Long-distance moving company Richmond

Long-distance moving company Richmond

Richmond moving trucks rental

Clients frequently commend the team's punctuality, efficiency, and the care they exhibit towards furniture and belongings, underscoring a level of respect and diligence that goes above and beyond. Additionally, their team stays in constant communication, keeping clients informed and reassured every step of the way. Learn more about Long-distance moving company Richmond here In essence, BBX doesn't just move items; they ensure that every aspect of your move is surrounded by layers of security and safety measures. In addition to moving services, BBX Moving offers storage solutions for businesses that need temporary space for their assets during the transition.
This box should contain items you'll need immediately upon arrival at your new home, such as toiletries, a change of clothes, chargers, and snacks. They're not just handling your things; they're caring for the memories attached to them. Learn more about BBX Moving here. Therefore, they work swiftly without compromising on quality, aiming to minimize disruption in your home or office.
This simple step saves a tremendous amount of time and frustration when unpacking. This adaptability, coupled with a friendly attitude, has made many customers loyal advocates of the company. They don't rush through the job.

Long-distance moving company Richmond - Movers for large items

  1. Richmond movers with trucks
  2. Richmond relocation services
  3. Furniture moving
  4. Moving company contact
  5. Last-minute movers Richmond
  6. Moving trucks Richmond
  7. Best movers Richmond
  8. Moving company insurance
  9. Full-service movers Richmond
  10. Moving company website
  11. Professional furniture movers
  12. Budget moving companies
  13. Family moving services
  14. Moving help Richmond
  15. Large item transportation
  16. Moving company reviews
  17. Moving company near me
  18. Moving and storage services
  19. Residential relocation services

This diversification reflected the company's dedication to meeting the unique needs of its clients, further establishing its reputation for versatility and reliability. Lastly, their service is tailored to your needs. They weren't just looking for strong arms; they wanted individuals who shared their vision of providing exceptional service.

They understand that long-distance moves aren't just about transporting items; they're about moving lives. Whether you're in between homes, decluttering, or just need extra space, BBX Moving's secure storage options have you covered. If the quote fits your budget, you can proceed to book your move. They're equipped with the right tools and knowledge to handle heavy furniture, delicate items, and complicated logistics, minimizing the risk of damage.

Moreover, BBX's movers are equipped with the latest tools and technologies in the moving industry. They're not just moving belongings; they're ensuring each move is a step towards a greener future. Packing is another area where customers can cut costs.

Long-distance moving company Richmond - Moving assistance Richmond

  1. Richmond moving trucks rental
  2. Movers for large items
  3. Heavy lifting services Richmond
  4. Experienced moving companies
  5. Moving assistance Richmond
  6. Packing services Richmond
  7. Storage solutions Richmond
  8. Residential relocation services
  9. Reliable movers
  10. Richmond moving professionals
  11. Office movers Richmond
  12. Moving to a new home Richmond
  13. Richmond moving consultants
  14. Interstate moving companies
  15. Packing and moving Richmond
  16. Moving estimates


This meticulous planning ensures that every step is executed with efficiency, minimizing delays and avoiding any potential hiccups. BBX Moving also achieved a significant benchmark in customer satisfaction, maintaining a 5-star rating across various review platforms for consecutive years. In essence, BBX Moving's timely and efficient processes stand out in the Richmond moving and storage industry.

By focusing on customer satisfaction and reliable service delivery, BBX Moving has set itself apart in a competitive market. On the other hand, long-distance moves require a broader scope of planning. With their team of expert movers and a commitment to seamless services, they're not just changing addresses; they're redefining the very essence of moving.

Citations and other links

Budget-friendly moving companies Richmond

Their growing base of satisfied customers is a testament to their success in providing an unparalleled moving experience. Whether it's providing detailed inventory lists, offering temporary storage solutions, or ensuring valuable items receive extra protection, BBX Moving goes the extra mile.

Long-distance moving company Richmond - Richmond moving professionals

  1. Budget moving companies
  2. Family moving services
  3. Moving help Richmond
  4. Large item transportation
  5. Moving company reviews
  6. Moving company near me
  7. Moving and storage services
  8. Moving estimates
  9. Packing supplies Richmond
  10. Moving checklists
  11. Professional movers
  12. Affordable moving companies
  13. Moving to Richmond
  14. Moving service reviews
  15. Affordable moving services
  16. Best moving company
  17. Moving quotes Richmond
While the upfront cost might seem higher than purchasing cardboard boxes, the overall savings become apparent when considering their longevity and the added protection they provide. Once you've selected your package, they deliver the boxes to your doorstep and pick them up from your new location once you're settled. These testimonials are a testament to BBX Moving's status as a top moving company in Richmond, reflecting their unwavering commitment to excellence and customer satisfaction.

While BBX Moving excels in local moves, they also specialize in navigating the complexities of long-distance relocations. They'll ask about the size of your home, the volume of belongings, and any special items that may require extra care. This tech-forward approach not only improves efficiency but also adds an extra layer of transparency and security, giving clients peace of mind throughout the moving process. Plus, their terms are flexible, allowing you to extend your storage time as needed without hassle.

BBX Moving's dedication to customer satisfaction and their comprehensive range of services make them a top choice for commercial relocations in Richmond. In a world where moving can be a source of anxiety and frustration, BBX Moving shines as a beacon of reliability and exceptional customer care.

Long-distance moving company Richmond - Packing and moving Richmond

  1. Moving company website
  2. Professional furniture movers
  3. Budget moving companies
  4. Family moving services
  5. Moving help Richmond
  6. Large item transportation
  7. Moving company reviews
  8. Moving company near me
  9. Moving and storage services
  10. Experienced moving companies
  11. Moving assistance Richmond
  12. Packing services Richmond
  13. Storage solutions Richmond
  14. Residential relocation services
  15. Reliable movers
  16. Richmond moving professionals
They've built a reputation not just as a moving company, but as an integral part of the community fabric. This has fostered a strong company culture that values excellence and integrity, further propelling the company's growth.

Hearing directly from satisfied customers, BBX Moving's reputation for excellence shines through their glowing testimonials. From the initial inventory process to the final delivery, BBX Moving utilizes advanced software solutions that streamline operations and reduce the potential for errors. They understand that they're not just moving items; they're moving lives. Building on their cross-country moving strategies, BBX Moving also offers expert advice for individuals facing the unique challenges of interstate relocation.

Budget-friendly moving companies Richmond
Pool table movers Richmond

Pool table movers Richmond

It's the backbone of a successful move, ensuring efficiency, reliability, and peace of mind.

Long-distance moving company Richmond - Packing supplies Richmond

  1. Moving company near me
  2. Moving and storage services
  3. Office movers Richmond
  4. Moving to a new home Richmond
  5. Richmond moving consultants
  6. Interstate moving companies
  7. Packing and moving Richmond
  8. Moving estimates
  9. Packing supplies Richmond
  10. Moving checklists
  11. Professional movers
  12. Affordable moving companies
  13. Moving to Richmond
  14. Moving service reviews
  15. Affordable moving services
  16. Best moving company
  17. Moving quotes Richmond
Beyond just moving your belongings, they offer packing, unpacking, and storage solutions. Why settle for standard storage when BBX Moving offers climate-controlled units to keep your belongings in pristine condition? Partnerships with real estate agencies have also streamlined the moving process for new homeowners, making transitions smoother.

I couldn't be happier!'Another aspect frequently highlighted in the testimonials is BBX Moving's exceptional customer service.

Long-distance moving company Richmond - Packing services Richmond

  1. Moving company contact
  2. Last-minute movers Richmond
  3. Moving trucks Richmond
  4. Best movers Richmond
  5. Moving company insurance
  6. Full-service movers Richmond
  7. Moving company website
  8. Professional furniture movers
  9. Budget moving companies
  10. Family moving services
  11. Moving help Richmond
  12. Large item transportation
  13. Moving company reviews
  14. Moving company near me
  15. Moving and storage services
  16. Interstate moving companies
  17. Packing and moving Richmond
  18. Moving estimates
  19. Packing supplies Richmond
  20. Moving checklists
Moreover, BBX Moving's commitment to transparency sets them apart in the industry. They understand that no two moves are the same, and they're committed to providing personalized service that takes into account the specific requirements and concerns of each customer.

They were impressed by BBX Moving's detailed planning and execution. BBX also understands that plans can change. The team's training goes beyond the basics.

Long-distance moving company Richmond - Storage solutions Richmond

  1. Best moving company
  2. Moving quotes Richmond
  3. Commercial moving services
  4. Richmond movers with trucks
  5. Richmond relocation services
  6. Furniture moving
  7. Moving company contact
  8. Last-minute movers Richmond
  9. Moving trucks Richmond
  10. Best movers Richmond
  11. Moving company insurance
  12. Full-service movers Richmond
  13. Moving company website
  14. Professional furniture movers
  15. Budget moving companies
  16. Family moving services
  17. Moving help Richmond
  18. Large item transportation
  19. Moving company reviews


BBX Moving stands out in Richmond for its ability to create customized moving plans that cater to individual needs. Furthermore, BBX Moving's security team conducts regular checks and balances to ensure all systems function optimally, offering customers peace of mind.

Long-distance moving company Richmond - Storage solutions Richmond

  1. Best movers Richmond
  2. Moving company insurance
  3. Full-service movers Richmond
  4. Moving company website
  5. Professional furniture movers
  6. Budget moving companies
  7. Family moving services
  8. Moving help Richmond
  9. Large item transportation
  10. Moving company reviews
  11. Moving company near me
  12. Moving and storage services
  13. Professional movers
  14. Affordable moving companies
  15. Moving to Richmond
  16. Moving service reviews
  17. Affordable moving services
  18. Best moving company
  19. Moving quotes Richmond
  20. Commercial moving services
They'll advise you on the best packing practices, ensuring your belongings are secure and organized.

Long-distance moving company Richmond - Storage solutions Richmond

  1. Richmond relocation services
  2. Furniture moving
  3. Moving company contact
  4. Last-minute movers Richmond
  5. Moving trucks Richmond
  6. Best movers Richmond
  7. Moving company insurance
  8. Full-service movers Richmond
  9. Moving company website
  10. Professional furniture movers
  11. Budget moving companies
  12. Family moving services
  13. Moving help Richmond
  14. Large item transportation
  15. Moving company reviews
  16. Moving company near me
  17. Moving and storage services
  18. Packing services Richmond


Affordable out-of-state movers Richmond

To ensure a smooth moving process, it's crucial to start with a comprehensive checklist of essentials. Whether it's delicate antiques, sensitive electronics, or personal keepsakes, BBX Moving has got it covered. They offer climate-controlled units to protect sensitive items from extreme temperatures and humidity, alongside 24/7 security monitoring to ensure safety. This competitive rate advantage allows customers to access a range of services, from packing and unpacking to secure storage solutions, all without breaking the bank.

This not only lightens your load but can also positively impact your moving costs. Understanding that each move is different, they've developed a customer-centric approach, allowing for adjustments and tailoring to individual needs. Their pricing model is transparent, ensuring customers know exactly what they're paying for, without any hidden fees or last-minute surprises.

They're equipped to handle moves of any size and distance, whether you're moving across town or across the country. They offer customizable moving plans to suit individual needs, ensuring belongings are transported safely and efficiently.

Long-distance moving company Richmond - Reliable movers

  1. Storage solutions Richmond
  2. Residential relocation services
  3. Reliable movers
  4. Richmond moving professionals
  5. Office movers Richmond
  6. Moving to a new home Richmond
  7. Richmond moving consultants
  8. Interstate moving companies
  9. Packing and moving Richmond
  10. Moving estimates
  11. Packing supplies Richmond
  12. Moving checklists
  13. Professional movers
  14. Affordable moving companies
  15. Moving to Richmond
  16. Moving service reviews
  17. Affordable moving services
  18. Best moving company
  19. Moving quotes Richmond
  20. Commercial moving services
BBX Moving's commitment to punctuality means their clients aren't left waiting.

Moreover, BBX Moving is constantly expanding its service areas to cater to a broader audience. Their availability is a testament to their dedication to customer care, making them not just a moving company, but a trusted partner in the relocation process. This approach not only benefits the environment but also offers customers a guilt-free relocation experience that aligns with their values of sustainability and conservation.

Affordable out-of-state movers Richmond
Weekend movers Richmond
Weekend movers Richmond

As they continue to engage with the community and offer invaluable moving tips and advice, one can't help but wonder what the future holds for BBX Moving. They've identified key areas outside of Richmond where their services are in high demand and are actively working towards establishing a presence in these regions. They ensure your sensitive items, like electronics, wood furniture, and artwork, aren't damaged by extreme temperatures or humidity.

Long-distance moving company Richmond - Moving to a new home Richmond

  1. Professional movers
  2. Affordable moving companies
  3. Moving to Richmond
  4. Moving service reviews
  5. Affordable moving services
  6. Best moving company
  7. Moving quotes Richmond
  8. Commercial moving services
  9. Richmond movers with trucks
  10. Richmond relocation services
  11. Furniture moving
  12. Moving company contact
  13. Last-minute movers Richmond
  14. Moving trucks Richmond
  15. Best movers Richmond
  16. Moving company insurance
  17. Full-service movers Richmond
  18. Moving company website
  19. Professional furniture movers
Building on their stress-free moving process, BBX Moving also offers comprehensive service coverage, ensuring a seamless relocation experience from start to finish. BBX Moving also introduces a unique tier system within their pricing structure.

Their service areas include major cities and suburbs around Richmond, ensuring that no matter where you're in the region, BBX Moving's professional team is ready to assist. Booking your move with BBX Moving isn't just about hiring a moving company; it's about partnering with a team that's committed to making your relocation as smooth and stress-free as possible. Their movers aren't just uniformed for professionalism; their uniforms serve as a symbol of trust and reliability.

Long-distance moving company Richmond - Office movers Richmond

  1. Packing supplies Richmond
  2. Moving checklists
  3. Professional movers
  4. Affordable moving companies
  5. Moving to Richmond
  6. Moving service reviews
  7. Affordable moving services
  8. Best moving company
  9. Moving quotes Richmond
  10. Commercial moving services
  11. Richmond movers with trucks
  12. Richmond relocation services
  13. Furniture moving
  14. Moving company contact
  15. Last-minute movers Richmond
  16. Moving trucks Richmond
  17. Best movers Richmond
  18. Moving company insurance
  19. Full-service movers Richmond
Whether it's short-term storage solutions for those in-between homes or longer-term options for clients requiring extended periods, BBX Moving has got it covered.

They're keen on details, ensuring that each item, whether large or fragile, is accounted for and has a specific plan for safe transport. Choosing a local moving company like BBX Moving provides customers with the invaluable advantage of personalized, in-depth knowledge of the Richmond area. They ensure each client's needs are met with tailored solutions, highlighting their dedication to satisfaction. BBX Moving offers comprehensive commercial relocation services, ensuring businesses in Richmond experience minimal downtime during their move.

BBX Moving extends its expertise beyond local relocations, offering comprehensive solutions for long-distance and cross-country moves. Moreover, BBX Moving's staff are trained to handle belongings with the utmost care and respect. They've mastered the art of streamlining the moving process, making it as smooth and efficient as possible for their clients. How does BBX Moving ensure your belongings are packed securely and efficiently?

Long-distance moving company Richmond - Moving to a new home Richmond

  1. Commercial moving services
  2. Richmond movers with trucks
  3. Richmond relocation services
  4. Furniture moving
  5. Moving company contact
  6. Last-minute movers Richmond
  7. Moving trucks Richmond
  8. Best movers Richmond
  9. Moving company insurance
  10. Full-service movers Richmond
  11. Moving company website
  12. Professional furniture movers
  13. Budget moving companies
  14. Family moving services
  15. Moving help Richmond
  16. Large item transportation
  17. Moving company reviews


Richmond moving services for residential clients

BBX Moving takes every precaution during transport to protect the art from any potential damage, employing climate-controlled vehicles for temperature-sensitive pieces. Their dedication to customer satisfaction is evident in every move they undertake. Explore Long-distance moving company Richmond bere For those who need a place to keep their belongings, either short-term or long-term, BBX has secure storage solutions available. They've now been in business for over a decade, a testament to their dedication to excellence and customer satisfaction. To ensure the safe handling of your valuables, BBX Moving employs advanced gear and specialized equipment tailored for every type of move.
Not only were their rates competitive, but there were no hidden fees. They're equipped to handle everything from delicate antiques to hefty appliances, ensuring that each item arrives at its destination in the same condition it left. Firstly, decluttering before you pack is a game-changer. You can opt for a full packing service, where they handle everything, or a partial service, targeting only specific items.

Long-distance moving company Richmond - Office movers Richmond

  1. Office movers Richmond
  2. Moving to a new home Richmond
  3. Richmond moving consultants
  4. Interstate moving companies
  5. Packing and moving Richmond
  6. Moving estimates
  7. Packing supplies Richmond
  8. Moving checklists
  9. Professional movers
  10. Affordable moving companies
  11. Moving to Richmond
  12. Moving service reviews
  13. Affordable moving services
  14. Best moving company
  15. Moving quotes Richmond
  16. Commercial moving services
  17. Richmond movers with trucks

The company has built a reputation for going above and beyond to ensure moves are as stress-free as possible. From packing delicate items with the utmost care to securing furniture for transit, BBX Moving prioritizes your items' safety every step of the way. Stick around to uncover the details behind their stellar reputation and why so many Richmond residents wouldn't trust their belongings with anyone else. Read more about Long-distance moving company Richmond here BBX Moving streamlines the moving process by focusing on meticulous planning and offering practical packing and unpacking tips.
Its story of growth isn't just about expanding services or increasing profits; it's about building trust within the Richmond community and beyond.

Long-distance moving company Richmond - Richmond moving consultants

  1. Moving company near me
  2. Moving and storage services
  3. Richmond moving consultants
  4. Interstate moving companies
  5. Packing and moving Richmond
  6. Moving estimates
  7. Packing supplies Richmond
  8. Moving checklists
  9. Professional movers
  10. Affordable moving companies
  11. Moving to Richmond
  12. Moving service reviews
  13. Affordable moving services
  14. Best moving company
  15. Moving quotes Richmond
  16. Commercial moving services
  17. Richmond movers with trucks
  18. Richmond relocation services
  19. Furniture moving
With BBX Moving, clients can rest assured that their valuable art is in the safest hands, making their relocation process worry-free. BBX Moving's dedicated team, with their attention to detail and customer-focused mindset, sets a new standard for moving services in Richmond.

Long-distance moving company Richmond - Interstate moving companies

  1. Commercial moving services
  2. Richmond movers with trucks
  3. Richmond relocation services
  4. Furniture moving
  5. Moving company contact
  6. Last-minute movers Richmond
  7. Moving trucks Richmond
  8. Best movers Richmond
  9. Moving company insurance
  10. Full-service movers Richmond
  11. Moving company website
  12. Professional furniture movers
  13. Budget moving companies
  14. Family moving services
  15. Moving help Richmond
  16. Large item transportation
  17. Moving company reviews
Whether it's a small apartment or a large corporate office, BBX Moving has the expertise and the resources to ensure a smooth transition.

