plastic materials but special non-conductive fittings must be used where transitions are to be made to other metallic pipes (except for terminal fittings) in order to avoid corrosion owing to electrochemical reactions between dissimilar metals (see galvanic cell).[25]
Bronze fittings and short pipe segments are commonly used in combination with various materials.[26]
The difference between pipes and tubes is a matter of sizing. For instance, PVC pipe for plumbing applications and galvanized steel pipe are measured in iron pipe size (IPS). Copper tube, CPVC, PeX and other tubing is measured nominally, basically an average diameter. These sizing schemes allow for universal adaptation of transitional fittings. For instance, 1/2" PeX tubing is the same size as 1/2" copper tubing. 1/2" PVC on the other hand is not the same size as 1/2" tubing, and therefore requires either a threaded male or female adapter to connect them. When used in agricultural irrigation, the singular form "pipe" is often used as a plural.[27]
Pipe is available in rigid joints, which come in various lengths depending on the material. Tubing, in particular copper, comes in rigid hard tempered joints or soft tempered (annealed) rolls. PeX and CPVC tubing also comes in rigid joints or flexible rolls. The temper of the copper, whether it is a rigid joint or flexible roll, does not affect the sizing.[27]
The thicknesses of the water pipe and tube walls can vary. Because piping and tubing are commodities, having a greater wall thickness implies higher initial cost. Thicker walled pipe generally implies greater durability and higher pressure tolerances. Pipe wall thickness is denoted by various schedules or for large bore polyethylene pipe in the UK by the Standard Dimension Ratio (SDR), defined as the ratio of the pipe diameter to its wall thickness. Pipe wall thickness increases with schedule, and is available in schedules 20, 40, 80, and higher in special cases. The schedule is largely determined by the operating pressure of the system, with higher pressures commanding greater thickness. Copper tubing is available in four wall thicknesses: type DWV (thinnest wall; only allowed as drain pipe per UPC), type 'M' (thin; typically only allowed as drain pipe by IPC code), type 'L' (thicker, standard duty for water lines and water service), and type 'K' (thickest, typically used underground between the main and the meter).
Wall thickness does not affect pipe or tubing size.[28] 1/2" L copper has the same outer diameter as 1/2" K or M copper. The same applies to pipe schedules. As a result, a slight increase in pressure losses is realized due to a decrease in flowpath as wall thickness is increased. In other words, 1 foot of 1/2" L copper has slightly less volume than 1 foot of 1/2 M copper.[29]
Water systems of ancient times relied on gravity for the supply of water, using pipes or channels usually made of clay, lead, bamboo, wood, or stone. Hollowed wooden logs wrapped in steel banding were used for plumbing pipes, particularly water mains. Logs were used for water distribution in England close to 500 years ago. US cities began using hollowed logs in the late 1700s through the 1800s. Today, most plumbing supply pipe is made out of steel, copper, and plastic; most waste (also known as "soil")[30] out of steel, copper, plastic, and cast iron.[30]
The straight sections of plumbing systems are called "pipes" or "tubes". A pipe is typically formed via casting or welding, whereas a tube is made through extrusion. Pipe normally has thicker walls and may be threaded or welded, while tubing is thinner-walled and requires special joining techniques such as brazing, compression fitting, crimping, or for plastics, solvent welding. These joining techniques are discussed in more detail in the piping and plumbing fittings article.
Galvanized steel potable water supply and distribution pipes are commonly found with nominal pipe sizes from 3⁄8 inch (9.5 mm) to 2 inches (51 mm). It is rarely used today for new construction residential plumbing. Steel pipe has National Pipe Thread (NPT) standard tapered male threads, which connect with female tapered threads on elbows, tees, couplers, valves, and other fittings. Galvanized steel (often known simply as "galv" or "iron" in the plumbing trade) is relatively expensive, and difficult to work with due to weight and requirement of a pipe threader. It remains in common use for repair of existing "galv" systems and to satisfy building code non-combustibility requirements typically found in hotels, apartment buildings and other commercial applications. It is also extremely durable and resistant to mechanical abuse. Black lacquered steel pipe is the most widely used pipe material for fire sprinklers and natural gas.
Most typical single family home systems will not require supply piping larger than
3⁄4 inch (19 mm) due to expense as well as steel piping's tendency to become obstructed from internal rusting and mineral deposits forming on the inside of the pipe over time once the internal galvanizing zinc coating has degraded. In potable water distribution service, galvanized steel pipe has a service life of about 30 to 50 years, although it is not uncommon for it to be less in geographic areas with corrosive water contaminants.
Copper pipe and tubing was widely used for domestic water systems in the latter half of the twentieth century. Demand for copper products has fallen due to the dramatic increase in the price of copper, resulting in increased demand for alternative products including PEX and stainless steel.
Plastic pipe is in wide use for domestic water supply and drain-waste-vent (DWV) pipe. Principal types include: Polyvinyl chloride (PVC) was produced experimentally in the 19th century but did not become practical to manufacture until 1926, when Waldo Semon of BF Goodrich Co. developed a method to plasticize PVC, making it easier to process. PVC pipe began to be manufactured in the 1940s and was in wide use for Drain-Waste-Vent piping during the reconstruction of Germany and Japan following WWII. In the 1950s, plastics manufacturers in Western Europe and Japan began producing acrylonitrile butadiene styrene (ABS) pipe. The method for producing cross-linked polyethylene (PEX) was also developed in the 1950s. Plastic supply pipes have become increasingly common, with a variety of materials and fittings employed.
Present-day water-supply systems use a network of high-pressure pumps, and pipes in buildings are now made of copper,[34] brass, plastic (particularly cross-linked polyethylene called PEX, which is estimated to be used in 60% of single-family homes[35]), or other nontoxic material. Due to its toxicity, most cities moved away from lead water-supply piping by the 1920s in the United States,[36] although lead pipes were approved by national plumbing codes into the 1980s,[37] and lead was used in plumbing solder for drinking water until it was banned in 1986.[36] Drain and vent lines are made of plastic, steel, cast iron, or lead.[38][39]
In addition to lengths of pipe or tubing, pipe fittings such as valves, elbows, tees, and unions. are used in plumbing systems.[40] Pipe and fittings are held in place with pipe hangers and strapping.
Plumbing fixtures are exchangeable devices that use water and can be connected to a building's plumbing system. They are considered to be "fixtures", in that they are semi-permanent parts of buildings, not usually owned or maintained separately. Plumbing fixtures are seen by and designed for the end-users. Some examples of fixtures include water closets[41] (also known as toilets), urinals, bidets, showers, bathtubs, utility and kitchen sinks, drinking fountains, ice makers, humidifiers, air washers, fountains, and eye wash stations.
Threaded pipe joints are sealed with thread seal tape or pipe dope. Many plumbing fixtures are sealed to their mounting surfaces with plumber's putty.[42]
Plumbing equipment includes devices often behind walls or in utility spaces which are not seen by the general public. It includes water meters, pumps, expansion tanks, back flow preventers, water filters, UV sterilization lights, water softeners, water heaters, heat exchangers, gauges, and control systems.
There are many tools a plumber needs to do a good plumbing job. While many simple plumbing tasks can be completed with a few common hand held tools, other more complex jobs require specialised tools, designed specifically to make the job easier.
Specialized plumbing tools include pipe wrenches, flaring pliers, pipe vise, pipe bending machine, pipe cutter, dies, and joining tools such as soldering torches and crimp tools. New tools have been developed to help plumbers fix problems more efficiently. For example, plumbers use video cameras for inspections of hidden leaks or other problems; they also use hydro jets, and high pressure hydraulic pumps connected to steel cables for trench-less sewer line replacement.
Flooding from excessive rain or clogged sewers may require specialized equipment, such as a heavy duty pumper truck designed to vacuum raw sewage.[citation needed]
Bacteria have been shown to live in "premises plumbing systems". The latter refers to the "pipes and fixtures within a building that transport water to taps after it is delivered by the utility".[43] Community water systems have been known for centuries to spread waterborne diseases like typhoid and cholera. However, "opportunistic premises plumbing pathogens" have been recognized only more recently: Legionella pneumophila, discovered in 1976, Mycobacterium avium, and Pseudomonas aeruginosa are the most commonly tracked bacteria, which people with depressed immunity can inhale or ingest and may become infected with.[44] Some of the locations where these opportunistic pathogens can grow include faucets, shower heads, water heaters and along pipe walls. Reasons that favor their growth are "high surface-to-volume ratio, intermittent stagnation, low disinfectant residual, and warming cycles". A high surface-to-volume ratio, i.e. a relatively large surface area allows the bacteria to form a biofilm, which protects them from disinfection.[44]
Much of the plumbing work in populated areas is regulated by government or quasi-government agencies due to the direct impact on the public's health, safety, and welfare. Plumbing installation and repair work on residences and other buildings generally must be done according to plumbing and building codes to protect the inhabitants of the buildings and to ensure safe, quality construction to future buyers. If permits are required for work, plumbing contractors typically secure them from the authorities on behalf of home or building owners.[citation needed]
In Australia, the national governing body for plumbing regulation is the Australian Building Codes Board. They are responsible for the creation of the National Construction Code (NCC), Volume 3 of which, the Plumbing Regulations 2008[45] and the Plumbing Code of Australia,[46] pertains to plumbing.