Long-distance moving company Richmond - Storage solutions Richmond

  1. Moving company near me
  2. Moving and storage services
  3. Moving checklists
  4. Professional movers
  5. Affordable moving companies
  6. Moving to Richmond
  7. Moving service reviews
  8. Affordable moving services
  9. Best moving company
  10. Moving quotes Richmond
  11. Commercial moving services
  12. Richmond movers with trucks
  13. Richmond relocation services
  14. Furniture moving
  15. Moving company contact
  16. Last-minute movers Richmond
  17. Moving trucks Richmond



Long-distance moving company Richmond - Office movers Richmond

  1. Reliable movers
  2. Richmond moving professionals
  3. Office movers Richmond
  4. Moving to a new home Richmond
  5. Richmond moving consultants
  6. Interstate moving companies
  7. Packing and moving Richmond
  8. Moving estimates
  9. Packing supplies Richmond
  10. Moving checklists
  11. Professional movers
  12. Affordable moving companies
  13. Moving to Richmond
  14. Moving service reviews
  15. Affordable moving services
Richmond moving services for residential clients

The three chasing arrows of the universal recycling symbol
Municipal waste recycling rate (%), 2015

Recycling is the process of converting waste materials into new materials and objects. This concept often includes the recovery of energy from waste materials. The recyclability of a material depends on its ability to reacquire the properties it had in its original state.[1] It is an alternative to "conventional" waste disposal that can save material and help lower greenhouse gas emissions. It can also prevent the waste of potentially useful materials and reduce the consumption of fresh raw materials, reducing energy use, air pollution (from incineration) and water pollution (from landfilling).

Recycling is a key component of modern waste reduction and is the third component of the "Reduce, Reuse, and Recycle" waste hierarchy.[2][3] It promotes environmental sustainability by removing raw material input and redirecting waste output in the economic system.[4] There are some ISO standards related to recycling, such as ISO 15270:2008 for plastics waste and ISO 14001:2015 for environmental management control of recycling practice.

Recyclable materials include many kinds of glass, paper, cardboard, metal, plastic, tires, textiles, batteries, and electronics. The composting and other reuse of biodegradable waste—such as food and garden waste—is also a form of recycling.[5] Materials for recycling are either delivered to a household recycling center or picked up from curbside bins, then sorted, cleaned, and reprocessed into new materials for manufacturing new products.

In ideal implementations, recycling a material produces a fresh supply of the same material—for example, used office paper would be converted into new office paper, and used polystyrene foam into new polystyrene. Some types of materials, such as metal cans, can be remanufactured repeatedly without losing their purity.[6] With other materials, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources), so "recycling" of many products and materials involves their reuse in producing different materials (for example, paperboard). Another form of recycling is the salvage of constituent materials from complex products, due to either their intrinsic value (such as lead from car batteries and gold from printed circuit boards), or their hazardous nature (e.g. removal and reuse of mercury from thermometers and thermostats).

History

[edit]

Origins

[edit]

Reusing materials has been a common practice for most of human history with recorded advocates as far back as Plato in the fourth century BC.[7] During periods when resources were scarce, archaeological studies of ancient waste dumps show less household waste (such as ash, broken tools, and pottery), implying that more waste was recycled in place of new material.[8] However, archaeological artefacts made from recyclable material, such as glass or metal, may neither be the original object nor resemble it, with the consequence that a successful ancient recycling economy can become invisible when recycling is synonymous with re-melting rather than reuse.[9]

Inside a British factory, a textile worker rakes newly-made 'shoddy' which was then combined with new wool to make new cloth

In pre-industrial times, there is evidence of scrap bronze and other metals being collected in Europe and melted down for continuous reuse.[10] Paper recycling was first recorded in 1031 when Japanese shops sold repulped paper.[11][12] In Britain dust and ash from wood and coal fires was collected by "dustmen" and downcycled as a base material for brick making. These forms of recycling were driven by the economic advantage of obtaining recycled materials instead of virgin material, and the need for waste removal in ever-more-densely populated areas.[8] In 1813, Benjamin Law developed the process of turning rags into "shoddy" and "mungo" wool in Batley, Yorkshire, which combined recycled fibers with virgin wool.[13] The West Yorkshire shoddy industry in towns such as Batley and Dewsbury lasted from the early 19th century to at least 1914.

Industrialization spurred demand for affordable materials. In addition to rags, ferrous scrap metals were coveted as they were cheaper to acquire than virgin ore. Railroads purchased and sold scrap metal in the 19th century, and the growing steel and automobile industries purchased scrap in the early 20th century. Many secondary goods were collected, processed and sold by peddlers who scoured dumps and city streets for discarded machinery, pots, pans, and other sources of metal. By World War I, thousands of such peddlers roamed the streets of American cities, taking advantage of market forces to recycle post-consumer materials into industrial production.[14]

Manufacturers of beverage bottles, including Schweppes,[15] began offering refundable recycling deposits in Great Britain and Ireland around 1800. An official recycling system with refundable deposits for bottles was established in Sweden in 1884, and for aluminum beverage cans in 1982; it led to recycling rates of 84–99%, depending on type (glass bottles can be refilled around 20 times).[16]

Wartime

[edit]
American poster from World War II
British poster from World War II
Poster from wartime Canada, encouraging housewives to "salvage"
Remnants of iron fence bars in York Whip-Ma-Whop-Ma-Gate. Such public property fences were sawed for the iron and recycled during World War II.

New chemical industries created in the late 19th century both invented new materials (e.g. Bakelite in 1907) and promised to transform valueless into valuable materials. Proverbially, you could not make a silk purse of a sow's ear—until the US firm Arthur D. Little published in 1921 "On the Making of Silk Purses from Sows' Ears", its research proving that when "chemistry puts on overalls and gets down to business [...] new values appear. New and better paths are opened to reach the goals desired."[17]

Recycling—or "salvage", as it was then usually known—was a major issue for governments during World War II, where financial constraints and significant material shortages made it necessary to reuse goods and recycle materials.[18] These resource shortages caused by the world wars, and other such world-changing events, greatly encouraged recycling.[19][18] It became necessary for most homes to recycle their waste, allowing people to make the most of what was available. Recycling household materials also meant more resources were left available for war efforts.[18] Massive government campaigns, such as the National Salvage Campaign in Britain and the Salvage for Victory campaign in the United States, occurred in every fighting nation, urging citizens to donate metal, paper, rags, and rubber as a patriotic duty.

Post-World War II

[edit]

A considerable investment in recycling occurred in the 1970s due to rising energy costs.[20] Recycling aluminium uses only 5% of the energy of virgin production. Glass, paper and other metals have less dramatic but significant energy savings when recycled.[21]

Although consumer electronics have been popular since the 1920s, recycling them was almost unheard of until early 1991.[22] The first electronic waste recycling scheme was implemented in Switzerland, beginning with collection of old refrigerators, then expanding to cover all devices.[23] When these programs were created, many countries could not deal with the sheer quantity of e-waste, or its hazardous nature, and began to export the problem to developing countries without enforced environmental legislation. (For example, recycling computer monitors in the United States costs 10 times more than in China.) Demand for electronic waste in Asia began to grow when scrapyards found they could extract valuable substances such as copper, silver, iron, silicon, nickel, and gold during the recycling process.[24] The 2000s saw a boom in both the sales of electronic devices and their growth as a waste stream: In 2002, e-waste grew faster than any other type of waste in the EU.[25] This spurred investment in modern automated facilities to cope with the influx, especially after strict laws were implemented in 2003.[26]

As of 2014, the European Union had about 50% of world share of waste and recycling industries, with over 60,000 companies employing 500,000 people and a turnover of €24 billion.[27] EU countries are mandated to reach recycling rates of at least 50%; leading countries are already at around 65%. The overall EU average was 39% in 2013[28] and is rising steadily, to 45% in 2015.[29][30]

In 2015, the United Nations General Assembly set 17 Sustainable Development Goals. Goal 12, Responsible Consumption and Production, specifies 11 targets "to ensure sustainable consumption and production patterns".[31] The fifth target, Target 12.5, is defined as substantially reducing waste generation by 2030, indicated by the National Recycling Rate.

In 2018, changes in the recycling industry have sparked a global "crisis". On 31 December 2017, China announced its "National Sword" policy, setting new standards for imports of recyclable material and banning materials deemed too "dirty" or "hazardous". The new policy caused drastic disruptions in the global recycling market, and reduced the prices of scrap plastic and low-grade paper. Exports of recyclable materials from G7 countries to China dropped dramatically, with many shifting to countries in southeast Asia. This generated significant concern about the recycling industry's practices and environmental sustainability. The abrupt shift caused countries to accept more materials than they could process, and raised fundamental questions about shipping waste from developed countries to countries with few environmental regulations—a practice that predated the crisis.[32]

Health and environmental impact

[edit]

Health impact

[edit]

According to the WHO (2023), “Every year millions of electrical and electronic devices are discarded ... a threat to the environment and to human health if they are not treated, disposed of, and recycled appropriately. Common items ... include computers ... e-waste are recycled using environmentally unsound techniques and are likely stored in homes and warehouses, dumped, exported or recycled under inferior conditions. When e-waste is treated using inferior activities, it can release as many as 1000 different chemical substances ... including harmful neurotoxicants such as lead.”[33] A paper in the journal Sustainable Materials & Technologies remarks upon the difficulty of managing e-waste, particularly from home automation products, which, due to their becoming obsolete at a high rate, are putting increasing strain on recycling systems, which have not adapted to meet the recycling needs posed by this type of product.[34]

Slag recycling

[edit]

Copper slag is obtained when copper and nickel ores are recovered from their source ores using a pyrometallurgical process, and these ores usually contain other elements which include iron, cobalt, silica, and alumina.[35] An estimate of 2.2–3 tons of copper slag is generated per ton of copper produced, resulting in around 24.6 tons of slag per year, which is regarded as waste.[36] [37]

Environmental impact of slag include copper paralysis, which leads to death due to gastric hemorrhage, if ingested by humans. It may also cause acute dermatitis upon skin exposure. [38] Toxicity may also be uptaken by crops through soil, consequently spreading animals and food sources and increasing the risk of cardiovascular diseases, cancer, cognitive impairment, chronic anemia, and damage to kidneys, bones, nervous system, brain and skin.[39]

Substituting gravel and grit in quarries has been more cost-effective, due to having its sources with better proximity to consumer markets. Trading between countries and establishment of blast furnaces is helping increase slag utilization, hence reducing wastage and pollution.[40]

Concrete recycling

[edit]

Environmental impact

[edit]

Economist Steven Landsburg, author of a paper entitled "Why I Am Not an Environmentalist",[41] claimed that paper recycling actually reduces tree populations. He argues that because paper companies have incentives to replenish their forests, large demands for paper lead to large forests while reduced demand for paper leads to fewer "farmed" forests.[42]

A metal scrap worker is pictured burning insulated copper wires for copper recovery at Agbogbloshie, Ghana.

When foresting companies cut down trees, more are planted in their place; however, such farmed forests are inferior to natural forests in several ways. Farmed forests are not able to fix the soil as quickly as natural forests. This can cause widespread soil erosion and often requiring large amounts of fertilizer to maintain the soil, while containing little tree and wild-life biodiversity compared to virgin forests.[43] Also, the new trees planted are not as big as the trees that were cut down, and the argument that there would be "more trees" is not compelling to forestry advocates when they are counting saplings.

In particular, wood from tropical rainforests is rarely harvested for paper because of their heterogeneity.[44] According to the United Nations Framework Convention on Climate Change secretariat, the overwhelming direct cause of deforestation is subsistence farming (48% of deforestation) and commercial agriculture (32%), which is linked to food, not paper production.[45]

Other non-conventional methods of material recycling, like Waste-to-Energy (WTE) systems, have garnered increased attention in the recent past due to the polarizing nature of their emissions. While viewed as a sustainable method of capturing energy from material waste feedstocks by many, others have cited numerous explanations for why the technology has not been scaled globally.[46]

Legislation

[edit]

Supply

[edit]

For a recycling program to work, a large, stable supply of recyclable material is crucial. Three legislative options have been used to create such supplies: mandatory recycling collection, container deposit legislation, and refuse bans. Mandatory collection laws set recycling targets for cities, usually in the form that a certain percentage of a material must be diverted from the city's waste stream by a target date. The city is responsible for working to meet this target.[5]

Container deposit legislation mandates refunds for the return of certain containers—typically glass, plastic and metal. When a product in such a container is purchased, a small surcharge is added that the consumer can reclaim when the container is returned to a collection point. These programs have succeeded in creating an average 80% recycling rate.[47] Despite such good results, the shift in collection costs from local government to industry and consumers has created strong opposition in some areas[5]—for example, where manufacturers bear the responsibility for recycling their products. In the European Union, the WEEE Directive requires producers of consumer electronics to reimburse the recyclers' costs.[48]

An alternative way to increase the supply of recyclates is to ban the disposal of certain materials as waste, often including used oil, old batteries, tires, and garden waste. This can create a viable economy for the proper disposal of the products. Care must be taken that enough recycling services exist to meet the supply, or such bans can create increased illegal dumping.[5]

Government-mandated demand

[edit]

Four forms of legislation have also been used to increase and maintain the demand for recycled materials: minimum recycled content mandates, utilization rates, procurement policies, and recycled product labeling.[5]

Both minimum recycled content mandates and utilization rates increase demand by forcing manufacturers to include recycling in their operations. Content mandates specify that a certain percentage of a new product must consist of recycled material. Utilization rates are a more flexible option: Industries can meet their recycling targets at any point of their operations, or even contract out recycling in exchange for tradable credits. Opponents to these methods cite their large increase in reporting requirements, and claim that they rob the industry of flexibility.[5][49]

Governments have used their own purchasing power to increase recycling demand through "procurement policies". These policies are either "set-asides", which reserve a certain amount of spending for recycled products; or "price preference" programs that provide larger budgets when recycled items are purchased. Additional regulations can target specific cases: in the United States, for example, the Environmental Protection Agency mandates the purchase of oil, paper, tires and building insulation from recycled or re-refined sources whenever possible.[5]

The final government regulation toward increased demand is recycled product labeling. When producers are required to label their packaging with the amount of recycled material it contains (including the packaging), consumers can make more educated choices. Consumers with sufficient buying power can choose more environmentally conscious options, prompting producers to increase the recycled material in their products and increase demand. Standardized recycling labeling can also have a positive effect on the supply of recyclates when it specifies how and where the product can be recycled.[5]

Recyclates

[edit]
Glass recovered by crushing only one kind of beer bottle

"Recyclate" is a raw material sent to and processed in a waste recycling plant or materials-recovery facility[50] so it can be used in the production of new materials and products. For example, plastic bottles can be made into plastic pellets and synthetic fabrics.[51]

Quality of recyclate

[edit]

The quality of recyclates is one of the principal challenges for the success of a long-term vision of a green economy and achieving zero waste. It generally refers to how much of it is composed of target material, versus non-target material and other non-recyclable material.[52] Steel and other metals have intrinsically higher recyclate quality; it is estimated that two-thirds of all new steel comes from recycled steel.[53] Only target material is likely to be recycled, so higher amounts of non-target and non-recyclable materials can reduce the quantity of recycled products.[52] A high proportion of non-target and non-recyclable material can make it more difficult to achieve "high-quality" recycling; and if recyclate is of poor quality, it is more likely to end up being down-cycled or, in more extreme cases, sent to other recovery options or landfilled.[52] For example, to facilitate the remanufacturing of clear glass products, there are tight restrictions for colored glass entering the re-melt process. Another example is the downcycling of plastic, where products such as plastic food packaging are often downcycled into lower quality products, and do not get recycled into the same plastic food packaging.

The quality of recyclate not only supports high-quality recycling, but it can also deliver significant environmental benefits by reducing, reusing, and keeping products out of landfills.[52] High-quality recycling can support economic growth by maximizing the value of waste material.[52] Higher income levels from the sale of quality recyclates can return value significant to local governments, households and businesses.[52] Pursuing high-quality recycling can also promote consumer and business confidence in the waste and resource management sector, and may encourage investment in it.

There are many actions along the recycling supply chain, each of which can affect recyclate quality.[54] Waste producers who place non-target and non-recyclable wastes in recycling collections can affect the quality of final recyclate streams, and require extra efforts to discard those materials at later stages in the recycling process.[54] Different collection systems can induce different levels of contamination. When multiple materials are collected together, extra effort is required to sort them into separate streams and can significantly reduce the quality of the final products.[54] Transportation and the compaction of materials can also make this more difficult. Despite improvements in technology and quality of recyclate, sorting facilities are still not 100% effective in separating materials.[54] When materials are stored outside, where they can become wet, can also cause problems for re-processors. Further sorting steps may be required to satisfactorily reduce the amount of non-target and non-recyclable material.[54]

Recycling consumer waste

[edit]

Collection

[edit]
A three-sided bin at a railway station in Germany, intended to separate paper (left) and plastic wrappings (right) from other waste (back)

A number of systems have been implemented to collect recyclates from the general waste stream, occupying different places on the spectrum of trade-off between public convenience and government ease and expense. The three main categories of collection are drop-off centers, buy-back centers and curbside collection.[5] About two-thirds of the cost of recycling is incurred in the collection phase.[55]

Curbside collection

[edit]
A recycling truck collecting the contents of a recycling bin in Canberra, Australia
Emptying of segregated rubbish containers in Tomaszów Mazowiecki, Poland

Curbside collection encompasses many subtly different systems, which differ mostly on where in the process the recyclates are sorted and cleaned. The main categories are mixed waste collection, commingled recyclables, and source separation.[5] A waste collection vehicle generally picks up the waste.

In mixed waste collection, recyclates are collected mixed with the rest of the waste, and the desired materials are sorted out and cleaned at a central sorting facility. This results in a large amount of recyclable waste (especially paper) being too soiled to reprocess, but has advantages as well: The city need not pay for the separate collection of recyclates, no public education is needed, and any changes to the recyclability of certain materials are implemented where sorting occurs.[5]

In a commingled or single-stream system, recyclables are mixed but kept separate from non-recyclable waste. This greatly reduces the need for post-collection cleaning, but requires public education on what materials are recyclable.[5][10]

Source separation
[edit]

Source separation is the other extreme, where each material is cleaned and sorted prior to collection. It requires the least post-collection sorting and produces the purest recyclates. However, it incurs additional operating costs for collecting each material, and requires extensive public education to avoid recyclate contamination.[5] In Oregon, USA, Oregon DEQ surveyed multi-family property managers; about half of them reported problems, including contamination of recyclables due to trespassers such as transients gaining access to collection areas.[56]

Source separation used to be the preferred method due to the high cost of sorting commingled (mixed waste) collection. However, advances in sorting technology have substantially lowered this overhead, and many areas that had developed source separation programs have switched to what is called co-mingled collection.[10]

Buy-back centers

[edit]
Reverse vending machine in Tomaszów Mazowiecki, Poland

At buy-back centers, separated, cleaned recyclates are purchased, providing a clear incentive for use and creating a stable supply. The post-processed material can then be sold. If profitable, this conserves the emission of greenhouse gases; if unprofitable, it increases their emission. Buy-back centres generally need government subsidies to be viable. According to a 1993 report by the U.S. National Waste & Recycling Association, it costs an average $50 to process a ton of material that can be resold for $30.[5]

Drop-off centers

[edit]
A drop-off center in the United Kingdom, where they are generally named Recycling Centres

Drop-off centers require the waste producer to carry recyclates to a central location—either an installed or mobile collection station or the reprocessing plant itself. They are the easiest type of collection to establish but suffer from low and unpredictable throughput.

Distributed recycling

[edit]

For some waste materials such as plastic, recent technical devices called recyclebots[57] enable a form of distributed recycling called DRAM (distributed recycling additive manufacturing). Preliminary life-cycle analysis (LCA) indicates that such distributed recycling of HDPE to make filament for 3D printers in rural regions consumes less energy than using virgin resin, or using conventional recycling processes with their associated transportation.[58][59]

Another form of distributed recycling mixes waste plastic with sand to make bricks in Africa.[60] Several studies have looked at the properties of recycled waste plastic and sand bricks.[61][62] The composite pavers can be sold at 100% profit while employing workers at 1.5× the minimum wage in the West African region, where distributed recycling has the potential to produce 19 million pavement tiles from 28,000 tons of plastic water sachets annually in Ghana, Nigeria, and Liberia.[63] This has also been done with COVID19 masks.[64]

Sorting

[edit]
Video of recycling sorting facility and processes

Once commingled recyclates are collected and delivered to a materials recovery facility, the materials must be sorted. This is done in a series of stages, many of which involve automated processes, enabling a truckload of material to be fully sorted in less than an hour.[10] Some plants can now sort materials automatically; this is known as single-stream recycling. Automatic sorting may be aided by robotics and machine learning.[65][66] In plants, a variety of materials is sorted including paper, different types of plastics, glass, metals, food scraps, and most types of batteries.[67] A 30% increase in recycling rates has been seen in areas with these plants.[68] In the US, there are over 300 materials recovery facilities.[69]

Initially, commingled recyclates are removed from the collection vehicle and placed on a conveyor belt spread out in a single layer. Large pieces of corrugated fiberboard and plastic bags are removed by hand at this stage, as they can cause later machinery to jam.[10]

Early sorting of recyclable materials: glass and plastic bottles in Poland.