Each Government at the state level has their own Authority and regulations in place for licensing plumbers. They are also responsible for the interpretation, administration and enforcement of the regulations outlined in the NCC.[47] These Authorities are usually established for the sole purpose of regulating plumbing activities in their respective states/territories. However, several state level regulation acts are quite outdated, with some still operating on local policies introduced more than a decade ago. This has led to an increase in plumbing regulatory issues not covered under current policy, and as such, many policies are currently being updated to cover these more modern issues. The updates include changed to the minimum experience and training requirements for licensing, additional work standards for new and more specific kinds of plumbing, as well as adopting the Plumbing Code of Australia into state regulations in an effort to standardise plumbing regulations across the country.
In Norway, new domestic plumbing installed since 1997 has had to satisfy the requirement that it should be easily accessible for replacement after installation.[48] This has led to the development of the pipe-in-pipe system as a de facto requirement for domestic plumbing.
In the United Kingdom the professional body is the Chartered Institute of Plumbing and Heating Engineering (educational charity status) and it is true that the trade still remains virtually ungoverned;[49] there are no systems in place to monitor or control the activities of unqualified plumbers or those home owners who choose to undertake installation and maintenance works themselves, despite the health and safety issues which arise from such works when they are undertaken incorrectly; see Health Aspects of Plumbing (HAP) published jointly by the World Health Organization (WHO) and the World Plumbing Council (WPC).[50][51] WPC has subsequently appointed a representative to the World Health Organization to take forward various projects related to Health Aspects of Plumbing.[52]
In the United States, plumbing codes and licensing are generally controlled by state and local governments. At the national level, the Environmental Protection Agency has set guidelines about what constitutes lead-free plumbing fittings and pipes, in order to comply with the Safe Drinking Water Act.[53]
Some widely used Standards in the United States are:[citation needed]
In Canada, plumbing is a regulated trade requiring specific technical training and certification. Standards and regulations for plumbing are overseen at the provincial and territorial level, each having its distinct governing body:
Sewage (or domestic sewage, domestic wastewater, municipal wastewater) is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system.[1]: 175 Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality.[2]: 10 Sub-types of sewage are greywater (from sinks, bathtubs, showers, dishwashers, and clothes washers) and blackwater (the water used to flush toilets, combined with the human waste that it flushes away). Sewage also contains soaps and detergents. Food waste may be present from dishwashing, and food quantities may be increased where garbage disposal units are used. In regions where toilet paper is used rather than bidets, that paper is also added to the sewage. Sewage contains macro-pollutants and micro-pollutants, and may also incorporate some municipal solid waste and pollutants from industrial wastewater.
Sewage usually travels from a building's plumbing either into a sewer, which will carry it elsewhere, or into an onsite sewage facility. Collection of sewage from several households together usually takes places in either sanitary sewers or combined sewers. The former is designed to exclude stormwater flows whereas the latter is designed to also take stormwater. The production of sewage generally corresponds to the water consumption. A range of factors influence water consumption and hence the sewage flowrates per person. These include: Water availability (the opposite of water scarcity), water supply options, climate (warmer climates may lead to greater water consumption), community size, economic level of the community, level of industrialization, metering of household consumption, water cost and water pressure.[2]: 20â€ÅÂÂ
The main parameters in sewage that are measured to assess the sewage strength or quality as well as treatment options include: solids, indicators of organic matter, nitrogen, phosphorus, and indicators of fecal contamination.[2]: 33 These can be considered to be the main macro-pollutants in sewage. Sewage contains pathogens which stem from fecal matter. The following four types of pathogens are found in sewage: pathogenic bacteria, viruses, protozoa (in the form of cysts or oocysts) and helminths (in the form of eggs).[3][4] In order to quantify the organic matter, indirect methods are commonly used: mainly the Biochemical Oxygen Demand (BOD) and the Chemical Oxygen Demand (COD).[2]: 36â€ÅÂÂ
Management of sewage includes collection and transport for release into the environment, after a treatment level that is compatible with the local requirements for discharge into water bodies, onto soil or for reuse applications.[2]: 156 Disposal options include dilution (self-purification of water bodies, making use of their assimilative capacity if possible), marine outfalls, land disposal and sewage farms. All disposal options may run risks of causing water pollution.
Sewage (or domestic wastewater) consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality.[2]: 10 Sewage is a mixture of water (from the community's water supply), human excreta (feces and urine), used water from bathrooms, food preparation wastes, laundry wastewater, and other waste products of normal living.