Next, automated machinery such as disk screens and air classifiers separate the recyclates by weight, splitting lighter paper and plastic from heavier glass and metal. Cardboard is removed from mixed paper, and the most common types of plastic—PET (#1) and HDPE (#2)—are collected, so these materials can be diverted into the proper collection channels. This is usually done by hand; but in some sorting centers, spectroscopic scanners are used to differentiate between types of paper and plastic based on their absorbed wavelengths.[10] Plastics tend to be incompatible with each other due to differences in chemical composition; their polymer molecules repel each other, similar to oil and water.[70]

Strong magnets are used to separate out ferrous metals such as iron, steel and tin cans. Non-ferrous metals are ejected by magnetic eddy currents: A rotating magnetic field induces an electric current around aluminum cans, creating an eddy current inside the cans that is repulsed by a large magnetic field, ejecting the cans from the stream.[10]

A recycling point in New Byth, Scotland, with separate containers for paper, plastics, and differently colored glass

Finally, glass is sorted according to its color: brown, amber, green, or clear. It may be sorted either by hand,[10] or by a machine that uses colored filters to detect colors. Glass fragments smaller than 10 millimetres (0.39 in) cannot be sorted automatically, and are mixed together as "glass fines".[71]

In 2003, San Francisco's Department of the Environment set a citywide goal of zero waste by 2020.[72] San Francisco's refuse hauler, Recology, operates an effective recyclables sorting facility that has helped the city reach a record-breaking landfill diversion rate of 80% as of 2021.[73] Other American cities, including Los Angeles, have achieved similar rates.

Recycling industrial waste

[edit]
Mounds of shredded rubber tires ready for processing

Although many government programs concentrate on recycling at home, 64% of waste in the United Kingdom is generated by industry.[74] The focus of many recycling programs in industry is their cost-effectiveness. The ubiquitous nature of cardboard packaging makes cardboard a common waste product recycled by companies that deal heavily in packaged goods, such as retail stores, warehouses, and goods distributors. Other industries deal in niche and specialized products, depending on the waste materials they handle.

Glass, lumber, wood pulp and paper manufacturers all deal directly in commonly recycled materials; however, independent tire dealers may collect and recycle rubber tires for a profit.

The waste produced from burning coal in a Coal-fired power station is often called fuel ash or fly ash in the United States. It is a very useful material and used in concrete construction. It exhibits Pozzolanic activity.[75]

Levels of metals recycling are generally low. In 2010, the International Resource Panel, hosted by the United Nations Environment Programme (UNEP), published reports on metal stocks[76] and their recycling rates.[76] It reported that the increase in the use of metals during the 20th and into the 21st century has led to a substantial shift in metal stocks from below-ground to use in above-ground applications within society. For example, in the US, in-use copper grew from 73 to 238 kg per capita between 1932–1999.

The report's authors observed that, as metals are inherently recyclable, metal stocks in society can serve as huge above-ground mines (the term "urban mining" has thus been coined[77]). However, they found that the recycling rates of many metals are low. They warned that the recycling rates of some rare metals used in applications such as mobile phones, battery packs for hybrid cars and fuel cells, are so low that unless future end-of-life recycling rates are dramatically increased, these critical metals will become unavailable for use in modern technology.

The military recycles some metals. The U.S. Navy's Ship Disposal Program uses ship breaking to reclaim the steel of old vessels. Ships may also be sunk to create artificial reefs. Uranium is a dense metal that has qualities superior to lead and titanium for many military and industrial uses. Uranium left over from processing it into nuclear weapons and fuel for nuclear reactors is called depleted uranium, and is used by all branches of the U.S. military for the development of such things as armor-piercing shells and shielding.

The construction industry may recycle concrete and old road surface pavement, selling these materials for profit.

Some rapidly growing industries, particularly the renewable energy and solar photovoltaic technology industries, are proactively creating recycling policies even before their waste streams have considerable volume, anticipating future demand.[78]

Recycling of plastics is more difficult, as most programs are not able to reach the necessary level of quality. Recycling of PVC often results in downcycling of the material, which means only products of lower quality standard can be made with the recycled material.

Computer processors retrieved from waste stream

E-waste is a growing problem, accounting for 20–50 million metric tons of global waste per year according to the EPA. It is also the fastest growing waste stream in the EU.[25] Many recyclers do not recycle e-waste responsibly. After the cargo barge Khian Sea dumped 14,000 metric tons of toxic ash in Haiti, the Basel Convention was formed to stem the flow of hazardous substances into poorer countries. They created the e-Stewards certification to ensure that recyclers are held to the highest standards for environmental responsibility and to help consumers identify responsible recyclers. It operates alongside other prominent legislation, such as the Waste Electrical and Electronic Equipment Directive of the EU and the United States National Computer Recycling Act, to prevent poisonous chemicals from entering waterways and the atmosphere.

In the recycling process, television sets, monitors, cell phones, and computers are typically tested for reuse and repaired. If broken, they may be disassembled for parts still having high value if labor is cheap enough. Other e-waste is shredded to pieces roughly 10 centimetres (3.9 in) in size and manually checked to separate toxic batteries and capacitors, which contain poisonous metals. The remaining pieces are further shredded to 10 millimetres (0.39 in) particles and passed under a magnet to remove ferrous metals. An eddy current ejects non-ferrous metals, which are sorted by density either by a centrifuge or vibrating plates. Precious metals can be dissolved in acid, sorted, and smelted into ingots. The remaining glass and plastic fractions are separated by density and sold to re-processors. Television sets and monitors must be manually disassembled to remove lead from CRTs and the mercury backlight from LCDs.[79][80][81]

Vehicles, solar panels and wind turbines can also be recycled. They often contain rare-earth elements (REE) and/or other critical raw materials. For electric car production, large amounts of REE's are typically required.[82]

Whereas many critical raw elements and REE's can be recovered, environmental engineer Phillipe Bihouix Archived 6 September 2021 at the Wayback Machine reports that recycling of indium, gallium, germanium, selenium, and tantalum is still very difficult and their recycling rates are very low.[82]

Plastic recycling

[edit]
A container for recycling used plastic spoons into material for 3D printing

Plastic recycling is the process of recovering scrap or waste plastic and reprocessing the material into useful products, sometimes completely different in form from their original state. For instance, this could mean melting down soft drink bottles and then casting them as plastic chairs and tables.[83] For some types of plastic, the same piece of plastic can only be recycled about 2–3 times before its quality decreases to the point where it can no longer be used.[6]

Physical recycling

[edit]

Some plastics are remelted to form new plastic objects; for example, PET water bottles can be converted into polyester destined for clothing. A disadvantage of this type of recycling is that the molecular weight of the polymer can change further and the levels of unwanted substances in the plastic can increase with each remelt.[84][85]

A commercial-built recycling facility was sent to the International Space Station in late 2019. The facility takes in plastic waste and unneeded plastic parts and physically converts them into spools of feedstock for the space station additive manufacturing facility used for in-space 3D printing.[86]

Chemical recycling

[edit]

For some polymers, it is possible to convert them back into monomers, for example, PET can be treated with an alcohol and a catalyst to form a dialkyl terephthalate. The terephthalate diester can be used with ethylene glycol to form a new polyester polymer, thus making it possible to use the pure polymer again. In 2019, Eastman Chemical Company announced initiatives of methanolysis and syngas designed to handle a greater variety of used material.[87]

Waste plastic pyrolysis to fuel oil

[edit]

Another process involves the conversion of assorted polymers into petroleum by a much less precise thermal depolymerization process. Such a process would be able to accept almost any polymer or mix of polymers, including thermoset materials such as vulcanized rubber tires and the biopolymers in feathers and other agricultural waste. Like natural petroleum, the chemicals produced can be used as fuels or as feedstock. A RESEM Technology[88] plant of this type in Carthage, Missouri, US, uses turkey waste as input material. Gasification is a similar process but is not technically recycling since polymers are not likely to become the result. Plastic Pyrolysis can convert petroleum based waste streams such as plastics into quality fuels, carbons. Given below is the list of suitable plastic raw materials for pyrolysis:

Recycling codes

[edit]
Recycling codes on products

In order to meet recyclers' needs while providing manufacturers a consistent, uniform system, a coding system was developed. The recycling code for plastics was introduced in 1988 by the plastics industry through the Society of the Plastics Industry.[89] Because municipal recycling programs traditionally have targeted packaging—primarily bottles and containers—the resin coding system offered a means of identifying the resin content of bottles and containers commonly found in the residential waste stream.[90]

In the United States, plastic products are printed with numbers 1–7 depending on the type of resin. Type 1 (polyethylene terephthalate) is commonly found in soft drink and water bottles. Type 2 (high-density polyethylene) is found in most hard plastics such as milk jugs, laundry detergent bottles, and some dishware. Type 3 (polyvinyl chloride) includes items such as shampoo bottles, shower curtains, hula hoops, credit cards, wire jacketing, medical equipment, siding, and piping. Type 4 (low-density polyethylene) is found in shopping bags, squeezable bottles, tote bags, clothing, furniture, and carpet. Type 5 is polypropylene and makes up syrup bottles, straws, Tupperware, and some automotive parts. Type 6 is polystyrene and makes up meat trays, egg cartons, clamshell containers, and compact disc cases. Type 7 includes all other plastics such as bulletproof materials, 3- and 5-gallon water bottles, cell phone and tablet frames, safety goggles and sunglasses.[91] Having a recycling code or the chasing arrows logo on a material is not an automatic indicator that a material is recyclable but rather an explanation of what the material is. Types 1 and 2 are the most commonly recycled.

Cost–benefit analysis

[edit]
Environmental effects of recycling[92]
Material Energy savings vs. new production Air pollution savings vs. new production
Aluminium 95%[5][21] 95%[5][93]
Cardboard 24%  —
Glass 5–30% 20%
Paper 40%[21] 73%[94]
Plastics 70%[21]  —
Steel 60%[10]  —

In addition to environmental impact, there is debate over whether recycling is economically efficient. According to a Natural Resources Defense Council study, waste collection and landfill disposal creates less than one job per 1,000 tons of waste material managed; in contrast, the collection, processing, and manufacturing of recycled materials creates 6–13 or more jobs per 1,000 tons.[95] According to the U.S. Recycling Economic Informational Study, there are over 50,000 recycling establishments that have created over a million jobs in the US.[96] The National Waste & Recycling Association (NWRA) reported in May 2015 that recycling and waste made a $6.7 billion economic impact in Ohio, U.S., and employed 14,000 people.[97] Economists[who?] would classify this extra labor used as a cost rather than a benefit since these workers could have been employed elsewhere; the cost effectiveness of creating these additional jobs remains unclear.[citation needed]

Sometimes cities have found recycling saves resources compared to other methods of disposal of waste. Two years after New York City declared that implementing recycling programs would be "a drain on the city", New York City leaders realized that an efficient recycling system could save the city over $20 million.[98] Municipalities often see fiscal benefits from implementing recycling programs, largely due to the reduced landfill costs.[99] A study conducted by the Technical University of Denmark according to the Economist found that in 83 percent of cases, recycling is the most efficient method to dispose of household waste.[10][21] However, a 2004 assessment by the Danish Environmental Assessment Institute concluded that incineration was the most effective method for disposing of drink containers, even aluminium ones.[100]

Fiscal efficiency is separate from economic efficiency. Economic analysis of recycling does not include what economists call externalities: unpriced costs and benefits that accrue to individuals outside of private transactions[citation needed]. Examples include less air pollution and greenhouse gases from incineration and less waste leaching from landfills. Without mechanisms such as taxes or subsidies, businesses and consumers following their private benefit would ignore externalities despite the costs imposed on society. If landfills and incinerator pollution is inadequately regulated, these methods of waste disposal appear cheaper than they really are, because part of their cost is the pollution imposed on people nearby. Thus, advocates have pushed for legislation to increase demand for recycled materials.[5] The United States Environmental Protection Agency (EPA) has concluded in favor of recycling, saying that recycling efforts reduced the country's carbon emissions by a net 49 million metric tonnes in 2005.[10] In the United Kingdom, the Waste and Resources Action Programme stated that Great Britain's recycling efforts reduce CO2 emissions by 10–15 million tonnes a year.[10] The question for economic efficiency is whether this reduction is worth the extra cost of recycling and thus makes the artificial demand creates by legislation worthwhile.

Wrecked automobiles gathered for smelting

Certain requirements must be met for recycling to be economically feasible and environmentally effective. These include an adequate source of recyclates, a system to extract those recyclates from the waste stream, a nearby factory capable of reprocessing the recyclates, and a potential demand for the recycled products. These last two requirements are often overlooked—without both an industrial market for production using the collected materials and a consumer market for the manufactured goods, recycling is incomplete and in fact only "collection".[5]

Free-market economist Julian Simon remarked "There are three ways society can organize waste disposal: (a) commanding, (b) guiding by tax and subsidy, and (c) leaving it to the individual and the market". These principles appear to divide economic thinkers today.[101]

Frank Ackerman favours a high level of government intervention to provide recycling services. He believes that recycling's benefit cannot be effectively quantified by traditional laissez-faire economics. Allen Hershkowitz supports intervention, saying that it is a public service equal to education and policing. He argues that manufacturers should shoulder more of the burden of waste disposal.[101]

Paul Calcott and Margaret Walls advocate the second option. A deposit refund scheme and a small refuse charge would encourage recycling but not at the expense of illegal dumping. Thomas C. Kinnaman concludes that a landfill tax would force consumers, companies and councils to recycle more.[101]

Most free-market thinkers detest subsidy and intervention, arguing that they waste resources. The general argument is that if cities charge the full cost of garbage collection, private companies can profitably recycle any materials for which the benefit of recycling exceeds the cost (e.g. aluminum[102]) and do not recycle other materials for which the benefit is less than the cost (e.g. glass[103]). Cities, on the other hand, often recycle even when they not only do not receive enough for the paper or plastic to pay for its collection, but must actually pay private recycling companies to take it off of their hands.[102] Terry Anderson and Donald Leal think that all recycling programmes should be privately operated, and therefore would only operate if the money saved by recycling exceeds its costs. Daniel K. Benjamin argues that it wastes people's resources and lowers the wealth of a population.[101] He notes that recycling can cost a city more than twice as much as landfills, that in the United States landfills are so heavily regulated that their pollution effects are negligible, and that the recycling process also generates pollution and uses energy, which may or may not be less than from virgin production.[104]

Trade in recyclates

[edit]

Certain countries trade in unprocessed recyclates. Some have complained that the ultimate fate of recyclates sold to another country is unknown and they may end up in landfills instead of being reprocessed. According to one report, in America, 50–80 percent of computers destined for recycling are actually not recycled.[105][106] There are reports of illegal-waste imports to China being dismantled and recycled solely for monetary gain, without consideration for workers' health or environmental damage. Although the Chinese government has banned these practices, it has not been able to eradicate them.[107] In 2008, the prices of recyclable waste plummeted before rebounding in 2009. Cardboard averaged about £53/tonne from 2004 to 2008, dropped to £19/tonne, and then went up to £59/tonne in May 2009. PET plastic averaged about £156/tonne, dropped to £75/tonne and then moved up to £195/tonne in May 2009.[108]

Certain regions have difficulty using or exporting as much of a material as they recycle. This problem is most prevalent with glass: both Britain and the U.S. import large quantities of wine bottled in green glass. Though much of this glass is sent to be recycled, outside the American Midwest there is not enough wine production to use all of the reprocessed material. The extra must be downcycled into building materials or re-inserted into the regular waste stream.[5][10]

Similarly, the northwestern United States has difficulty finding markets for recycled newspaper, given the large number of pulp mills in the region as well as the proximity to Asian markets. In other areas of the U.S., however, demand for used newsprint has seen wide fluctuation.[5]

In some U.S. states, a program called RecycleBank pays people to recycle, receiving money from local municipalities for the reduction in landfill space that must be purchased. It uses a single stream process in which all material is automatically sorted.[109]

Criticisms and responses

[edit]

Critics dispute the net economic and environmental benefits of recycling over its costs, and suggest that proponents of recycling often make matters worse and suffer from confirmation bias. Specifically, critics argue that the costs and energy used in collection and transportation detract from (and outweigh) the costs and energy saved in the production process; also that the jobs produced by the recycling industry can be a poor trade for the jobs lost in logging, mining, and other industries associated with production; and that materials such as paper pulp can only be recycled a few times before material degradation prevents further recycling.[110]

Journalist John Tierney notes that it is generally more expensive for municipalities to recycle waste from households than to send it to a landfill and that "recycling may be the most wasteful activity in modern America."[111]

Much of the difficulty inherent in recycling comes from the fact that most products are not designed with recycling in mind. The concept of sustainable design aims to solve this problem, and was laid out in the 2002 book Cradle to Cradle: Remaking the Way We Make Things by architect William McDonough and chemist Michael Braungart.[112] They suggest that every product (and all packaging it requires) should have a complete "closed-loop" cycle mapped out for each component—a way in which every component either returns to the natural ecosystem through biodegradation or is recycled indefinitely.[10][113]

Complete recycling is impossible from a practical standpoint. In summary, substitution and recycling strategies only delay the depletion of non-renewable stocks and therefore may buy time in the transition to true or strong sustainability, which ultimately is only guaranteed in an economy based on renewable resources.[114]: 21 

— M. H. Huesemann, 2003

While recycling diverts waste from entering directly into landfill sites, current recycling misses the dispersive components. Critics believe that complete recycling is impracticable as highly dispersed wastes become so diluted that the energy needed for their recovery becomes increasingly excessive.

As with environmental economics, care must be taken to ensure a complete view of the costs and benefits involved. For example, paperboard packaging for food products is more easily recycled than most plastic, but is heavier to ship and may result in more waste from spoilage.[115]

Energy and material flows

[edit]

Bales of crushed steel ready for transport to the smelter

The amount of energy saved through recycling depends upon the material being recycled and the type of energy accounting that is used. Correct accounting for this saved energy can be accomplished with life-cycle analysis using real energy values, and in addition, exergy, which is a measure of how much useful energy can be used. In general, it takes far less energy to produce a unit mass of recycled materials than it does to make the same mass of virgin materials.[116][117][118]

Some scholars use emergy (spelled with an m) analysis, for example, budgets for the amount of energy of one kind (exergy) that is required to make or transform things into another kind of product or service. Emergy calculations take into account economics that can alter pure physics-based results. Using emergy life-cycle analysis researchers have concluded that materials with large refining costs have the greatest potential for high recycle benefits. Moreover, the highest emergy efficiency accrues from systems geared toward material recycling, where materials are engineered to recycle back into their original form and purpose, followed by adaptive reuse systems where the materials are recycled into a different kind of product, and then by-product reuse systems where parts of the products are used to make an entirely different product.[119]

The Energy Information Administration (EIA) states on its website that "a paper mill uses 40 percent less energy to make paper from recycled paper than it does to make paper from fresh lumber."[120] Some critics argue that it takes more energy to produce recycled products than it does to dispose of them in traditional landfill methods, since the curbside collection of recyclables often requires a second waste truck. However, recycling proponents point out that a second timber or logging truck is eliminated when paper is collected for recycling, so the net energy consumption is the same. An emergy life-cycle analysis on recycling revealed that fly ash, aluminum, recycled concrete aggregate, recycled plastic, and steel yield higher efficiency ratios, whereas the recycling of lumber generates the lowest recycle benefit ratio. Hence, the specific nature of the recycling process, the methods used to analyse the process, and the products involved affect the energy savings budgets.[119]

It is difficult to determine the amount of energy consumed or produced in waste disposal processes in broader ecological terms, where causal relations dissipate into complex networks of material and energy flow.

[C]ities do not follow all the strategies of ecosystem development. Biogeochemical paths become fairly straight relative to wild ecosystems, with reduced recycling, resulting in large flows of waste and low total energy efficiencies. By contrast, in wild ecosystems, one population's wastes are another population's resources, and succession results in efficient exploitation of available resources. However, even modernized cities may still be in the earliest stages of a succession that may take centuries or millennia to complete.[121]: 720 

How much energy is used in recycling also depends on the type of material being recycled and the process used to do so. Aluminium is generally agreed to use far less energy when recycled rather than being produced from scratch. The EPA states that "recycling aluminum cans, for example, saves 95 percent of the energy required to make the same amount of aluminum from its virgin source, bauxite."[122][123] In 2009, more than half of all aluminium cans produced came from recycled aluminium.[124] Similarly, it has been estimated that new steel produced with recycled cans reduces greenhouse gas emissions by 75%.[125]

Every year, millions of tons of materials are being exploited from the earth's crust, and processed into consumer and capital goods. After decades to centuries, most of these materials are "lost". With the exception of some pieces of art or religious relics, they are no longer engaged in the consumption process. Where are they? Recycling is only an intermediate solution for such materials, although it does prolong the residence time in the anthroposphere. For thermodynamic reasons, however, recycling cannot prevent the final need for an ultimate sink.[126]: 1 

— P. H. Brunner

Economist Steven Landsburg has suggested that the sole benefit of reducing landfill space is trumped by the energy needed and resulting pollution from the recycling process.[127] Others, however, have calculated through life-cycle assessment that producing recycled paper uses less energy and water than harvesting, pulping, processing, and transporting virgin trees.[128] When less recycled paper is used, additional energy is needed to create and maintain farmed forests until these forests are as self-sustainable as virgin forests.

Other studies have shown that recycling in itself is inefficient to perform the "decoupling" of economic development from the depletion of non-renewable raw materials that is necessary for sustainable development.[129] The international transportation or recycle material flows through "... different trade networks of the three countries result in different flows, decay rates, and potential recycling returns".[130]: 1  As global consumption of a natural resources grows, their depletion is inevitable. The best recycling can do is to delay; complete closure of material loops to achieve 100 percent recycling of nonrenewables is impossible as micro-trace materials dissipate into the environment causing severe damage to the planet's ecosystems.[131][132][133] Historically, this was identified as the metabolic rift by Karl Marx, who identified the unequal exchange rate between energy and nutrients flowing from rural areas to feed urban cities that create effluent wastes degrading the planet's ecological capital, such as loss in soil nutrient production.[134][135] Energy conservation also leads to what is known as Jevon's paradox, where improvements in energy efficiency lowers the cost of production and leads to a rebound effect where rates of consumption and economic growth increases.[133][136]

This shop in New York only sells items recycled from demolished buildings.

Costs

[edit]

The amount of money actually saved through recycling depends on the efficiency of the recycling program used to do it. The Institute for Local Self-Reliance argues that the cost of recycling depends on various factors, such as landfill fees and the amount of disposal that the community recycles. It states that communities begin to save money when they treat recycling as a replacement for their traditional waste system rather than an add-on to it and by "redesigning their collection schedules and/or trucks".[137]

In some cases, the cost of recyclable materials also exceeds the cost of raw materials. Virgin plastic resin costs 40 percent less than recycled resin.[120] Additionally, a United States Environmental Protection Agency (EPA) study that tracked the price of clear glass from 15 July to 2 August 1991, found that the average cost per ton ranged from $40 to $60[138] while a USGS report shows that the cost per ton of raw silica sand from years 1993 to 1997 fell between $17.33 and $18.10.[139]

Comparing the market cost of recyclable material with the cost of new raw materials ignores economic externalities—the costs that are currently not counted by the market. Creating a new piece of plastic, for instance, may cause more pollution and be less sustainable than recycling a similar piece of plastic, but these factors are not counted in market cost. A life cycle assessment can be used to determine the levels of externalities and decide whether the recycling may be worthwhile despite unfavorable market costs. Alternatively, legal means (such as a carbon tax) can be used to bring externalities into the market, so that the market cost of the material becomes close to the true cost.

Working conditions

[edit]
Some people in Brazil earn their living by collecting and sorting garbage and selling them for recycling.

The recycling of waste electrical and electronic equipment can create a significant amount of pollution. This problem is specifically occurrent in India and China. Informal recycling in an underground economy of these countries has generated an environmental and health disaster. High levels of lead (Pb), polybrominated diphenylethers (PBDEs), polychlorinated dioxins and furans, as well as polybrominated dioxins and furans (PCDD/Fs and PBDD/Fs), concentrated in the air, bottom ash, dust, soil, water, and sediments in areas surrounding recycling sites.[140] These materials can make work sites harmful to the workers themselves and the surrounding environment.

Possible income loss and social costs

[edit]

In some countries, recycling is performed by the entrepreneurial poor such as the karung guni, zabbaleen, the rag-and-bone man, waste picker, and junk man. With the creation of large recycling organizations that may be profitable, either by law or economies of scale,[141][142] the poor are more likely to be driven out of the recycling and the remanufacturing job market. To compensate for this loss of income, a society may need to create additional forms of societal programs to help support the poor.[143] Like the parable of the broken window, there is a net loss to the poor and possibly the whole of a society to make recycling artificially profitable, e.g. through the law. However, in Brazil and Argentina, waste pickers/informal recyclers work alongside the authorities, in fully or semi-funded cooperatives, allowing informal recycling to be legitimized as a paid public sector job.[144]

Because the social support of a country is likely to be less than the loss of income to the poor undertaking recycling, there is a greater chance for the poor to come in conflict with the large recycling organizations.[145][146] This means fewer people can decide if certain waste is more economically reusable in its current form rather than being reprocessed. Contrasted to the recycling poor, the efficiency of their recycling may actually be higher for some materials because individuals have greater control over what is considered "waste".[143]

One labor-intensive underused waste is electronic and computer waste. Because this waste may still be functional and wanted mostly by those on lower incomes, who may sell or use it at a greater efficiency than large recyclers.

Some recycling advocates believe that laissez-faire individual-based recycling does not cover all of society's recycling needs. Thus, it does not negate the need for an organized recycling program.[143] Local government can consider the activities of the recycling poor as contributing to the ruining of property.

Public participation rates

[edit]
Single-stream recycling increases public participation rates, but requires additional sorting.
Better recycling is a priority in the European Union, especially in Central and Eastern Europe among respondents of the 2020-21 European Investment Bank Climate Survey.

Changes that have been demonstrated to increase recycling rates include:

In a study done by social psychologist Shawn Burn,[147] it was found that personal contact with individuals within a neighborhood is the most effective way to increase recycling within a community. In her study, she had 10 block leaders talk to their neighbors and persuade them to recycle. A comparison group was sent fliers promoting recycling. It was found that the neighbors that were personally contacted by their block leaders recycled much more than the group without personal contact. As a result of this study, Shawn Burn believes that personal contact within a small group of people is an important factor in encouraging recycling. Another study done by Stuart Oskamp[148] examines the effect of neighbors and friends on recycling. It was found in his studies that people who had friends and neighbors that recycled were much more likely to also recycle than those who did not have friends and neighbors that recycled.

Many schools have created recycling awareness clubs in order to give young students an insight on recycling. These schools believe that the clubs actually encourage students to not only recycle at school but at home as well.

Recycling of metals varies extremely by type. Titanium and lead have an extremely high recycling rates of over 90%. Copper and cobalt have high rates of recycling around 75%. Only about half of aluminum is recycled. Most of the remaining metals have recycling rates of below 35%, while 34 types of metals have recycling rates of under 1%.[149]

"Between 1960 and 2000, the world production of plastic resins increased 25 times its original amount, while recovery of the material remained below 5 percent."[150]: 131  Many studies have addressed recycling behaviour and strategies to encourage community involvement in recycling programs. It has been argued[151] that recycling behavior is not natural because it requires a focus and appreciation for long-term planning, whereas humans have evolved to be sensitive to short-term survival goals; and that to overcome this innate predisposition, the best solution would be to use social pressure to compel participation in recycling programs. However, recent studies have concluded that social pressure does not work in this context.[152] One reason for this is that social pressure functions well in small group sizes of 50 to 150 individuals (common to nomadic hunter–gatherer peoples) but not in communities numbering in the millions, as we see today. Another reason is that individual recycling does not take place in the public view.

Following the increasing popularity of recycling collection being sent to the same landfills as trash, some people kept on putting recyclables on the recyclables bin.[153]

Recycling in art

[edit]
A survey showing the share of firms taking action by recycling and waste minimisation
Uniseafish – made of recycled aluminum beer cans

Art objects are more and more often made from recycled material.

Embracing a circular economy through advanced sorting technologies

[edit]

By extending the lifespan of goods, parts, and materials, a circular economy seeks to minimize waste and maximize resource utilization.[154] Advanced sorting techniques like optical and robotic sorting may separate and recover valuable materials from waste streams, lowering the requirement for virgin resources and accelerating the shift to a circular economy.

Community engagement, such as education and awareness campaigns, may support the acceptance of recycling and reuse programs and encourage the usage of sustainable practices. One can lessen our influence on the environment, save natural resources, and generate economic possibilities by adopting a circular economy using cutting-edge sorting technology and community engagement. According to Melati et al.,[155] to successfully transition to a circular economy, legislative and regulatory frameworks must encourage sustainable practices while addressing possible obstacles and difficulties in putting these ideas into action.

See also

[edit]