Sewage from municipalities contains wastewater from commercial activities and institutions, e.g. wastewater discharged from restaurants, laundries, hospitals, schools, prisons, offices, stores and establishments serving the local area of larger communities.[2]: 21â€ÅÂÂ
Sewage can be distinguished into "untreated sewage" (also called "raw sewage") and "treated sewage" (also called "effluent" from a sewage treatment plant).
The term "sewage" is nowadays often used interchangeably with "wastewater" – implying "municipal wastewater" – in many textbooks, policy documents and the literature.[2][5][6] To be precise, wastewater is a broader term, because it refers to any water after it has been used in a variety of applications.[5]: 1 Thus it may also refer to "industrial wastewater", agricultural wastewater and other flows that are not related to household activities.
Blackwater in a sanitation context denotes wastewater from toilets which likely contains pathogens that may spread by the fecal–oral route. Blackwater can contain feces, urine, water and toilet paper from flush toilets. Blackwater is distinguished from greywater, which comes from sinks, baths, washing machines, and other household appliances apart from toilets. Greywater results from washing food, clothing, dishes, as well as from showering or bathing.[7]
Greywater (or grey water, sullage, also spelled gray water in the United States) refers to domestic wastewater generated in households or office buildings from streams without fecal contamination, i.e., all streams except for the wastewater from toilets. Sources of greywater include sinks, showers, baths, washing machines or dishwashers. As greywater contains fewer pathogens than blackwater, it is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation, and other non-potable uses. Greywater may still have some pathogen content from laundering soiled clothing or cleaning the anal area in the shower or bath.
The overall appearance of sewage is as follows:[2]: 30 The temperature tends to be slightly higher than in drinking water but is more stable than the ambient temperature. The color of fresh sewage is slightly grey, whereas older sewage (also called "septic sewage") is dark grey or black. The odor of fresh sewage is "oily" and relatively unpleasant, whereas older sewage has an unpleasant foul odor due to hydrogen sulfide gas and other decomposition by-products.[10]: 9–38 Sewage can have high turbidity from suspended solids.
The pH value of sewage is usually near neutral, and can be in the range of 6.7–8.0.[2]: 57â€ÅÂÂ
Sewage consists primarily of water and usually contains less than one part of solid matter per thousand parts of water. In other words, one can say that sewage is composed of around 99.9% pure water, and the remaining 0.1% are solids, which can be in the form of either dissolved solids or suspended solids.[2]: 28 The thousand-to-one ratio is an order of magnitude estimate rather than an exact percentage because, aside from variation caused by dilution, solids may be defined differently depending upon the mechanism used to separate those solids from the liquid fraction. Sludges of settleable solids removed by settling or suspended solids removed by filtration may contain significant amounts of entrained water, while dried solid material remaining after evaporation eliminates most of that water but includes dissolved minerals not captured by filtration or gravitational separation.[11] The suspended and dissolved solids include organic and inorganic matter plus microorganisms.[2]: 28â€ÅÂÂ
About one-third of this solid matter is suspended by turbulence, while the remainder is dissolved or colloidal. For the situation in the United States in the 1950s it was estimated that the waste contained in domestic sewage is about half organic and half inorganic.[10]: 9–38â€ÅÂÂ
The organic matter in sewage can be classified in terms of form and size: Suspended (particulate) or dissolved (soluble). Secondly, it can be classified in terms of biodegradability: either inert or biodegradable.[2]: 35 The organic matter in sewage consists of protein compounds (about 40%), carbohydrates (about 25–50%), oils and grease (about 10%) and urea, surfactants, phenols, pesticides and others (lower quantity).[2]: 35 In order to quantify the organic matter content, it is common to use "indirect methods" which are based on the consumption of oxygen to oxidize the organic matter: mainly the Biochemical Oxygen Demand (BOD) and the Chemical Oxygen Demand (COD).[2]: 36 These indirect methods are associated with the major impact of the discharge of organic matter into water bodies: the organic matter will be food for microorganisms, whose population will grow, and lead to the consumption of oxygen, which may then affect aquatic living organisms.
The mass load of organic content is calculated as the sewage flowrate multiplied with the concentration of the organic matter in the sewage.[2]: 55â€ÅÂÂ
Typical values for physical–chemical characteristics of raw sewage is provided further down below.