References

[edit]
  1. ^ Villalba, G; Segarra, M; Fernández, A.I; Chimenos, J.M; Espiell, F (December 2002). "A proposal for quantifying the recyclability of materials". Resources, Conservation and Recycling. 37 (1): 39–53. Bibcode:2002RCR....37...39V. doi:10.1016/S0921-3449(02)00056-3. ISSN 0921-3449.
  2. ^ Lienig, Jens; Bruemmer, Hans (2017). "Recycling Requirements and Design for Environmental Compliance". Fundamentals of Electronic Systems Design. pp. 193–218. doi:10.1007/978-3-319-55840-0_7. ISBN 978-3-319-55839-4.
  3. ^ European Commission (2014). "EU Waste Legislation". Archived from the original on 12 March 2014.
  4. ^ Geissdoerfer, Martin; Savaget, Paulo; Bocken, Nancy M.P.; Hultink, Erik Jan (1 February 2017). "The Circular Economy – A new sustainability paradigm?" (PDF). Journal of Cleaner Production. 143: 757–768. Bibcode:2017JCPro.143..757G. doi:10.1016/j.jclepro.2016.12.048. S2CID 157449142. Archived (PDF) from the original on 31 March 2021. Retrieved 8 April 2021.
  5. ^ a b c d e f g h i j k l m n o p q r s t League of Women Voters (1993). The Garbage Primer. New York: Lyons & Burford. pp. 35–72. ISBN 978-1-55821-250-3.
  6. ^ a b Lilly Sedaghat (4 April 2018). "7 Things You Didn't Know About Plastic (and Recycling)". National Geographic. Archived from the original on 25 January 2020. Retrieved 8 February 2023.
  7. ^ Aspden, Peter (9 December 2022). "Recycling Beauty, Prada Foundation — what the Romans did for us and what we did to them". Financial Times. Retrieved 18 May 2023.
  8. ^ a b Black Dog Publishing (2006). Recycle : a source book. London, UK: Black Dog Publishing. ISBN 978-1-904772-36-1.
  9. ^ Wood, J.R. (2022). "Approaches to interrogate the erased histories of recycled archaeological objects". Archaeometry. 64: 187–205. doi:10.1111/arcm.12756. Archived from the original on 20 October 2022. Retrieved 13 July 2022.
  10. ^ a b c d e f g h i j k l m n "The truth about recycling". The Economist. 7 June 2007. Archived from the original on 25 January 2009. Retrieved 8 September 2008.
  11. ^ Cleveland, Cutler J.; Morris, Christopher G. (15 November 2013). Handbook of Energy: Chronologies, Top Ten Lists, and Word Clouds. Elsevier. p. 461. ISBN 978-0-12-417019-3. Archived from the original on 20 February 2023. Retrieved 19 November 2020.
  12. ^ Dadd-Redalia, Debra (1 January 1994). Sustaining the earth: choosing consumer products that are safe for you, your family, and the earth. New York: Hearst Books. p. 103. ISBN 978-0-688-12335-2. OCLC 29702410.
  13. ^ Nongpluh, Yoofisaca Syngkon. (2013). Know all about : reduce, reuse, recycle. Noronha, Guy C.,, Energy and Resources Institute. New Delhi. ISBN 978-1-4619-4003-6. OCLC 858862026.{{cite book}}: CS1 maint: location missing publisher (link)
  14. ^ Carl A. Zimring (2005). Cash for Your Trash: Scrap Recycling in America. New Brunswick, NJ: Rutgers University Press. ISBN 978-0-8135-4694-0.
  15. ^ "sd_shire" (PDF). Archived from the original (PDF) on 14 October 2012. Retrieved 27 October 2012.
  16. ^ Rethinking economic incentives for separate collection Archived 19 December 2019 at the Wayback Machine. Zero Waste Europe & Reloop Platform, 2017
  17. ^ "Report: "On the Making of Silk Purses from Sows' Ears," 1921: Exhibits: Institute Archives & Special Collections: MIT". mit.edu. Archived from the original on 3 June 2016.
  18. ^ a b c "The War Episode 2: Rationing and Recycling". Public Broadcasting System. 2007. Archived from the original on 23 February 2011. Retrieved 7 July 2016.
  19. ^ "Out of the Garbage-Pail into the Fire: fuel bricks now added to the list of things salvaged by science from the nation's waste". Popular Science monthly. Bonnier Corporation. February 1919. pp. 50–51. Archived from the original on 20 February 2023.
  20. ^ "Recycling through the ages: 1970s". Plastic Expert. 30 July 2014. Archived from the original on 16 May 2019. Retrieved 7 March 2015.
  21. ^ a b c d e "The price of virtue". The Economist. 7 June 2007. Archived from the original on 16 September 2009. Retrieved 8 September 2008.
  22. ^ "CRC History". Computer Recycling Center. Archived from the original on 31 March 2019. Retrieved 29 July 2015.
  23. ^ "About us". Swico Recycling. Archived from the original on 31 March 2019. Retrieved 29 July 2015.
  24. ^ "Where does e-waste end up?". Greenpeace. 24 February 2009. Archived from the original on 22 January 2018. Retrieved 29 July 2015.
  25. ^ a b Kinver, Mark (3 July 2007). "Mechanics of e-waste recycling". BBC. Archived from the original on 3 May 2009. Retrieved 29 July 2015.
  26. ^ "Bulgaria opens largest WEEE recycling factory in Eastern Europe". www.ask-eu.com. WtERT Germany GmbH. 12 July 2010. Archived from the original on 14 September 2011. Retrieved 29 July 2015.
    "EnvironCom opens largest WEEE recycling facility". www.greenwisebusiness.co.uk. The Sixty Mile Publishing Company. 4 March 2010. Archived from the original on 15 May 2016.
    Goodman, Peter S. (11 January 2012). "Where Gadgets Go To Die: E-Waste Recycler Opens New Plant in Las Vegas". Huffington Post. Archived from the original on 8 January 2017. Retrieved 29 July 2015.[unreliable source?]
    Moses, Asher (19 November 2008). "New plant tackles our electronic leftovers". Sydney Morning Herald. Archived from the original on 26 August 2017. Retrieved 29 July 2015.
  27. ^ European Commission, Recycling Archived 3 February 2014 at the Wayback Machine.
  28. ^ "Recycling rates in Europe". European Environment Agency. Archived from the original on 8 February 2023. Retrieved 8 February 2023.
  29. ^ "Recycling of municipal waste". European Environment Agency. Archived from the original on 7 September 2018. Retrieved 8 February 2023.
  30. ^ Paben, Jared (7 February 2017). "Germany's recycling rate continues to lead Europe". Resource Recycling News. Archived from the original on 8 February 2023. Retrieved 8 February 2023.
  31. ^ United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313)
  32. ^ Hook, Leslie; Reed, John (24 October 2018). "Why the world's recycling system stopped working". Financial Times. Archived from the original on 25 October 2018. Retrieved 25 October 2018.
  33. ^ "Electronic waste (e-waste)". World Health Organization (WHO). 18 October 2023. Retrieved 11 December 2023.
  34. ^ Patil T., Rebaioli L., Fassi I., "Cyber-physical systems for end-of-life management of printed circuit boards and mechatronics products in home automation: A review" Sustainable Materials and Technologies, 2022.
  35. ^ Solomon Gabasiane, Tlotlo; Danha, Gwiranai; A. Mamvura, Tirivaviri; et al. (2021). Dang, Prof. Dr. Jie; Li, Dr. Jichao; Lv, Prof. Dr. Xuewei; Yuan, Prof. Dr. Shuang; Leszczyńska-Sejda, Dr. Katarzyna (eds.). "Environmental and Socioeconomic Impact of Copper Slag—A Review". Crystals. 11 (12): 1504. doi:10.3390/cryst11121504. This article incorporates text from this source, which is available under the CC BY 4.0 license.
  36. ^ Edraki, Mansour; Baumgarti, Thomas; Manlapig, Emmanuel; Bradshaw, Dee; M. Franks, Daniel; J. Moran, Chris (December 2014). "Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches". Journal of Cleaner Production. 84: 411–420. Bibcode:2014JCPro..84..411E. doi:10.1016/j.jclepro.2014.04.079 – via Elsevier Science Direct.
  37. ^ Shen, Huiting; Forssberg (2003). "An overview of recovery of metals from slags". Waste Management. 23 (10): 933–949. Bibcode:2003WaMan..23..933S. doi:10.1016/S0956-053X(02)00164-2. PMID 14614927.
  38. ^ Mahar, Amanullah; Wang, Ping; Ali, Amjad; Kumar Awasthi, Mukesh; Hussain Lahori, Altaf; Wang, Quan; Li, Ronghua; Zhang, Zengqiang (April 2016). "Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review". Ecotoxicology and Environmental Safety. 126: 111–121. Bibcode:2016EcoES.126..111M. doi:10.1016/j.ecoenv.2015.12.023. PMID 26741880 – via Elsevier Science Direct.
  39. ^ Khalid, Sana; Shahid, Muhammad; Khan Niazi, Nabeel; Murtaza, Behzad; Bibi, Irshad; Dumat, Camille (November 2017). "A comparison of technologies for remediation of heavy metal contaminated soils". Journal of Geochemical Exploration. 182 (Part B): 247–268. Bibcode:2017JCExp.182..247K. doi:10.1016/j.gexplo.2016.11.021.
  40. ^ "Slag Recycling". Recovery Worldwide.
  41. ^ Landsburg, Steven E. (2012). "Why I Am Not An Environmentalist". The Armchair Economist: Economics and Everyday Life. Simon and Schuster. pp. 279–290. ISBN 978-1-4516-5173-7. Archived from the original on 20 February 2023. Retrieved 10 April 2021.
  42. ^ Steven E. Landsburg (May 2012). The Armchair Economist: Economics and Everyday Life. Simon and Schuster. p. 98. ISBN 978-1-4516-5173-7. Archived from the original on 20 February 2023. Retrieved 10 April 2021.
  43. ^ Baird, Colin (2004). Environmental Chemistry (3rd ed.). W. H. Freeman. ISBN 0-7167-4877-0.[page needed]
  44. ^ de Jesus, Simeon (1975). "How to make paper in the tropics". Unasylva. 27 (3). Archived from the original on 1 October 2018. Retrieved 31 July 2015.
  45. ^ UNFCCC (2007). "Investment and financial flows to address climate change" (PDF). unfccc.int. UNFCCC. p. 81. Archived (PDF) from the original on 10 May 2008. Retrieved 7 July 2016.
  46. ^ Towie, Narelle (28 February 2019). "Burning issue: are waste-to-energy plants a good idea?". The Guardian. Archived from the original on 4 February 2020. Retrieved 23 December 2019.
  47. ^ "A Beverage Container Deposit Law for Hawaii". www.opala.org. City & County of Honolulu, Department of Environmental Services. October 2002. Archived from the original on 22 August 2021. Retrieved 31 July 2015.
  48. ^ European Council. "The Producer Responsibility Principle of the WEEE Directive" (PDF). Archived (PDF) from the original on 5 March 2016. Retrieved 7 July 2016.
  49. ^ "Regulatory Policy Center — Property Matters — James V. DeLong". Archived from the original on 14 April 2008. Retrieved 28 February 2008.
  50. ^ Web-Dictionary.com (2013). "Recyclate". Archived from the original on 7 April 2014.{{cite web}}: CS1 maint: numeric names: authors list (link)
  51. ^ Freudenrich, C. (2014) (14 December 2007). "How Plastics Work". Archived from the original on 4 December 2020. Retrieved 7 July 2016.{{cite web}}: CS1 maint: numeric names: authors list (link)
  52. ^ a b c d e f "Quality Action Plan Proposals to Promote High Quality Recycling of Dry Recyclates" (PDF). DEFRA. 2013. Archived (PDF) from the original on 10 February 2017. Retrieved 4 November 2016.
  53. ^ "How to Recycle Tin or Steel Cans". Earth911. Archived from the original on 31 March 2019. Retrieved 8 February 2023.
  54. ^ a b c d e "Recyclate Quality Action Plan – Consultation Paper". The Scottish Government. 5 October 2012. Archived from the original on 2 February 2013.
  55. ^ Waldrop, M. Mitchell (1 October 2020). "One bin future: How mixing trash and recycling can work". Knowable Magazine. doi:10.1146/knowable-092920-3. S2CID 224860591. Archived from the original on 18 October 2020. Retrieved 12 October 2020.
  56. ^ "The State of Multi-Tenant Recycling in Oregon" (PDF). April 2018. Archived (PDF) from the original on 26 May 2019. Retrieved 26 May 2019.
  57. ^ Baechler, Christian; DeVuono, Matthew; Pearce, Joshua M. (2013). "Distributed Recycling of Waste Polymer into RepRap Feedstock". Rapid Prototyping Journal. 19 (2): 118–125. doi:10.1108/13552541311302978. S2CID 15980607. Archived from the original on 2 December 2021. Retrieved 29 December 2017.
  58. ^ Kreiger, M.; Anzalone, G. C.; Mulder, M. L.; Glover, A.; Pearce, J. M. (2013). "Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas". MRS Online Proceedings Library. 1492: 91–96. doi:10.1557/opl.2013.258. ISSN 0272-9172. S2CID 18303920. Archived from the original on 8 February 2023. Retrieved 8 February 2023.
  59. ^ Kreiger, M.A.; Mulder, M.L.; Glover, A.G.; Pearce, J. M. (2014). "Life Cycle Analysis of Distributed Recycling of Post-consumer High Density Polyethylene for 3-D Printing Filament". Journal of Cleaner Production. 70: 90–96. Bibcode:2014JCPro..70...90K. doi:10.1016/j.jclepro.2014.02.009. Archived from the original on 2 December 2021. Retrieved 5 September 2014.
  60. ^ Insider Business (12 October 2021). Young Inventor Makes Bricks From Plastic Trash. World Wide Waste. Retrieved 26 February 2023 – via YouTube.
  61. ^ Kumar, Rishabh; Kumar, Mohit; Kumar, Inder; Srivastava, Deepa (2021). "A review on utilization of plastic waste materials in bricks manufacturing process". Materials Today: Proceedings. 46: 6775–6780. doi:10.1016/j.matpr.2021.04.337. S2CID 236599187.
  62. ^ Chauhan, S S; Kumar, Bhushan; Singh, Prem Shankar; Khan, Abuzaid; Goyal, Hritik; Goyal, Shivank (1 November 2019). "Fabrication and Testing of Plastic Sand Bricks". IOP Conference Series: Materials Science and Engineering. 691 (1): 012083. Bibcode:2019MS&E..691a2083C. doi:10.1088/1757-899x/691/1/012083. ISSN 1757-899X. S2CID 212846044.
  63. ^ Tsala-Mbala, Celestin; Hayibo, Koami Soulemane; Meyer, Theresa K.; Couao-Zotti, Nadine; Cairns, Paul; Pearce, Joshua M. (October 2022). "Technical and Economic Viability of Distributed Recycling of Low-Density Polyethylene Water Sachets into Waste Composite Pavement Blocks". Journal of Composites Science. 6 (10): 289. doi:10.3390/jcs6100289. ISSN 2504-477X.
  64. ^ Samson, Sam (19 February 2023). "Single-use face masks get new life thanks to Regina engineer". CBC.
  65. ^ "How recycling robots have spread across North America". Resource Recycling News. 7 May 2019. Archived from the original on 8 May 2019. Retrieved 29 August 2019.
  66. ^ "AMP Robotics announces largest deployment of AI-guided recycling robots". The Robot Report. 27 June 2019. Archived from the original on 16 July 2019. Retrieved 29 August 2019.
  67. ^ None, None (10 August 2015). "Common Recyclable Materials" (PDF). United States Environmental Protection Agency. Archived (PDF) from the original on 24 April 2013. Retrieved 2 February 2013.
  68. ^ "Recycling Without Sorting: Engineers Create Recycling Plant That Removes The Need To Sort". ScienceDaily. 1 October 2007. Archived from the original on 31 August 2008.
  69. ^ "Sortation by the numbers". Resource Recycling News. 1 October 2018. Archived from the original on 29 August 2019. Retrieved 29 August 2019.
  70. ^ Goodship, Vannessa (2007). Introduction to Plastics Recycling. iSmithers Rapra Publishing. ISBN 978-1-84735-078-7.[page needed]
  71. ^ None, None. "What Happens to My Recycling?". 1coast.com.au. Archived from the original on 11 August 2014. Retrieved 21 July 2014.
  72. ^ "Best Recycling Programs in the US & Around the World". cmfg.com. Archived from the original on 12 May 2015. Retrieved 1 February 2013.
  73. ^ "Mayor Lee Announces San Francisco Reaches 80 Percent Landfill Waste Diversion, Leads All Cities in North America". San Francisco Department of the Environment. 5 October 2012. Archived from the original on 24 June 2014. Retrieved 9 June 2014.
  74. ^ "UK statistics on waste – 2010 to 2012" (PDF). UK Government. 25 September 2014. p. 2 and 6. Archived from the original (PDF) on 3 December 2017. Retrieved 3 December 2017.
  75. ^ Polymer modified cements and repair mortars. Daniels LJ, PhD thesis Lancaster University 1992
  76. ^ a b "Publications – International Resource Panel". unep.org. Archived from the original on 11 November 2012. Retrieved 7 July 2016.
  77. ^ "How Urban Mining Works". Archived from the original on 11 July 2010. Retrieved 9 August 2013.
  78. ^ McDonald, N. C.; Pearce, J. M. (2010). "Producer Responsibility and Recycling Solar Photovoltaic Modules" (PDF). Energy Policy. 38 (11): 7041–7047. Bibcode:2010EnPol..38.7041M. doi:10.1016/j.enpol.2010.07.023. hdl:1974/6122. Archived (PDF) from the original on 1 October 2019. Retrieved 18 August 2019.
  79. ^ Hogye, Thomas Q. "The Anatomy of a Computer Recycling Process" (PDF). California Department of Resources Recycling and Recovery. Archived from the original (PDF) on 23 September 2015. Retrieved 13 October 2014.
  80. ^ "Sweeep Kuusakoski – Resources – BBC Documentary". www.sweeepkuusakoski.co.uk. Archived from the original on 30 November 2020. Retrieved 31 July 2015.
  81. ^ "Sweeep Kuusakoski – Glass Recycling – BBC filming of CRT furnace". www.sweeepkuusakoski.co.uk. Archived from the original on 30 November 2020. Retrieved 31 July 2015.
  82. ^ a b The dark side of green energies documentary
  83. ^ Layton, Julia (22 April 2009). ""Eco"-plastic: recycled plastic". Science.howstuffworks.com. Archived from the original on 27 May 2020. Retrieved 9 June 2014.
  84. ^ Francisco José Gomes da Silva; Ronny Miguel Gouveia (18 July 2019). Cleaner Production: Toward a Better Future. Springer. p. 180. ISBN 978-3-03-023165-1. Archived from the original on 20 February 2023. Retrieved 30 August 2022.
  85. ^ Timothy E. Long; John Scheirs (1 September 2005). Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. John Wiley & Sons. p. 459. ISBN 978-0-470-09067-1. Archived from the original on 20 February 2023. Retrieved 30 August 2022.
  86. ^ Werner, Debra (21 October 2019). "Made in Space to launch commercial recycler to space station". SpaceNews. Archived from the original on 20 February 2023. Retrieved 22 October 2019.
  87. ^ Siegel, R. P. (7 August 2019). "Eastman advances two chemical recycling options". GreenBiz. Archived from the original on 29 August 2019. Retrieved 29 August 2019.
  88. ^ "RESEM A Leading Pyrolysis Plant Manufacturer". RESEM Pyrolysis Plant. Archived from the original on 18 February 2013. Retrieved 20 August 2012.
  89. ^ Plastic Recycling codes Archived 21 July 2011 at the Wayback Machine, American Chemistry
  90. ^ About resin identification codes Archived 19 October 2010 at the Wayback Machine American Chemistry
  91. ^ "Recycling Symbols on Plastics – What Do Recycling Codes on Plastics Mean". The Daily Green. 25 November 2008. Archived from the original on 24 August 2013. Retrieved 29 February 2012.
  92. ^ Unless otherwise indicated, this data is taken from The League of Women Voters (1993). The Garbage Primer. New York: Lyons & Burford. pp. 35–72. ISBN 978-1-55821-250-3., which attributes, "Garbage Solutions: A Public Officials Guide to Recycling and Alternative Solid Waste Management Technologies, as cited in Energy Savings from Recycling, January/February 1989; and Worldwatch 76 Mining Urban Wastes: The Potential for Recycling, April 1987."
  93. ^ "Recycling metals — aluminium and steel". Archived from the original on 16 October 2007. Retrieved 1 November 2007.
  94. ^ "UCO: Recycling". Archived from the original on 12 March 2016. Retrieved 22 October 2015.
  95. ^ "From Waste to Jobs: What Achieving 75 Percent Recycling Means for California" (PDF). March 2014. p. 2. Archived (PDF) from the original on 30 March 2018. Retrieved 4 April 2018.
  96. ^ "Recycling Benefits to the Economy". all-recycling-facts.com. Archived from the original on 24 February 2021. Retrieved 1 February 2013.
  97. ^ Daniel K. Benjamin (2010). "Recycling myths revisited". Archived from the original on 18 May 2015. Retrieved 19 January 2021.
  98. ^ "A Recycling Revolution". recycling-revolution.com. Archived from the original on 15 November 2020. Retrieved 1 February 2013.
  99. ^ Lavee, Doron (26 November 2007). "Is Municipal Solid Waste Recycling Economically Efficient?". Environmental Management. 40 (6): 926–943. Bibcode:2007EnMan..40..926L. doi:10.1007/s00267-007-9000-7. PMID 17687596. S2CID 40085245.
  100. ^ Vigso, Dorte (2004). "Deposits on single use containers — a social cost–benefit analysis of the Danish deposit system for single use drink containers". Waste Management & Research. 22 (6): 477–87. Bibcode:2004WMR....22..477V. doi:10.1177/0734242X04049252. PMID 15666450. S2CID 13596709.
  101. ^ a b c d Gunter, Matthew (1 January 2007). "Do Economists Reach a Conclusion on Household and Municipal Recycling?". Econ Journal Watch. 4 (1): 83–111. Archived from the original on 11 December 2015. Alt URL Archived 15 May 2019 at the Wayback Machine
  102. ^ a b Howard Husock (23 June 2020). "The Declining Case for Municipal Recycling". Foundation for Economic Education. Archived from the original on 2 December 2020. Retrieved 11 December 2020.
  103. ^ Serena Ng and Angela Chen (29 April 2015). "Unprofitable Recycling Weighs On Waste Management". Wall Street Journal.[permanent dead link]
  104. ^ Daniel K. Benjamin (2010). "Recycling and waste have $6.7 billion economic impact in Ohio" (PDF). Archived (PDF) from the original on 15 February 2017. Retrieved 11 December 2020.
  105. ^ "Much toxic computer waste lands in Third World". USA Today. Associated Press. 25 February 2002. Archived from the original on 13 September 2007.
  106. ^ Gough, Neil (11 March 2002). "Garbage In, Garbage Out". Time Magazine. Archived from the original on 9 November 2003.
  107. ^ Illegal dumping and damage to health and environment. CBC. Archived from the original on 9 November 2012.
  108. ^ Hogg, Max (15 May 2009). "Waste outshines gold as prices surge". Financial Times. Archived from the original on 8 February 2023. Retrieved 8 February 2023.
  109. ^ Desimone, Bonnie (21 February 2006). "Rewarding Recyclers, and Finding Gold in the Garbage". The New York Times. Archived from the original on 28 June 2015. Retrieved 12 February 2017.
  110. ^ Lynn R. Kahle; Eda Gurel-Atay, eds. (2014). Communicating Sustainability for the Green Economy. New York: M.E. Sharpe. ISBN 978-0-7656-3680-5.
  111. ^ Tierney, John (30 June 1996). "Recycling is Garbage". The New York Times. Archived from the original on 30 January 2023. Retrieved 30 January 2023.
  112. ^ Afterlife: An Essential Guide To Design For Disassembly, by Alex Diener
  113. ^ "Fact Sheets on Designing for the Disassembly and Deconstruction of Buildings". epa.gov. EPA. 14 March 2016. Archived from the original on 6 March 2019. Retrieved 12 March 2019.
  114. ^ Huesemann, Michael H. (2003). "The limits of technological solutions to sustainable development". Clean Technologies and Environmental Policy. 5 (1): 21–34. Bibcode:2003CTEP....5...21H. doi:10.1007/s10098-002-0173-8. S2CID 55193459.
  115. ^ Tierney, John (30 June 1996). "Recycling Is Garbage". The New York Times. p. 3. Archived from the original on 6 December 2008. Retrieved 28 February 2008.
  116. ^ Morris, Jeffrey (1 July 2005). "Comparative LCAs for Curbside Recycling Versus Either Landfilling or Incineration with Energy Recovery (12 pp)". The International Journal of Life Cycle Assessment. 10 (4): 273–284. Bibcode:2005IJLCA..10..273M. doi:10.1065/lca2004.09.180.10. S2CID 110948339.
  117. ^ Oskamp, Stuart (1995). "Resource Conservation and Recycling: Behavior and Policy". Journal of Social Issues. 51 (4): 157–177. doi:10.1111/j.1540-4560.1995.tb01353.x.
  118. ^ Pimenteira, C.A.P.; Pereira, A.S.; Oliveira, L.B.; Rosa, L.P.; Reis, M.M.; Henriques, R.M. (2004). "Energy conservation and CO2 emission reductions due to recycling in Brazil". Waste Management. 24 (9): 889–897. Bibcode:2004WaMan..24..889P. doi:10.1016/j.wasman.2004.07.001. PMID 15504666.
  119. ^ a b Brown, M.T.; Buranakarn, Vorasun (2003). "Emergy indices and ratios for sustainable material cycles and recycle options". Resources, Conservation and Recycling. 38 (1): 1–22. Bibcode:2003RCR....38....1B. doi:10.1016/S0921-3449(02)00093-9.
  120. ^ a b "Recycling paper and glass", Energy Kid's Page, U.S. Energy Information Administration, archived from the original on 25 October 2008
  121. ^ Decker, Ethan H.; Elliott, Scott; Smith, Felisa A.; Blake, Donald R.; Rowland, F. Sherwood (November 2000). "Energy and Material flow through the urban Ecosystem". Annual Review of Energy and the Environment. 25 (1): 685–740. CiteSeerX 10.1.1.582.2325. doi:10.1146/annurev.energy.25.1.685. OCLC 42674488.
  122. ^ "How does recycling save energy?". Municipal Solid Waste: Frequently Asked Questions about Recycling and Waste Management. Environmental Protection Agency. Archived from the original on 27 September 2006.
  123. ^ Margolis, Nancy (July 1997). "Energy and Environmental Profile of the U.S. Aluminum Industry" (PDF). US Department of Energy. Archived from the original (PDF) on 11 August 2011.
  124. ^ Lerche, Jacqueline (2011). "The Recycling of Aluminum Cans Versus Plastic". National Geographic Green Living. Demand Media. Archived from the original on 26 October 2011.
  125. ^ "By the Numbers". Can Manufacturers Institute. Archived from the original on 19 August 2019.
  126. ^ Brunner, P. H. (1999). "In search of the final sink". Environ. Sci. & Pollut. Res. 6 (1): 1. Bibcode:1999ESPR....6....1B. doi:10.1007/bf02987111. PMID 19005854. S2CID 46384723.
  127. ^ Landsburg, Steven E. The Armchair Economist. p. 86.
  128. ^ Selke 116[full citation needed]
  129. ^ Grosse, François; Mainguy, Gaëll (2010). "Is recycling 'part of the solution'? The role of recycling in an expanding society and a world of finite resources". S.A.P.I.EN.S. 3 (1): 1–17. Archived from the original on 5 April 2010. Retrieved 15 October 2010.
  130. ^ Sahni, S.; Gutowski, T. G. (2011). "Your scrap, my scrap! The flow of scrap materials through international trade" (PDF). IEEE International Symposium on Sustainable Systems and Technology (ISSST). pp. 1–6. doi:10.1109/ISSST.2011.5936853. ISBN 978-1-61284-394-0. S2CID 2435609. Archived (PDF) from the original on 17 December 2020. Retrieved 1 March 2012.
  131. ^ Lehmann, Steffen (15 March 2011). "Resource Recovery and Materials Flow in the City: Zero Waste and Sustainable Consumption as Paradigms in Urban Development". Sustainable Development Law & Policy. 11 (1). Archived from the original on 25 June 2021. Retrieved 8 April 2021.
  132. ^ Zaman, A. U.; Lehmann, S. (2011). "Challenges and opportunities in transforming a city into a 'Zero Waste City'". Challenges. 2 (4): 73–93. doi:10.3390/challe2040073.
  133. ^ a b Huesemann, M.; Huesemann, J. (2011). Techno-fix: Why Technology Won't Save Us or the Environment. New Society Publishers. p. 464. ISBN 978-0-86571-704-6. Archived from the original on 20 February 2023. Retrieved 7 July 2016.
  134. ^ Clark, Brett; Foster, John Bellamy (2009). "Ecological Imperialism and the Global Metabolic Rift: Unequal Exchange and the Guano/Nitrates Trade". International Journal of Comparative Sociology. 50 (3–4): 311–334. doi:10.1177/0020715209105144. S2CID 154627746.
  135. ^ Foster, John Bellamy; Clark, Brett (2011). The Ecological Rift: Capitalisms War on the Earth. Monthly Review Press. p. 544. ISBN 978-1-58367-218-1. Archived from the original on 20 February 2023.
  136. ^ Alcott, Blake (2005). "Jevons' paradox". Ecological Economics. 54 (1): 9–21. Bibcode:2005EcoEc..54....9A. doi:10.1016/j.ecolecon.2005.03.020. hdl:1942/22574.
  137. ^ "The Five Most Dangerous Myths About Recycling". Institute for Local Self-Reliance. 14 September 1996. Archived from the original on 29 May 2009. Retrieved 8 February 2023.
  138. ^ "Markets for Recovered Glass". National Service Center for Environmental Publications. US Environmental Protection Agency. December 1992. Archived from the original on 8 February 2023.
  139. ^ Bolen, Wallace P. (January 1998). "Sand and Gravel (Industrial)" (PDF). In National Minerals Information Center (ed.). Mineral Commodity Summaries. Silica Statistics and Information. U.S. Geological Survey. pp. 146–147. Archived (PDF) from the original on 29 September 2006. Retrieved 7 September 2023.
  140. ^ Sepúlveda, Alejandra; Schluep, Mathias; Renaud, Fabrice G.; Streicher, Martin; Kuehr, Ruediger; Hagelüken, Christian; Gerecke, Andreas C. (2010). "A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India". Environmental Impact Assessment Review. 30 (1): 28–41. Bibcode:2010EIARv..30...28S. doi:10.1016/j.eiar.2009.04.001.
  141. ^ "Too Good To Throw Away – Appendix A". NRDC. 30 June 1996. Archived from the original on 24 January 2010. Retrieved 6 November 2012.
  142. ^ "Mission Police Station" (PDF). Archived from the original (PDF) on 13 May 2012.
  143. ^ a b c PBS NewsHour, 16 February 2010. Report on the Zabaleen
  144. ^ Medina, Martin (2000). "Scavenger cooperatives in Asia and Latin America". Resources, Conservation and Recycling. 31 (1): 51–69. Bibcode:2000RCR....31...51M. CiteSeerX 10.1.1.579.6981. doi:10.1016/s0921-3449(00)00071-9.
  145. ^ "The News-Herald – Scrap metal a steal". Zwire.com. Retrieved 6 November 2012.[permanent dead link]
  146. ^ "Raids on Recycling Bins Costly To Bay Area". NPR. 19 July 2008. Archived from the original on 11 August 2013. Retrieved 6 November 2012.
  147. ^ Burn, Shawn (2006). "Social Psychology and the Stimulation of Recycling Behaviors: The Block Leader Approach". Journal of Applied Social Psychology. 21 (8): 611–629. CiteSeerX 10.1.1.462.1934. doi:10.1111/j.1559-1816.1991.tb00539.x.
  148. ^ Oskamp, Stuart (1995). "Resource Conservation and Recycling: Behavior and Policy". Journal of Social Issues. 51 (4): 157–177. doi:10.1111/j.1540-4560.1995.tb01353.x.
  149. ^ Recycling Rates of Metals: A status report. United Nations Environment Programme. 2011. ISBN 978-92-807-3161-3. Archived from the original on 10 January 2021. Retrieved 10 April 2021.
  150. ^ Moore, C. J. (2008). "Synthetic polymers in the marine environment: A rapidly increasing, long-term threat". Environmental Research. 108 (2): 131–139. Bibcode:2008ER....108..131M. doi:10.1016/j.envres.2008.07.025. PMID 18949831. S2CID 26874262.
  151. ^ Schackelford, T.K. (2006). "Recycling, evolution and the structure of human personality". Personality and Individual Differences. 41 (8): 1551–1556. doi:10.1016/j.paid.2006.07.020.
  152. ^ Pratarelli, Marc E. (4 February 2010). "Social pressure and recycling: a brief review, commentary and extensions". S.A.P.I.EN.S. 3 (1). Archived from the original on 20 February 2023. Retrieved 6 November 2012.
  153. ^ Chaudhuri, Saabira (19 December 2019). "Recycling Rethink: What to Do With Trash Now That China Won't Take It". The Wall Street Journal. Archived from the original on 21 December 2019. Retrieved 21 December 2019.
  154. ^ Negrete-Cardoso, Mariana; Rosano-Ortega, Genoveva; Álvarez-Aros, Erick Leobardo; Tavera-Cortés, María Elena; Vega-Lebrún, Carlos Arturo; Sánchez-Ruíz, Francisco Javier (1 September 2022). "Circular economy strategy and waste management: a bibliometric analysis in its contribution to sustainable development, toward a post-COVID-19 era". Environmental Science and Pollution Research. 29 (41): 61729–61746. Bibcode:2022ESPR...2961729N. doi:10.1007/s11356-022-18703-3. ISSN 1614-7499. PMC 9170551. PMID 35668274.
  155. ^ K, J, P, Melati, Nikam, Nguyen. "arriers and drivers for enterprises to transition to a circular economy. Stockholm Environment Institute: Stockholm, Sweden" (PDF). Arriers and Drivers for Enterprises to Transition to a Circular Economy. Stockholm Environment Institute: Stockholm, Sweden.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Further reading