Apart from organic matter, sewage also contains nutrients. The major nutrients of interest are nitrogen and phosphorus. If sewage is discharged untreated, its nitrogen and phosphorus content can lead to pollution of lakes and reservoirs via a process called eutrophication.[2]: 77â€ÅÂÂ
In raw sewage, nitrogen exists in the two forms of organic nitrogen or ammonia. The ammonia stems from the urea in urine. Urea is rapidly hydrolyzed and therefore not usually found in raw sewage.[2]: 43â€ÅÂÂ
Total phosphorus is mostly present in sewage in the form of phosphates.They are either inorganic (polyphosphates and orthophosphates) and their main source is from detergents and other household chemical products. The other form is organic phosphorus, where the source is organic compounds to which the organic phosphorus is bound.[2]: 45â€ÅÂÂ
Human feces in sewage may contain pathogens capable of transmitting diseases.[10]: 9–38 The following four types of pathogens are found in sewage:[3][4]
In most practical cases, pathogenic organisms are not directly investigated in laboratory analyses. An easier way to assess the presence of fecal contamination is by assessing the most probable numbers of fecal coliforms (called thermotolerant coliforms), especially Escherichia coli. Escherichia coli are intestinal bacteria excreted by all warm blooded animals, including human beings, and thus tracking their presence in sewage is easy, because of their substantially high concentrations (around 10 to 100 million per 100 mL).[2]: 52â€ÅÂÂ
The ability of a flush toilet to make things "disappear" is soon recognized by young children who may experiment with virtually anything they can carry to the toilet.[13] Adults may be tempted to dispose of toilet paper, wet wipes, diapers, sanitary napkins, tampons, tampon applicators, condoms, and expired medications, even at the risk of causing blockages. The privacy of a toilet offers a clandestine means of removing embarrassing evidence by flushing such things as drug paraphernalia, pregnancy test kits, combined oral contraceptive pill dispensers, and the packaging for those devices. There may be reluctance to retrieve items like children's toys or toothbrushes which accidentally fall into toilets, and items of clothing may be found in sewage from prisons or other locations where occupants may be careless.[14] Trash and garbage in streets may be carried to combined sewers by stormwater runoff.
Sewage contains environmental persistent pharmaceutical pollutants. Trihalomethanes can also be present as a result of past disinfection. Sewage may contain microplastics such as polyethylene and polypropylene beads, or polyester and polyamide fragments[15] from synthetic clothing and bedding fabrics abraded by wear and laundering, or from plastic packaging and plastic-coated paper products disintegrated by lift station pumps. Pharmaceuticals, endocrine disrupting compounds, and hormones[16][17][18] may be excreted in urine or feces if not catabolized within the human body.
Some residential users tend to pour unwanted liquids like used cooking oil,[19]: 228 lubricants,[19]: 228 adhesives, paint, solvents, detergents,[19]: 228 and disinfectants into their sewer connections. This behavior can result in problems for the treatment plant operation and is thus discouraged.
The composition of sewage varies with climate, social and economic situation and population habits.[2]: 28 In regions where water use is low, the strength of the sewage (or pollutant concentrations) is much higher than that in the United States where water use per person is high.[5]: 183 Household income and diet also plays a role: For example, for the case of Brazil, it has been found that the higher the household income, the higher is the BOD load per person and the lower is the BOD concentration.[2]: 57â€ÅÂÂ
Typical values for physical–chemical characteristics of raw sewage in developing countries have been published as follows: 180 g/person/d for total solids (or 1100 mg/L when expressed as a concentration), 50 g/person/d for BOD (300 mg/L), 100 g/person/d for COD (600 mg/L), 8 g/person/d for total nitrogen (45 mg/L), 4.5 g/person/d for ammonia-N (25 mg/L) and 1.0 g/person/d for total phosphorus (7 mg/L).[2]: 57 The typical ranges for these values are: 120–220 g/person/d for total solids (or 700–1350 mg/L when expressed as a concentration), 40–60 g/person/d for BOD (250–400 mg/L), 80–120 g/person/d for COD (450–800 mg/L), 6–10 g/person/d for total nitrogen (35–60 mg/L), 3.5–6 g/person/d for ammonia-N (20–35 mg/L) and 0.7–2.5 g/person/d for total phosphorus (4–15 mg/L).[2]: 57â€ÅÂÂ
For high income countries, the "per person organic matter load" has been found to be approximately 60 gram of BOD per person per day.[6] This is called the population equivalent (PE) and is also used as a comparison parameter to express the strength of industrial wastewater compared to sewage.
Values for households in the United States have been published as follows, whereby the estimates are based on the assumption that 25% of the homes have kitchen waste-food grinders (sewage from such households contain more waste): 95 g/person/d for total suspended solids (503 mg/L concentration), 85 g/person/d for BOD (450 mg/L), 198 g/person/d for COD (1050 mg/L), 13.3 g/person/d for the sum of organic nitrogen and ammonia nitrogen (70.4 mg/L), 7.8 g/person/d for ammonia-N (41.2 mg/L) and 3.28 g/person/d for total phosphorus (17.3 mg/L). The concentration values given here are based on a flowrate of 190 L per person per day.[5]: 183â€ÅÂÂ
A United States source published in 1972 estimated that the daily dry weight of solid wastes per capita in sewage is estimated as 20.5 g (0.72 oz) in feces, 43.3 g (1.53 oz) of dissolved solids in urine, 20 g (0.71 oz) of toilet paper, 86.5 g (3.05 oz) of greywater solids, 30 g (1.1 oz) of food solids (if garbage disposal units are used), and varying amounts of dissolved minerals depending upon salinity of local water supplies, volume of water use per capita, and extent of water softener use.[19]: 234â€ÅÂÂ
Sewage contains urine and feces. The mass of feces varies with dietary fiber intake. An average person produces 128 grams of wet feces per day, or a median dry mass of 29 g/person/day.[20] The median urine generation rate is about 1.42 L/person/day, as was determined by a global literature review.[20]
The volume of domestic sewage produced per person (or "per capita", abbreviated as "cap") varies with the water consumption in the respective locality.[2]: 11 A range of factors influence water consumption and hence the sewage flowrates per person. These include: Water availability (the opposite of water scarcity), water supply options, climate (warmer climates may lead to greater water consumption), community size, economic level of the community, level of industrialization, metering of household consumption, water cost and water pressure.[2]: 20â€ÅÂÂ
The production of sewage generally corresponds to the water consumption. However water used for landscape irrigation will not enter the sewer system, while groundwater and stormwater may enter the sewer system in addition to sewage.[2]: 22 There are usually two peak flowrates of sewage arriving at a treatment plant per day: One peak is at the beginning of the morning and another peak is at the beginning of the evening.[2]: 24â€ÅÂÂ
With regards to water consumption, a design figure that can be regarded as "world average" is 35–90 L per person per day (data from 1992).[5]: 163 The same publication listed the water consumption in China as 80 L per person per day, Africa as 15–35 L per person per day, Eastern Mediterranean in Europe as 40–85 L per person per day and Latin America and Caribbean as 70–190 L per person per day.[5]: 163 Even inside a country, there may be large variations from one region to another due to the various factors that determine the water consumption as listed above.
A flowrate value of 200 liters of sewage per person per day is often used as an estimate in high income countries, and is used for example in the design of sewage treatment plants.[6]
For comparison, typical sewage flowrates from urban residential sources in the United States are estimated as follows: 365 L/person/day (for one person households), 288 L/person/day (two person households), 200 L/person/day (four person households), 189 L/person/day (six person households).[5]: 156 This means the overall range for this example would be 189–365 L (42–80 imp gal; 50–96 US gal).
Sewage can be monitored for both disease-causing and benign organisms with a variety of techniques. Traditional techniques involve filtering, staining, and examining samples under a microscope. Much more sensitive and specific testing can be accomplished with DNA sequencing, such as when looking for rare organisms, attempting eradication, testing specifically for drug-resistant strains, or discovering new species.[22][23][24] Sequencing DNA from an environmental sample is known as metagenomics.
Sewage has also been analyzed to determine relative rates of use of prescription and illegal drugs among municipal populations.[25] General socioeconomic demographics may be inferred as well.[26]
Sewage is commonly collected and transported in gravity sewers, either in a sanitary sewer or in a combined sewer. The latter also conveys urban runoff (stormwater) which means the sewage gets diluted during rain events.[2]: 9â€ÅÂÂ
Infiltration is groundwater entering sewer pipes through defective pipes, connections, joints or manholes.[2]: 26 [5]: 164 Contaminated or saline groundwater may introduce additional pollutants to the sewage. The amount of such infiltrated water depends on several parameters, such as the length of the collection network, pipeline diameters, drainage area, soil type, water table depth, topography and number of connections per unit area.[2]: 26 Infiltration is increased by poor construction procedures, and tends to increase with the age of the sewer. The amount of infiltration varies with the depth of the sewer in comparison to the local groundwater table.[10]: 9–1, 9–9 Older sewer systems that are in need of rehabilitation may also exfiltrate sewage into groundwater from the leaking sewer joints and service connections.[5]: 167 This can lead to groundwater pollution.[28]
Combined sewers are designed to transport sewage and stormwater together. This means that sewage becomes diluted during rain events. There are other types of inflow that also dilute sewage, e.g. "water discharged from cellar and foundation drains, cooling-water discharges, and any direct stormwater runoff connections to the sanitary collection system".[5]: 163 The "direct inflows" can result in peak sewage flowrates similar to combined sewers during wet weather events.[5]: 165â€ÅÂÂ
Sewage from communities with industrial facilities may include some industrial wastewater, generated by industrial processes such as the production or manufacture of goods. Volumes of industrial wastewater vary widely with the type of industry.[2]: 27 Industrial wastewater may contain very different pollutants at much higher concentrations than what is typically found in sewage.[5]: 188 Pollutants may be toxic or non-biodegradable waste including pharmaceuticals,[29] biocides, heavy metals, radionuclides, or thermal pollution.