[edit]
[edit]
[edit]

Piano
Grand piano
Upright piano
Keyboard instrument
Hornbostel–Sachs classification314.122-4-8
(Simple chordophone with keyboard sounded by hammers)
Inventor(s)Bartolomeo Cristofori
DevelopedEarly 18th century
Playing range

A piano is a keyboard instrument that produces sound when its keys are depressed, activating an action mechanism where hammers strike strings. Modern pianos have a row of 88 black and white keys, tuned to a chromatic scale in equal temperament. A musician who specializes in piano is called a pianist.

There are two main types of piano: the grand piano and the upright piano. The grand piano offers better sound and more precise key control, making it the preferred choice when space and budget allow. The grand piano is also considered a necessity in venues hosting skilled pianists. The upright piano is more commonly used because of its smaller size and lower cost.

When a key is depressed, the strings inside are struck by felt-coated wooden hammers. The vibrations are transmitted through a bridge to a soundboard that amplifies the sound by coupling the acoustic energy to the air. When the key is released, a damper stops the string's vibration, ending the sound. Most notes have three strings, except for the bass, which graduates from one to two. Notes can be sustained when the keys are released by the use of pedals at the base of the instrument, which lift the dampers off the strings. The sustain pedal allows pianists to connect and overlay sound, and achieve expressive and colorful sonority.

In the 19th century, influenced by Romantic music trends, the fortepiano underwent changes such as the use of a cast iron frame (which allowed much greater string tensions) and aliquot stringing which gave grand pianos a more powerful sound, a longer sustain, and a richer tone. Later in the century, as the piano became more common it allowed families to listen to a newly published musical piece by having a family member play a simplified version.

The piano is widely employed in classical, jazz, traditional and popular music for solo and ensemble performances, accompaniment, and for composing, songwriting and rehearsals. Despite its weight and cost, the piano's versatility, the extensive training of musicians, and its availability in venues, schools, and rehearsal spaces have made it a familiar instrument in the Western world.

History

[edit]

The piano was based on earlier technological innovations in keyboard instruments. Pipe organs had been used since antiquity, and as such the development of pipe organs enabled instrument builders to learn about creating keyboard mechanisms for sounding pitches. The first string instruments with struck strings were the hammered dulcimers,[1] which were introduced in the Middle Ages in Europe. During the Middle Ages, there were several attempts at creating stringed keyboard instruments with struck strings.[2] By the 17th century, the mechanisms of keyboard instruments such as the clavichord and the harpsichord were well developed. In a clavichord the strings are struck by tangents, while in a harpsichord they are mechanically plucked by quills when the performer depresses the key. Centuries of work on the mechanism of the harpsichord in particular had shown instrument builders the most effective ways to construct the case, soundboard, bridge, and mechanical action for a keyboard intended to sound strings.

The English word piano is a shortened form of the Italian pianoforte,[3] derived from gravecembalo col piano e forte ("harpsichord with soft and loud").[4] Variations in volume (loudness) are produced in response to the pianist's touch (pressure on the keys): the greater the pressure, the greater the force of the hammer hitting the strings and the louder the sound produced and the stronger the attack. Invented in 1700, the fortepiano was the first keyboard instrument to allow gradations of volume and tone according to how forcefully or softly the player presses or strikes the keys, unlike the pipe organ and harpsichord.[5]

Invention

[edit]
The 1726 Cristofori piano in the Musikinstrumenten-Museum in Leipzig

The invention of the piano is credited to Bartolomeo Cristofori of Padua, Italy, who was employed by Ferdinando de' Medici, Grand Prince of Tuscany, as the Keeper of the Instruments.[6] Cristofori was an expert harpsichord maker and was well acquainted with the body of knowledge on stringed keyboard instruments. This knowledge of keyboard mechanisms and actions helped him to develop the first pianos. It is not known when Cristofori first built a piano. An inventory made by his employers, the Medici family, indicates the existence of a piano by 1700. The three Cristofori pianos that survive today date from the 1720s.[7][8] Cristofori named the instrument un cimbalo di cipresso di piano e forte ("a keyboard of cypress with soft and loud"), abbreviated over time as pianoforte, fortepiano, and later reduced to only piano.[9]

Cristofori's great success was designing a stringed keyboard instrument in which the notes are struck by a hammer. The hammer must strike the string but not remain in contact with it, because continued contact would damp the sound and stop the string from vibrating and making sound. This means that after striking the string, the hammer must quickly fall from (or rebound from) the strings. Moreover, the hammer must return to its rest position without bouncing violently (thus preventing notes from being re-played by accidental rebound), and it must return to a position in which it is ready to play again almost immediately after its key is depressed, so the player can repeat the same note rapidly when desired. Cristofori's piano action was a model for the many approaches to piano actions that followed in the next century.

Cristofori's early instruments were made with thin strings and were much quieter than the modern piano, though they were louder and had more sustain compared to the clavichord—the only previous keyboard instrument capable of dynamic nuance responding to the player's touch, the velocity with which the keys are pressed. While the clavichord allows expressive control of volume and sustain, it is relatively quiet even at its loudest. The harpsichord produces a sufficiently loud sound, especially when a coupler joins each key to both manuals of a two-manual harpsichord, but it offers no dynamic or expressive control over individual notes. The piano in some sense offers the best of both of the older instruments, combining the ability to play at least as loudly as a harpsichord with the ability to continuously vary dynamics by touch.

Early fortepiano

[edit]
Grand piano by Louis Bas of Villeneuve-lès-Avignon, 1781. Earliest French grand piano known to survive; includes an inverted wrestplank and action derived from the work of Bartolomeo Cristofori (ca. 1700) with ornately decorated soundboard.

Cristofori's new instrument remained relatively unknown until an Italian writer, Scipione Maffei, wrote an enthusiastic article about it in 1711, including a diagram of the mechanism, that was translated into German and widely distributed.[8] Most of the next generation of piano builders started their work based on reading this article. One of these builders was Gottfried Silbermann, better known as an organ builder. Silbermann's pianos were virtual copies of Cristofori's, with one important addition: Silbermann invented the forerunner of the modern sustain pedal, which lifts all the dampers from the strings simultaneously.[10] This innovation allows the pianist to sustain the notes that they have depressed even after their fingers are no longer pressing down the keys. As such, by holding a chord with the sustain pedal, pianists can relocate their hands to a different register of the keyboard in preparation for a subsequent section.

Silbermann showed Johann Sebastian Bach one of his early instruments in the 1730s, but Bach did not like the instrument at that time, saying that the higher notes were too soft to allow a full dynamic range. Although this earned him some animosity from Silbermann, the criticism was apparently heeded.[10] Bach did approve of a later instrument he saw in 1747 and even served as an agent in selling Silbermann's pianos. "Instrument: piano et forte genandt"—a reference to the instrument's ability to play soft and loud—was an expression that Bach used to help sell the instrument when he was acting as Silbermann's agent in 1749.[11]

Piano making flourished during the late 18th century in the Viennese school, which included Johann Andreas Stein (who worked in Augsburg, Germany) and the Viennese makers Nannette Streicher (daughter of Stein) and Anton Walter. Viennese-style pianos were built with wood frames, two strings per note, and leather-covered hammers.[12] Some of these Viennese pianos had the opposite coloring of modern-day pianos; the natural keys were black and the accidental keys white.[13] It was for such instruments that Wolfgang Amadeus Mozart composed his concertos and sonatas, and replicas of them are built in the 21st century for use in authentic-instrument performance of his music. The pianos of Mozart's day had a softer tone than 21st century pianos or English pianos, with less sustaining power. The term fortepiano now distinguishes these early instruments (and modern re-creations) from later pianos.[14]

Modern piano

[edit]

In the period from about 1790 to 1860, the Mozart-era piano underwent significant changes that led to the modern structure of the instrument. This revolution was in response to a preference by composers and pianists for a more powerful, sustained piano sound, which was made possible by the ongoing Industrial Revolution with resources such as high-quality piano wire for strings and precision casting for the production of massive iron frames that could withstand the tremendous tension of the strings.[15] Over time, the tonal range of the piano was also increased from the five octaves of Mozart's day to the seven octave (or more) range found on today's pianos.[16]

Early technological progress in the late 18th century owed much to the firm of Broadwood. John Broadwood joined with another Scot, Robert Stodart, and a Dutchman, Americus Backers, to design a piano in the harpsichord case—the origin of the "grand".[17] This was achieved by about 1777. They quickly gained a reputation for the splendour and powerful tone of their instruments, with Broadwood constructing pianos that were progressively larger, louder, and more robustly constructed. They sent pianos to both Joseph Haydn and Ludwig van Beethoven, and were the first firm to build pianos with a range of more than five octaves: five octaves and a fifth during the 1790s, six octaves by 1810 (Beethoven used the extra notes in his later works), and seven octaves by 1820. The Viennese makers similarly followed these trends; however the two schools used different piano actions: Broadwoods used a more robust action, whereas Viennese instruments were more sensitive.

By the 1820s, the center of piano innovation had shifted to Paris, where the Pleyel firm manufactured pianos used by Frédéric Chopin, and the Érard firm manufactured those used by Franz Liszt. In 1821, Sébastien Érard invented the double escapement action, which incorporated a repetition lever (also called the balancier) that permitted repeating a note even if the key had not return to its resting position.[18] This facilitated rapid playing of repeated notes, a musical device exploited by Liszt. When the invention became public, as revised by Henri Herz, the double escapement action gradually became standard in grand pianos and is still incorporated into all grand pianos currently produced in the 2000s. Other improvements of the mechanism included the use of firm felt hammer coverings instead of layered leather or cotton. Felt, which Jean-Henri Pape was the first to use in pianos in 1826, was a more consistent material, permitting wider dynamic ranges as hammer weights and string tension increased.[19] The sostenuto pedal (see below), invented in 1844 by Jean-Louis Boisselot and copied by the Steinway firm in 1874,[20] allowed for a wider range of effects.

One innovation that helped create the powerful sound of the modern piano was the use of a massive, strong, cast iron frame.[21] Also called the "plate", the iron frame sits atop the soundboard, and serves as the primary bulwark against the force of string tension that can exceed 20 tons (180 kilonewtons) in total for a modern grand piano.[22] The single piece cast iron frame for square piano was patented in 1825 in Boston by Alpheus Babcock,[23][24] combining the metal hitch pin plate (1821, claimed by Broadwood on behalf of Samuel Hervé) and resisting bars (Thom and Allen, 1820, but also claimed by Broadwood and Érard). Babcock later worked for the Chickering & Mackays firm who patented the first full iron frame for grand pianos in 1843.[24] Composite forged metal frames were preferred by many European makers until the American system was fully adopted by the early 20th century. The increased structural integrity of the iron frame allowed the use of thicker, tenser, and more numerous strings. In 1834, the Webster & Horsfal firm of Birmingham brought out a form of piano wire made from cast steel; it was "so superior to the iron wire that the English firm soon had a monopoly."[25] A better steel wire was developed in 1840 by the Viennese firm Martin Miller,[25] and a period of innovation and intense competition ensued, with rival brands of piano wire being tested against one another at international competitions, leading ultimately to the modern form of piano wire.[26]

Several important advances included changes to the way the piano was strung. There are one string for each note in the bass, two for each note in the tenor, and three for each note in the tenor.[27] The use of a Capo d’Astro bar instead of agraffes in the uppermost treble allowed the hammers to strike the strings in their optimal position, greatly increasing that area's power. The implementation of over-stringing (also called cross-stringing), in which the strings are placed in two separate planes, each with its own bridge height,[19] allowed greater length to the bass strings and optimized the transition from unwound tenor strings to the iron or copper-wound bass strings. Over-stringing was invented by Pape during the 1820s and first patented for use in grand pianos in the United States by Henry Steinway Jr. in 1859.[19]

Duplex scaling of an 1883 Steinway Model 'A'. From lower left to upper right: main sounding length of strings, treble bridge, duplex string length, duplex bar (nickel-plated bar parallel to bridge), hitchpins, plate strut with bearing bolt, plate hole

Some piano makers added variations to enhance the tone of each note, such as Pascal Taskin (1788),[28] Collard & Collard (1821), and Julius Blüthner, who developed Aliquot stringing in 1893.[29] These systems were used to strengthen the tone of the highest register of notes on the piano, which up until this time were viewed as being too weak-sounding. Each used more distinctly ringing, undamped vibrations of sympathetically vibrating strings to add to the tone, except the Blüthner Aliquot stringing, which uses an additional fourth string in the upper two treble sections.[29] While the hitchpins of these separately suspended Aliquot strings are raised slightly above the level of the usual tri-choir strings, they are not struck by the hammers but rather are damped by attachments of the usual dampers. Eager to copy these effects, Theodore Steinway invented duplex scaling, which used short lengths of non-speaking wire bridged by the "aliquot" throughout much of the upper range of the piano, always in locations that caused them to vibrate sympathetically in conformity with their respective overtones—typically in doubled octaves and twelfths.[30]

Variations in shape and design

[edit]

Some early pianos had shapes and designs that are no longer in use. The square piano (not truly square, but rectangular) was cross strung at an extremely acute angle above the hammers, with the keyboard set along the long side. This design is attributed to Christian Ernst Friderici (a pupil of Gottfried Silbermann) in Germany and Johannes Zumpe in England,[31] and it was improved by changes first introduced by Guillaume-Lebrecht Petzold in France and Alpheus Babcock in the United States.[32] Square pianos were built in great numbers through the 1840s in Europe and the 1890s in the United States, and saw the most visible change of any type of piano: the iron-framed, over-strung squares manufactured by Steinway & Sons were more than two-and-a-half times the size of Zumpe's wood-framed instruments from a century before. Their overwhelming popularity was the result of inexpensive construction and price, although their tone and performance were limited by narrow soundboards, simple actions and string spacing that made proper hammer alignment difficult.

The mechanism and strings in upright pianos are perpendicular to the keys. The cover for the strings is removed for this photo.

The tall, vertically strung upright grand was arranged like a grand set on end, with the soundboard and bridges above the keys and tuning pins below them. "Giraffe pianos", "pyramid pianos" and "lyre pianos" were arranged in a somewhat similar fashion, using evocatively shaped cases. The very tall cabinet piano was introduced about 1805 and was built through the 1840s. It had strings arranged vertically on a continuous frame with bridges extended nearly to the floor, behind the keyboard and very large sticker action. The short cottage upright or pianino with vertical stringing—made popular by Robert Wornum around 1815—was built into the 20th century. They are informally called birdcage pianos because of their prominent damper mechanism. The oblique upright, popularized in France by Roller & Blanchet during the late 1820s, was diagonally strung throughout its compass. The tiny spinet upright was manufactured from the mid-1930s until recent times. The low position of the hammers required the use of a "drop action" to preserve a reasonable keyboard height. Modern upright and grand pianos attained their present, 2000-era forms by the end of the 19th century. While improvements have been made in manufacturing processes, and many individual details of the instrument continue to receive attention, and a small number of acoustic pianos in the 2010s are produced with MIDI recording and digital sound module-triggering capabilities, the 19th century was the era of the most dramatic innovations and modifications of the instrument.