An industry may treat its wastewater and discharge it into the environment (or even use the treated wastewater for specific applications), or, in case it is located in the urban area, it may discharge the wastewater into the public sewerage system. In the latter case, industrial wastewater may receive pre-treatment at the factories to reduce the pollutant load.[2]: 27 Mixing industrial wastewater with sewage does nothing to reduce the mass of pollutants to be treated, but the volume of sewage lowers the concentration of pollutants unique to industrial wastewater, and the volume of industrial wastewater lowers the concentration of pollutants unique to sewage.
When wastewater is discharged into a water body (river, lakes, sea) or land, its relative impact will depend on the assimilative capacity of the water body or ecosystem.[2]: 78 Water bodies have a self-purification capacity, so that the concentration of a pollutant may decrease along the distance from the discharge point. Furthermore, water bodies provide a dilution to the pollutants concentrations discharged, although it does not decrease their mass. In principle, the higher the dilution capacity (ratio of volume or flow of the receiving water and volume or flow of sewage discharged), the lower will be the concentration of pollutants in the receiving water, and probably the lower will be the negative impacts. But if the water body already arrives very polluted at the point of discharge, the dilution will be of limited value.[30]
In several cases, a community may partially treat its sewage, and still count on the assimilative capacity of the water body. However, this needs to be analyzed very carefully, taking into account the quality of the water in the receiving body before it receives the discharge of sewage, the resulting water quality after the discharge and the impact on the intended water uses after discharge. There are also specific legal requirements in each country. Different countries have different regulations regarding the specifications of the quality of the sewage being discharged and the quality to be maintained in the receiving water body.[2]: 152 The combination of treatment and disposal must comply with existing local regulations.
The assimilative capacity depends – among several factors – on the ability of the receiving water to sustain dissolved oxygen concentrations necessary to support organisms catabolizing organic waste.[19]: 9, 673 For example, fish may die if dissolved oxygen levels are depressed below 5 mg/L.[31]: 573â€ÅÂÂ
Application of sewage to land can be considered as a form of final disposal or of treatment, or both.[2]: 189 Land disposal alternatives require consideration of land availability, groundwater quality, and possible soil deterioration.[32]
Sewage may be discharged to an evaporation or infiltration basin.[10]: 9–41 Groundwater recharge is used to reduce saltwater intrusion, or replenish aquifers used for agricultural irrigation. Treatment is usually required to sustain percolation capacity of infiltration basins, and more extensive treatment may be required for aquifers used as drinking water supplies.[19]: 700–703â€ÅÂÂ
Before the 20th century in Europe, sewers usually discharged into a body of water such as a river, lake, or ocean. There was no treatment, so the breakdown of the human waste was left to the ecosystem. This could lead to satisfactory results if the assimilative capacity of the ecosystem is sufficient which is nowadays not often the case due to increasing population density.[35]: 78â€ÅÂÂ
Sewage treatment is beneficial in reducing environmental pollution. Bar screens can remove large solid debris from sewage,[19]: 274–275 and primary treatment can remove floating and settleable matter.[19]: 446 Primary treated sewage usually contains less than half of the original solids content and approximately two-thirds of the BOD in the form of colloids and dissolved organic compounds.[43] Secondary treatment can reduce the BOD of organic waste in undiluted sewage,[31]: 575 but is less effective for dilute sewage.[44] Water disinfection may be attempted to kill pathogens prior to disposal, and is increasingly effective after more elements of the foregoing treatment sequence have been completed.[19]: 359â€ÅÂÂ
An alternative to discharge into the environment is to reuse the sewage in a productive way (for agricultural, urban or industrial uses), in compliance with local regulations and requirements for each specific reuse application. Public health risks of sewage reuse in agriculture can be minimized by following a "multiple barrier approach" according to guidelines by the World Health Organization.[45]
There is also the possibility of resource recovery which could make agriculture more sustainable by using carbon, nitrogen, phosphorus, water and energy recovered from sewage.[46][4]
Sewage management includes collection and transport for release into the environment after a treatment level that is compatible with the local requirements for discharge into water bodies, onto soil, or for reuse applications.[2]: 156 In most countries, uncontrolled discharges of wastewater to the environment are not permitted under law, and strict water quality requirements are to be met. For requirements in the United States, see Clean Water Act.