Types

[edit]

Modern pianos have two basic configurations, the grand piano and the upright piano, with various styles of each. There are also specialized and novelty pianos, electric pianos based on electromechanical designs, electronic pianos that synthesize piano-like tones using oscillators, and digital pianos using digital samples of acoustic piano sounds.

Grand

[edit]
Steinway & Sons grand piano in the White House

In a grand piano, the frame and strings are horizontal, with the strings extending away from the keyboard. The action lies beneath the strings and uses gravity as its means of return to a state of rest. Grand pianos range in length from approximately 1.5–3 m (4 ft 11 in – 9 ft 10 in). Some of the lengths have been given more-or-less customary names, which vary from time to time and place to place, but might include:

  • Baby grand – around 1.5 m (4 ft 11 in)[33]
  • Parlor grand or boudoir grand – 1.7 to 2.2 m (5 ft 7 in – 7 ft 3 in)
  • Concert grand – between 2.2 and 3 m (7 ft 3 in – 9 ft 10 in))[33]

All else being equal, longer pianos with longer strings have larger, richer sound and lower inharmonicity of the strings. Inharmonicity is the degree to which the frequencies of overtones (known as partials or harmonics) sound sharp relative to whole multiples of the fundamental frequency. This results from the piano's considerable string stiffness; as a struck string decays, its harmonics vibrate from a point very slightly from its termination toward the center (or more flexible part) of the string. The inharmonicity may also result from imperfections within the string, such as rust on plain strings and dirt in the windings of bass strings.[34] The higher the partial, the further sharp it runs. Pianos with shorter and thicker string (i.e., small pianos with short string scales) have more inharmonicity. The greater the inharmonicity, the more the ear perceives it as harshness of tone.

The inharmonicity of piano strings requires that octaves be stretched, or tuned to a lower octave's corresponding sharp overtone rather than to a theoretically correct octave. If octaves are not stretched, single octaves sound in tune, but double—and notably triple—octaves are unacceptably narrow. Stretching a small piano's octaves to match its inherent inharmonicity level creates an imbalance among all the instrument's intervallic relationships. In a concert grand, however, the octave "stretch" retains harmonic balance, even when aligning treble notes to a harmonic produced from three octaves below. This lets close and widespread octaves sound pure, and produces virtually beatless perfect fifths. This gives the concert grand a brilliant, singing and sustaining tone quality—one of the principal reasons that full-size grands are used in the concert hall. Smaller grands satisfy the space and cost needs of domestic use; as well, they are used in some small teaching studios and smaller performance venues.

Upright

[edit]
August Förster upright piano

Upright pianos, also called vertical pianos, are more compact with a vertical structure of the frame and strings. The mechanical action structure of the upright piano was invented in London in 1826 by Robert Wornum, and upright models became the most popular model for domestic use.[35] Upright pianos take up less space than a grand piano and as such are a better size for use in private homes for domestic music-making and practice. The hammers move horizontally and return to their resting position via springs, which are susceptible to degradation. Upright pianos with unusually tall frames and long strings were sometimes marketed as upright grand pianos, but that label is misleading. Some authors classify modern pianos according to their height and to modifications of the action that are necessary to accommodate the height. Upright pianos are generally less expensive than grand pianos. Upright pianos are widely used in churches, community centers, schools, music conservatories and university music programs as rehearsal and practice instruments, and they are popular models for in-home purchase.

  • The top of a spinet model barely rises above the keyboard. Unlike all other pianos, the spinet action is located below the keys, operated by vertical wires that are attached to the backs of the keys.
  • Console pianos, which have a compact action (shorter hammers than a large upright has), but because the console's action is above the keys rather than below them as in a spinet, a console almost always plays better than a spinet does. Console pianos are a few inches shorter than studio models.
  • Studio pianos are around 107 to 114 cm (42–45 in) tall. This is the shortest cabinet that can accommodate a full-sized action located above the keyboard.
  • Anything taller than a studio piano is called an upright. (Technically, any piano with a vertically oriented soundboard could be called an upright, but that word is often reserved for the full-size models.)

Specialized

[edit]
Player piano from 1920 (Steinway)

The toy piano, introduced in the 19th century, is a small piano-like instrument that generally uses round metal rods to produce sound, rather than strings. The US Library of Congress recognizes the toy piano as a unique instrument with the subject designation, Toy Piano Scores: M175 T69.[36]

In 1863, Henri Fourneaux invented the player piano, which plays itself from a piano roll. A machine perforates a performance recording into rolls of paper, and the player piano replays the performance using pneumatic devices. Modern equivalents of the player piano include the Bösendorfer CEUS, Yamaha Disklavier and QRS Pianomation,[37] using solenoids and MIDI rather than pneumatics and rolls.

A silent piano is an acoustic piano having an option to silence the strings by means of an interposing hammer bar. They are designed for private silent practice, to avoid disturbing others.

Edward Ryley invented the transposing piano in 1801. This rare instrument has a lever under the keyboard to move the keyboard relative to the strings, so a pianist can play in a familiar key while the music sounds in a different key.

The minipiano 'Pianette' model viewed with its original matching stool: the wooden flap at the front of the instrument has been dropped revealing the tuning pins at the front.

The minipiano is an instrument patented by the Brasted brothers of the Eavestaff Ltd. piano company in 1934.[38] This instrument has a braceless back and a soundboard positioned below the keys—long metal rods pull on the levers to make the hammers strike the strings. The first model, known as the Pianette, was unique in that the tuning pins extended through the instrument, so it could be tuned at the front.

The prepared piano, present in some contemporary art music from the 20th and 21st century is a piano which has objects placed inside it to alter its sound, or has had its mechanism changed in some other way. The scores for music for prepared piano specify the modifications, for example, instructing the pianist to insert pieces of rubber, paper, metal screws, or washers in between the strings. These objects mute the strings or alter their timbre.

Some Viennese fortepianos incorporated percussion effects, brought into action by levers. These would be used in pieces such as Mozart's Rondo alla Turca.

The pedal piano is a rare type of piano that has a pedal keyboard at the base, designed to be played by the feet. The pedals may play the existing bass strings on the piano, or rarely, the pedals may have their own set of bass strings and hammer mechanisms. While the typical intended use for pedal pianos is to enable a keyboardist to practice pipe organ music at home, a few players of pedal piano use it as a performance instrument.

Wadia Sabra had a microtone piano manufactured by Pleyel in 1920.[39] Abdallah Chahine later constructed his quartertone "Oriental piano" with the help of Austrian Hofmann.[40][41]

Electric, electronic, and digital

[edit]
Wurlitzer 210 electric piano

With technological advances, amplified electric pianos (1929), electronic pianos (1970s), and digital pianos (1980s) have been developed. The first electric pianos from the late 1920s used metal strings with a magnetic pickup, an amplifier and a loudspeaker. The electric pianos that became most popular in pop and rock music in the 1960s and 1970s, such as the Fender Rhodes use metal tines in place of strings and use electromagnetic pickups similar to those on an electric guitar. The resulting electrical, analogue signal can then be amplified with a keyboard amplifier or electronically manipulated with effects units. In classical music, electric pianos are mainly used as inexpensive rehearsal or practice instruments. Electric pianos, particularly the Fender Rhodes, became important instruments in 1970s funk and jazz fusion and in some rock music genres.

Electronic pianos are non-acoustic; they do not have strings, tines or hammers, but are a type of analog synthesizer that simulates or imitates piano sounds using oscillators and filters that synthesize the sound of an acoustic piano.[42] They must be connected to a keyboard amplifier and speaker to produce sound (however, some electronic keyboards have a built-in amp and speaker). Alternatively, a person can play an electronic piano with headphones in quieter settings.

Digital pianos are also non-acoustic and do not have strings or hammers. They use digital audio sampling technology to reproduce the acoustic sound of each piano note accurately. They also must be connected to a power amplifier and speaker to produce sound (however, most digital pianos have a built-in amp and speaker). Alternatively, a person can practise with headphones to avoid disturbing others. Digital pianos can include sustain pedals, weighted or semi-weighted keys, multiple voice options (e.g., sampled or synthesized imitations of electric piano, Hammond organ, violin, etc.), and MIDI interfaces. MIDI inputs and outputs connect a digital piano to other electronic instruments or musical devices. For example, a digital piano's MIDI out signal could be connected by a patch cord to a synth module, which would allow the performer to use the keyboard of the digital piano to play modern synthesizer sounds. Early digital pianos tended to lack a full set of pedals, but the synthesis software of later models such as the Yamaha Clavinova series synthesised the sympathetic vibration of the other strings (such as when the sustain pedal is depressed) and full pedal sets can now be replicated. The processing power of digital pianos has enabled highly realistic pianos using multi-gigabyte piano sample sets with as many as ninety recordings, each lasting many seconds, for each key under different conditions (e.g., there are samples of each note being struck softly, loudly, with a sharp attack, etc.). Additional samples emulate sympathetic resonance of the strings when the sustain pedal is depressed, key release, the drop of the dampers, and simulations of techniques such as re-pedalling.

Digital, MIDI-equipped pianos can output a stream of MIDI data, or record and play MIDI format files on digital storage media, similar in concept to a pianola. The MIDI file records the physics of a note rather than its resulting sound and recreates the sounds from its physical properties (e.g., which note was struck and with what velocity). Computer based software, such as Modartt's 2006 Pianoteq, can be used to manipulate the MIDI stream in real time or subsequently to edit it. This type of software may use no samples but synthesize a sound based on aspects of the physics that went into the creation of a played note.

Hybrid instruments

[edit]
The Yamaha Disklavier player piano. The unit mounted under the keyboard of the piano can play MIDI or audio software on its CD.

By the 2000s, some pianos included an acoustic grand piano or upright piano combined with MIDI electronic features. Such a piano can be played acoustically, or the keyboard can be used as a MIDI controller, which can trigger a synthesizer module or music sampler. Some electronic feature-equipped pianos such as the Yamaha Disklavier electronic player piano, introduced in 1987, are outfitted with electronic sensors for recording and electromechanical solenoids for player piano-style playback. Sensors record the movements of the keys, hammers, and pedals during a performance, and the system saves the performance data as a Standard MIDI File (SMF). On playback, the solenoids move the keys and pedals and thus reproduce the original performance. Modern Disklaviers typically include an array of electronic features, such as a built-in tone generator for playing back MIDI accompaniment tracks, speakers, MIDI connectivity that supports communication with computing devices and external MIDI instruments, additional ports for audio and SMPTE input/output (I/O), and Internet connectivity. Disklaviers have been manufactured in the form of upright, baby grand, and grand piano styles (including a nine-foot concert grand). Reproducing systems have ranged from relatively simple, playback-only models to professional models that can record performance data at resolutions that exceed the limits of normal MIDI data. The unit mounted under the keyboard of the piano can play MIDI or audio software on its CD.[43]

Construction and components

[edit]
(1) frame (2) lid, front part (3) capo bar (4) damper (5) lid, back part (6) damper mechanism (7) sostenuto rail (8) pedal mechanism, rods (9, 10, 11) pedals: right (sustain/damper), middle (sostenuto), left (soft/una-corda) (12) bridge (13) hitch pin (14) frame (15) sound board (16) string

Pianos can have over 12,000 individual parts,[44] supporting six functional features: keyboard, hammers, dampers, bridge, soundboard, and strings.[45] Many parts of a piano are made of materials selected for strength and longevity. This is especially true of the outer rim, which is most commonly made of hardwood, typically hard maple or beech, and its massiveness serves as an essentially immobile object from which the flexible soundboard can best vibrate. According to Harold A. Conklin,[46] the purpose of a sturdy rim is so that, "... the vibrational energy will stay as much as possible in the soundboard instead of dissipating uselessly in the case parts, which are inefficient radiators of sound."

Hardwood rims are commonly made by laminating thin (hence flexible) strips of hardwood, bending them to the desired shape immediately after the application of glue.[47] The bent plywood system was developed by C.F. Theodore Steinway in 1880 to reduce manufacturing time and costs. Previously, the rim was constructed from several pieces of solid wood, joined and veneered, and European makers used this method well into the 20th century.[48][full citation needed] A modern exception, Bösendorfer (an Austrian manufacturer of high-quality pianos) constructs their inner rims from solid spruce,[49] the same wood that the soundboard is made from, which is notched to allow it to bend; rather than isolating the rim from vibration, their "resonance case principle" allows the framework to resonate more freely with the soundboard, creating additional coloration and complexity of the overall sound.[50]

The thick wooden posts on the underside (grands) or back (uprights) of the piano stabilize the rim structure and are made of softwood for stability. The requirement of structural strength, fulfilled by stout hardwood and thick metal, makes a piano heavy. Even a small upright can weigh 136 kg (300 lb), and the Steinway concert grand (Model D) weighs 480 kg (1,060 lb). The largest piano available on the general market, the Fazioli F308, weighs 570 kg (1,260 lb).[51][52]

The pinblock, which holds the tuning pins in place, is another area where toughness is important. It is made of hardwood (typically hard maple or beech) and is laminated for strength, stability and longevity. Piano strings (also called piano wire), which must endure years of extreme tension and hard blows, are made of high carbon steel. They are manufactured to vary as little as possible in diameter, since all deviations from uniformity introduce tonal distortion. The bass strings of a piano are made of a steel core wrapped with one or two layers of copper wire, to increase their mass whilst retaining flexibility.[53] If all strings throughout the piano's compass were individual (monochord), the massive bass strings would overpower the upper ranges. Makers compensate for this with the use of double (bichord) strings in the tenor and triple (trichord) strings throughout the treble.

Cast iron plate of a grand piano

The plate (harp), or metal frame, of a piano is usually made of cast iron. A massive plate is advantageous. Since the strings vibrate from the plate at both ends, an insufficiently massive plate would absorb too much of the vibrational energy that should go through the bridge to the soundboard. While some manufacturers use cast steel in their plates, most prefer cast iron. Cast iron is easy to cast and machine, has flexibility sufficient for piano use, is much more resistant to deformation than steel, and is especially tolerant of compression. Plate casting is an art, since dimensions are crucial and the iron shrinks about one percent during cooling. Including an extremely large piece of metal in a piano is potentially an aesthetic handicap. Piano makers overcome this by polishing, painting, and decorating the plate. Plates often include the manufacturer's ornamental medallion.

In an effort to make pianos lighter, Alcoa worked with Winter and Company piano manufacturers to make pianos using an aluminum plate during the 1940s. Aluminum piano plates were not widely accepted and were discontinued. Prior to this, a piano made almost entirely of aluminum was placed aboard the airship Hindenburg.[54]

The numerous parts of a piano action are generally made from hardwood, such as maple, beech, or hornbeam; however, since World War II, makers have also incorporated plastics. Early plastics used in some pianos in the late 1940s and 1950s, proved problematic when they lost strength after a few decades of use. Beginning in 1961, the New York branch of the Steinway firm incorporated Teflon, a synthetic material developed by DuPont, for some parts of its Permafree grand action in place of cloth bushings, but abandoned the experiment in 1982 due to excessive friction and a "clicking" that developed over time; Teflon is "humidity stable" whereas the wood adjacent to the Teflon swells and shrinks with humidity changes, causing problems. More recently, the Kawai firm built pianos with action parts made of more modern materials such as carbon fiber reinforced plastic, and the piano parts manufacturer Wessell, Nickel and Gross has launched a new line of carefully engineered composite parts. Thus far these parts have performed reasonably, but it will take decades to know if they equal the longevity of wood.

Strings of a grand piano

In all but the lowest quality pianos, the soundboard is made of spruce boards glued together along the side grain. Spruce's high ratio of strength to weight minimizes acoustic impedance while offering strength sufficient to withstand the downward force of the strings. The best piano makers use quarter-sawn, defect-free spruce of close annular grain, carefully seasoning it over a long period before fabricating the soundboards. This is the same material that is used in quality acoustic guitar soundboards. Low-cost pianos often have plywood soundboards.[55]

The design of the piano hammers requires having the hammer felt be soft enough so that it will not create loud, very high harmonics that a hard hammer will cause. The hammer must be lightweight enough to move swiftly when a key is pressed; yet at the same time, it must be strong enough so that it can hit strings hard when the player strikes the keys forcefully for fortissimo playing or sforzando accents.[56]

Keyboard

[edit]
Keyboard of a grand piano

In the early years of piano construction, keys were commonly made from sugar pine. In the 2010s, they are usually made of spruce or basswood. Spruce is typically used in high-quality pianos. Black keys were traditionally made of ebony, and the white keys were covered with strips of ivory. However, since ivory-yielding species are now endangered and protected by treaty, or are illegal in some countries, makers use plastics almost exclusively. Also, ivory tends to chip more easily than plastic. Legal ivory can still be obtained in limited quantities. Yamaha developed a plastic called Ivorite intended to mimic the look and feel of ivory; other manufacturers have done likewise.

Almost every modern piano has 52 white keys and 36 black keys for a total of 88 keys (seven octaves plus a minor third, from A0 to C8). Many older pianos only have 85 keys (seven octaves from A0 to A7). Some piano manufacturers have extended the range further in one or both directions. For example, the Imperial Bösendorfer has nine extra keys at the bass end, giving a total of 97 keys and an eight octave range. These extra keys are sometimes hidden under a small hinged lid that can cover the keys to prevent visual disorientation for pianists unfamiliar with the extra keys, or the colours of the extra white keys are reversed (black instead of white). More recently, Australian manufacturer Stuart & Sons created a piano with 108 keys, going from C0 to B8, covering nine full octaves.[57] The extra keys are the same as the other keys in appearance. The extra keys are added primarily for increased resonance from the associated strings; that is, they vibrate sympathetically with other strings whenever the damper pedal is depressed and thus give a fuller tone. Only a very small number of works composed for piano actually use these notes. Toy piano company Schoenhut manufactures grands and uprights with only 44 or 49 keys and a shorter distance between the keyboard and the pedals. These are true pianos with working mechanisms and strings.

Emánuel Moór Pianoforte

A rare variant of the piano called the Emánuel Moór Pianoforte has double keyboards, one lying above the other. It was invented by Hungarian composer and pianist Emánuel Moór. The lower keyboard has the usual 88 keys, whilst the upper keyboard has 76 keys. When the upper keyboard is played, an internal mechanism pulls down the corresponding key on the lower keyboard, but an octave higher. This lets a pianist reach two octaves with one hand, impossible on a conventional piano. Due to its double keyboard, musical works that were originally created for double-manual harpsichord, such as the Goldberg Variations by Bach, become much easier to play, since playing on a conventional single keyboard piano involves complex and hand-tangling cross-hand movements. The design also features a special fourth pedal that couples the lower and upper keyboard, so when playing on the lower keyboard the note one octave higher also plays. Only about 60 Emánuel Moór Pianofortes were made, mostly by Bösendorfer. Other piano manufacturers, such as Bechstein, Chickering, and Steinway & Sons, also manufactured a few.[58]

Pianos have been built with alternative keyboard systems, e.g., the Jankó keyboard.

Pedals

[edit]
Piano pedals from left to right: una corda, sostenuto and sustain pedal

Pianos have had pedals, or some close equivalent, since the earliest days. (In the 18th century, some pianos used levers pressed upward by the player's knee instead of pedals.) Most grand pianos in the US have three pedals: the soft pedal (una corda), sostenuto, and sustain pedal (from left to right, respectively), while in Europe, the standard is two pedals: the soft pedal and the sustain pedal.[20] Most modern upright pianos also have three pedals: soft pedal, practice pedal and sustain pedal, though older or cheaper models may lack the practice pedal. In Europe the standard for upright pianos is two pedals: the soft and the sustain pedals.