Sewage management regulations are often part of a country's broader sanitation policies. These may also include the management of human excreta (from non-sewered collection systems), solid waste and stormwater.
cite book
A plumber is a tradesperson who specializes in installing and maintaining systems used for potable (drinking) water, hot-water production, sewage and drainage in plumbing systems.[1][2]
The origin of the word "plumber" dates from the Roman Empire.[3][4] Roman roofs used lead in conduits and drain pipes[5] and some were also covered with lead; lead was also used for piping and for making baths.[6] The Latin for lead is plumbum. In medieval times, anyone who worked with lead was referred to as a plumber; this can be seen from an extract about workmen fixing a roof in Westminster Palace; they were referred to as plumbers: "To Gilbert de Westminster, plumber, working about the roof of the pantry of the little hall, covering it with lead, and about various defects in the roof of the little hall".[7]
Years of training and/or experience are needed to become a skilled plumber; some jurisdictions also require that plumbers be licensed.
Common plumbing tasks and skills include:
Plumbing work is defined in the Australian Standards (AS3500) Regulations 2013 and refers to any operation, work or process in connection with installation, removal, demolition, replacement, alteration, maintenance or repair to the system of pipes and fixtures that conveys clean water into and liquid waste out of a building.
To become a licensed plumber a four-year apprenticeship and a Certificate III in Plumbing is required. As part of this course, instruction in the basics of gas fitting will be undertaken. Upon completion, these basics in gas fitting will allow the plumber to not only apply for their plumbing license but also an interim gas license, and carry out gas work under the supervision of a fully qualified gas fitter.
To obtain a full gas license from the Department of Mines and Energy, the plumber will need to have worked on an interim gas license for a minimum period of twelve months and successfully completed a Certificate IV in Plumbing.
In Canada, licensing requirements differ by province; however, the provinces have pooled resources to develop an Interprovincial Program Guide that developed and now maintains apprenticeship training standards across all provinces. The Red Seal Program, formally known as the Interprovincial Standards Red Seal Program, is a program that sets common standards to assess the skills of tradespeople across Canada.[8] The Red Seal, when affixed to a provincial or territorial trade certificate, indicates that a tradesperson has demonstrated the knowledge required for the national standard in that trade.
Plumbing is not regulated in Colombia, so anyone can provide this service. Plumbers usually learn the trade because their families work in the construction industry, and they specialize in this field, but anyone can legally offer plumbing services. The most popular training institution for trades is SENA, a public school that provides high-quality education, though it is not mandatory.
In Ireland, a four-year apprenticeship plus qualification exam was necessary for someone to practice professionally. Accreditation of businesses is of great help in order to show their credibility and experience in the job.
National Vocational Qualifications (NVQ) remained the main form of plumbing qualification until they were superseded in 2008 by the Qualification and Credit Framework (QCF)[9] and then again, in 2015, into the National qualifications frameworks in the United Kingdom. The terms NVQ and SVQ (Scottish Vocational Qualification) are still widely used.[10]
Plumbers in the United Kingdom are required to pass Level 2 and Level 3 vocational requirements of the City and Guilds of London Institute. There are several regulatory bodies in the United Kingdom providing accredited plumbing qualifications, including City and Guilds of London Institute and Pearson PLC.[11]
Each state and locality may have its own licensing and taxing schemes for plumbers. Some states license journeymen and master plumbers separately, while others license only master plumbers. To become licensed, plumbers must meet standards for training and experience, and in most cases, pass a certification exam.[12] There is no federal law establishing licenses for plumbers.[13]
There are many types of dangers to a plumber. These include electric shock, strains and sprains, cuts and lacerations, bruises and contusions, fractures, burns and scalds, foreign bodies in the eye, and hernias.[14] Working at height or in confined spaces, or working with lead and asbestos are all on-site dangers that plumbers can face.[15]
Plumbers risk infections[16] when dealing with human waste while repairing sewage systems. Microbes can be excreted in the faecal matter or vomit of the sufferer onto the toilet or sewage pipes. Human waste can contain infectious diseases such as cholera, typhoid, hepatitis, polio, cryptosporidiosis, ascariasis, and schistosomiasis.
The term "White House Plumbers" was a popular name given to the covert White House Special Investigations Unit established on July 24, 1971, during the presidency of Richard Nixon. Their job was to plug intelligence "leaks" in the U.S. Government relating to the Vietnam War (i.e. the Pentagon Papers); hence the term "plumbers".[17]
In the early evening of June 17, 1971, Henry Kissinger held forth in the Oval Office, telling his President, and John Ehrlichman and Bob Haldeman, all about Daniel Ellsberg. Kissinger's comments were recorded, of course, on the hidden White House taping system, and four years later, a portion of that tape was listened to by the Watergate Special Prosecution Force, which was then investigating the internal White House police unit known as the Plumbers.