The sustain pedal (or damper pedal) is often simply called "the pedal", since it is the most frequently used. It is the rightmost pedal in the group. It lifts the dampers from all strings, sustaining played notes. In addition, it broadens the overall tone by allowing all strings, including those not directly played, to reverberate sympathetically.[59]

Sympathetic vibration of strings is strongest among notes that are harmonically related to the sounded pitches, i.e., a played 440 Hz "A" note would evoke the higher octave "A" notes, but since piano strings vibrate with a great complexity of overtones, the harmonic and inharmonic interaction is among all notes is enormous.

Notations used for the sustain pedal in sheet music

The soft pedal or una corda pedal is placed leftmost in the row of pedals. In grand pianos it shifts the entire action/keyboard assembly to the right (a very few instruments have shifted left) so that the hammers hit two of the three strings for each note. In the earliest pianos whose unisons were bichords rather than trichords, the action shifted so that hammers hit a single string, hence the name una corda, or 'one string'. The effect is to soften the note as well as change the tone. In upright pianos, depressing the pedal moves the hammers closer to the strings, allowing the hammers to strike with less force.[60] This produces a slightly softer sound but no change in timbre.

On grand pianos, the middle pedal is a sostenuto pedal. This pedal keeps raised any damper already raised at the moment the pedal is depressed. This makes it possible to sustain selected notes (by depressing the sostenuto pedal before those notes are released) while the player's hands are free to play additional notes (which do not sustain).[20] This can be useful for musical passages with low bass pedal points, in which a bass note is sustained while a series of chords changes over top of it, and other otherwise tricky parts. On many upright pianos, the middle pedal is called the "practice" or celeste pedal. This drops a piece of felt between the hammers and strings, greatly muting the sound of the instrument.[59] This pedal can be shifted while depressed, into a "locking" position.

There are also non-standard variants. On some pianos (grands and verticals), the middle pedal can be a bass sustain pedal: that is, when it is depressed, the dampers lift off the strings only in the bass section. Players use this pedal to sustain a single bass note or chord over many measures, while playing the melody in the treble section.

An upright pedal piano by Challen

The rare transposing piano (an example of which was owned by Irving Berlin) has a middle pedal that functions as a clutch that disengages the keyboard from the mechanism, so the player can move the keyboard to the left or right with a lever. This shifts the entire piano action so the pianist can play music written in one key so that it sounds in a different key.

Some piano companies have included extra pedals other than the standard two or three. On the Stuart and Sons pianos as well as the largest Fazioli piano, there is a fourth pedal to the left of the principal three. This fourth pedal works in the same way as the soft pedal of an upright piano, moving the hammers closer to the strings.[61] The Crown and Schubert Piano Company also produced a four-pedal piano.

Wing and Son of New York offered a five-pedal piano from approximately 1893 through the 1920s. There is no mention of the company past the 1930s. Labeled left to right, the pedals are Mandolin, Orchestra, Expression, Soft, and Forte (Sustain). The Orchestral pedal produced a sound similar to a tremolo feel by bouncing a set of small beads dangling against the strings, enabling the piano to mimic a mandolin, guitar, banjo, zither and harp, thus the name Orchestral. The Mandolin pedal used a similar approach, lowering a set of felt strips with metal rings in between the hammers and the strings (aka rinky-tink effect). This extended the life of the hammers when the Orch pedal was used, a good idea for practicing, and created an echo-like sound that mimicked playing in an orchestral hall.[62][63]

The pedalier piano, or pedal piano, is a rare type of piano that includes a pedalboard so players can use their feet to play bass register notes, as on an organ. There are two types of pedal piano. On one, the pedal board is an integral part of the instrument, using the same strings and mechanism as the manual keyboard. The other, rarer type, consists of two independent pianos (each with separate mechanics and strings) placed one above the other—one for the hands and one for the feet. This was developed primarily as a practice instrument for organists, though there is a small repertoire written specifically for the instrument.

Mechanics

[edit]
A pianist playing Prelude and Fugue No. 23 in B major (BWV 868) from Bach's The Well-Tempered Clavier on a grand piano

When the key is struck, a chain reaction occurs to produce the sound. First, the key raises the "wippen" mechanism, which forces the jack against the hammer roller (or knuckle). The hammer roller then lifts the lever carrying the hammer. The key also raises the damper; and immediately after the hammer strikes the wire it falls back, allowing the wire to resonate and thus produce sound. When the key is released the damper falls back onto the strings, stopping the wire from vibrating, and thus stopping the sound.[64] The vibrating piano strings themselves are not very loud, but their vibrations are transmitted to a large soundboard that moves air and thus converts the energy to sound.[65] The irregular shape and off-center placement of the bridge ensure that the soundboard vibrates strongly at all frequencies.[66] The raised damper allows the note to sound until the key (or sustain pedal) is released.

There are three factors that influence the pitch of a vibrating wire.

  • Length: All other factors the same, the shorter the wire, the higher the pitch.
  • Mass per unit length: All other factors the same, the thinner the wire, the higher the pitch.
  • Tension: All other factors the same, the tighter the wire, the higher the pitch.

A vibrating wire subdivides itself into many parts vibrating at the same time. Each part produces a pitch of its own, called a partial. A vibrating string has one fundamental and a series of partials. The purest combination of two pitches is when one is double the frequency of the other.[67]

For a repeating wave, the velocity v equals the wavelength λ times the frequency f,

v = λf

On the piano string, waves reflect from both ends. The superposition of reflecting waves results in a standing wave pattern, but only for wavelengths λ = 2L, L, 2L/3, L/2, ... = 2L/n, where L is the length of the string. Therefore, the only frequencies produced on a single string are f = nv/2L. Timbre is largely determined by the content of these harmonics. Different instruments have different harmonic content for the same pitch. A real string vibrates at harmonics that are not perfect multiples of the fundamental. This results in a little inharmonicity, which gives richness to the tone but causes significant tuning challenges throughout the compass of the instrument.[66]

Striking the piano key with greater velocity increases the amplitude of the waves and therefore the volume. From pianissimo (pp) to fortissimo (ff) the hammer velocity changes by almost a factor of a hundred. The hammer contact time with the string shortens from 4 milliseconds at pp to less than 2 ms at ff.[66] If two wires adjusted to the same pitch are struck at the same time, the sound produced by one reinforces the other, and a louder combined sound of shorter duration is produced. If one wire vibrates out of synchronization with the other, they subtract from each other and produce a softer tone of longer duration.[68]

Maintenance

[edit]

Tuning

[edit]
A piano tuner

Pianos are heavy and powerful, yet delicate instruments. Over the years, professional piano movers have developed special techniques for transporting both grands and uprights, which prevent damage to the case and to the piano's mechanical elements. Pianos need regular tuning to keep them on correct pitch. The hammers of pianos are voiced to compensate for gradual hardening of the felt, and other parts also need periodic regulation. Pianos need regular maintenance to ensure the felt hammers and key mechanisms are functioning properly. Aged and worn pianos can be rebuilt or reconditioned by piano rebuilders. Strings eventually must be replaced. Often, by replacing a great number of their parts and adjusting them, old instruments can perform as well as new pianos.

Piano tuning involves adjusting the tensions of the piano's strings with a specialized wrench, thereby aligning the intervals among their tones so that the instrument is in tune. While guitar and violin players tune their own instruments, pianists usually hire a piano tuner, a specialized technician, to tune their pianos. The piano tuner uses special tools. The meaning of the term in tune in the context of piano tuning is not simply a particular fixed set of pitches. Fine piano tuning carefully assesses the interaction among all notes of the chromatic scale, different for every piano, and thus requires slightly different pitches from any theoretical standard. Pianos are usually tuned to a modified version of the system called equal temperament. In all systems of tuning, each pitch is derived from its relationship to a chosen fixed pitch, usually the internationally recognized standard concert pitch of A4 (the A above middle C). The term A440 refers to a widely accepted frequency of this pitch: 440 Hz.

The relationship between two pitches, called an interval, is the ratio of their absolute frequencies. Two different intervals are perceived as the same when the pairs of pitches involved share the same frequency ratio. The easiest intervals to identify, and the easiest intervals to tune, are those that are just, meaning they have a simple whole-number ratio. The term temperament refers to a tuning system that tempers the just intervals (usually the perfect fifth, which has the ratio 3:2) to satisfy another mathematical property; in equal temperament, a fifth is tempered by narrowing it slightly, achieved by flattening its upper pitch slightly, or raising its lower pitch slightly. A temperament system is also known as a set of "bearings". Tempering an interval causes it to beat, which is a fluctuation in perceived sound intensity due to interference between close (but unequal) pitches. The rate of beating is equal to the frequency differences of any harmonics that are present for both pitches and that coincide or nearly coincide. Piano tuners have to use their ear to "stretch" the tuning of a piano to make it sound in tune. This involves tuning the highest-pitched strings slightly higher and the lowest-pitched strings slightly lower than what a mathematical frequency table (in which octaves are derived by doubling the frequency) would suggest.

Playing and technique

[edit]
A Prague piano player.

As with any other musical instrument, the piano may be played from written music, by ear, or through improvisation. While some folk and blues pianists were self-taught, in classical and jazz, there are well-established piano teaching systems and institutions, including pre-college graded examinations, university, college and music conservatory diplomas and degrees, ranging from the B.Mus. and M.Mus. to the Doctor of Musical Arts in piano. Piano technique evolved during the transition from harpsichord and clavichord to fortepiano playing and continued through the development of the modern piano. Changes in musical styles and audience preferences over the 19th and 20th century, as well as the emergence of virtuoso performers, contributed to this evolution and to the growth of distinct approaches or schools of piano playing. Although technique is often viewed as only the physical execution of a musical idea, many pedagogues and performers stress the interrelatedness of the physical and mental or emotional aspects of piano playing.[69][70][71][72] Well-known approaches to piano technique include those by Dorothy Taubman, Edna Golandsky, Fred Karpoff, Charles-Louis Hanon and Otto Ortmann.

Performance styles

[edit]

Many classical music composers, including Haydn, Mozart, Schubert and Beethoven, composed for the fortepiano, a rather different instrument than the modern piano. Even composers of the Romantic movement, like Franz Liszt, Frédéric Chopin, Clara and Robert Schumann, Fanny and Felix Mendelssohn, and Johannes Brahms, wrote for pianos substantially different from 2010-era modern pianos. Contemporary musicians may adjust their interpretation of historical compositions from the 17th century to the 19th century to account for sound quality differences between old and new instruments or to changing performance practice.

Birthday party honoring French pianist Maurice Ravel in 1928. From left to right: conductor Oskar Fried, singer Éva Gauthier, Ravel (at piano), composer-conductor Manoah Leide-Tedesco, and composer George Gershwin.

Starting in Beethoven's later career, the fortepiano evolved into an instrument more like the modern piano. Modern pianos were in wide use by the late 19th century. They featured an octave range larger than the earlier fortepiano instrument, adding around 30 more keys to the instrument, which extended the deep bass range and the high treble range. Factory mass production of upright pianos made them more affordable for a larger number of middle-class people. They appeared in music halls and pubs during the 19th century, providing entertainment through a piano soloist, or in combination with a small dance band. Just as harpsichordists had accompanied singers or dancers performing on stage, or playing for dances, pianists took up this role in the late 18th and following centuries.

During the 19th century, American musicians playing for working-class audiences in small pubs and bars, particularly African-American composers, developed new musical genres based on the modern piano. Ragtime music, popularized by composers such as Scott Joplin, reached a broader audience by 1900. The popularity of ragtime music was quickly succeeded by Jazz piano. New techniques and rhythms were invented for the piano, including ostinato for boogie-woogie, and Shearing voicing. George Gershwin's Rhapsody in Blue broke new musical ground by combining American jazz piano with symphonic sounds. Comping, a technique for accompanying jazz vocalists on piano, was exemplified by Duke Ellington's technique. Honky-tonk music, featuring yet another style of piano rhythm, became popular during the same era. Bebop techniques grew out of jazz, with leading composer-pianists such as Thelonious Monk and Bud Powell. In the late 20th century, Bill Evans composed pieces combining classical techniques with his jazz experimentation. In the 1970s, Herbie Hancock was one of the first jazz composer-pianists to find mainstream popularity working with newer urban music techniques such as jazz-funk and jazz-rock.

Yamaha grand piano

Pianos have also been used prominently in rock and roll and rock music by performers such as Jerry Lee Lewis, Little Richard, Keith Emerson (Emerson, Lake & Palmer), Elton John, Ben Folds, Billy Joel, Nicky Hopkins, Rick Wakeman, Freddie Mercury and Tori Amos, to name a few. At a 2023 auction in Sotheby's in London, Mercury's Yamaha baby grand piano, which he used to compose "Bohemian Rhapsody" among other Queen songs, sold for £1.7 million ($2.1 million), which Sotheby's state is a record for a composer's piano.[73] Modernist styles of music have also appealed to composers writing for the modern grand piano, including John Cage and Philip Glass.

Traditional Burmese style

[edit]

Introduced to Burma during the mid-19th century, the piano was quickly indigenized by court musicians and uses a novel "technique of interlocked fingering with both hands extending a single melodic line allowed for agogic embellishment, fleeting grace notes in syncopated spirals around a steady underlying beat found in the bell and clapper time keepers", adapted to play Mahāgīta compositions. Many Burmese pianists (e.g., Sandayar Hla Htut and Sandayar Chit Swe) adopt a title from the word for piano, sandaya (Burmese: စန္ဒရား).

Role

[edit]
The piano was the centrepiece of social life in the 19th-century upper-middle-class home (Moritz von Schwind, 1868). The man at the piano is composer Franz Schubert (1797–1828).

The piano is a crucial instrument in many Western musical genres. Pianos are used in soloing or melodic roles and as accompaniment instruments. Pianos can be played alone, with a voice or other instrument, in small groups (bands and chamber music ensembles) and large ensembles (big band or orchestra). A large number of composers and songwriters are proficient pianists because the piano keyboard offers an effective means of experimenting with complex melodic and harmonic interplay of chords and trying out multiple, independent melody lines that are played at the same time. Pianos are used by composers doing film and television scoring, as the large range permits composers to try out melodies and bass lines, even if the music will be orchestrated for other instruments.

Bandleaders and choir conductors often learn the piano, as it is an excellent instrument for learning new pieces and songs to lead in performance. Many conductors are trained in piano, because it allows them to play parts of the symphonies they are conducting (using a piano reduction or doing a reduction from the full score), so that they can develop their interpretation. The piano is an essential tool in music education in elementary and secondary schools, and universities and colleges. Most music classrooms and many practice rooms have a piano. Pianos are used to help teach music theory, music history and music appreciation classes, and even non-pianist music professors or instructors may have a piano in their office.

See also

[edit]

References

[edit]
  1. ^ David R. Peterson (1994), "Acoustics of the hammered dulcimer, its history, and recent developments", Journal of the Acoustical Society of America 95 (5), p. 3002.
  2. ^ Pollens (1995, Ch.1)
  3. ^ Scholes, Percy A.; John Owen Ward (1970). The Oxford Companion to Music (10th ed.). Oxford and New York: Oxford University Press. pp. lvi. ISBN 978-0-19-311306-0.
  4. ^ Ripin & Pollens 2001, ¶2.
  5. ^ Wraight, Denzil (2006). "Recent Approaches in Understanding Cristofori's Fortepiano". Early Music. 34 (4): 635–644. doi:10.1093/em/cal050. ISSN 0306-1078. JSTOR 4137311. S2CID 191481821.
  6. ^ Pollens, Stewart (2013). "Bartolomeo Cristofori in Florence". The Galpin Society Journal. 66: 7–245. ISSN 0072-0127. JSTOR 44083109.
  7. ^ Ripin & Pollens 2001b, ¶1.
  8. ^ a b Powers, Wendy (2003). "The Piano: The Pianofortes of Bartolomeo Cristofori (1655–1731) | Thematic Essay | Heilbrunn Timeline of Art History | The Metropolitan Museum of Art". New York: The Metropolitan Museum of Art. Archived from the original on 17 October 2013. Retrieved 27 January 2014.
  9. ^ Isacoff 2012, p. 23.
  10. ^ a b Badura-Skoda, Eva (2000). "Did J. S. Bach Compose "Pianoforte Concertos"?". Bach. 31 (1): 1–16. ISSN 0005-3600. JSTOR 41640462.
  11. ^ Palmieri, Bob & Meg (2003). The Piano: An Encyclopedia. Taylor & Francis. ISBN 978-0-415-93796-2.. "Instrument: piano et forte genandt" [was] an expression Bach also used when acting as Silbermann's agent in 1749."
  12. ^ Rowland 1998b, p. 23.
  13. ^ "The Viennese Piano". Archived from the original on 11 October 2008. Retrieved 9 October 2007.
  14. ^ Kennedy et al. 2012, "Fortepiano".
  15. ^ Petersen, Sonja (2013). "Craftsmen-Turned-Scientists? The Circulation of Explicit and Working Knowledge in Musical-Instrument Making, 1880–1960". Osiris. 28 (1): 212–231. doi:10.1086/671378. ISSN 0369-7827. JSTOR 10.1086/671378. S2CID 143443333.
  16. ^ Giordano 2010, p. 118.
  17. ^ Cole 2001, ¶8.
  18. ^ Rowland 1998c, p. 45.
  19. ^ a b c Rowland 1998c, p. 44.
  20. ^ a b c Rowland 1998c, p. 47.
  21. ^ Hamilton 1998, p. 62.
  22. ^ Fletcher & Rossing 1998, p. 353.
  23. ^ Isacoff 2012, p. 74.
  24. ^ a b Rowland 1998c, p. 43.
  25. ^ a b Dolge 1911, p. 124.
  26. ^ Dolge 1911, pp. 125–126.
  27. ^ Ripin & Pollens 2001a, ¶4.
  28. ^ "Piano à queue" (in French). Médiathèque de la Cité de la musique. Archived from the original on 19 April 2014. Retrieved 5 April 2014.
  29. ^ a b Ehrlich & Good 2001, ¶4.
  30. ^ Giordano 2011, p. 143–144.
  31. ^ Dolge 1911, p. 48.
  32. ^ Grafing, Keith (1974). "Alpheus Babcock's Cast-Iron Piano Frames". The Galpin Society Journal. 27: 118–124. doi:10.2307/841758. ISSN 0072-0127. JSTOR 841758.
  33. ^ a b Fletcher & Rossing 1998, p. 352.
  34. ^ Richardson 1998, p. 106.
  35. ^ Palmieri, Robert, ed. (2003). Encyclopedia of keyboard instruments, Volume 2. Routledge. p. 437. ISBN 978-0-415-93796-2.
  36. ^ Library of Congress Subject Headings. Library of Congress. 2003.
  37. ^ "PNOmation II". QRS Music Technologies. Archived from the original on 14 July 2014. Retrieved 6 July 2014.
  38. ^ "History of the Eavestaff Pianette Minipiano". Piano-tuners.org. Archived from the original on 1 October 2014. Retrieved 27 January 2014.
  39. ^ Les Cahiers de l'Oronte. 1969. p. 82.
  40. ^ "Stéphane Tsapis, le piano oriental" (in French). 13 October 2019.
  41. ^ Thomas Burkhalter (2014). Local Music Scenes and Globalization: Transnational Platforms in Beirut. Routledge. p. 262. ISBN 9781135073695.
  42. ^ Davies 2001.
  43. ^ "Disklavier Pianos - Yamaha - United States". usa.yamaha.com.
  44. ^ "161 Facts About Steinway & Sons and the Pianos They Build". Steinway & Sons. Archived from the original on 16 November 2014. Retrieved 30 September 2018.
  45. ^ Nave, Carl R. "The Piano". HyperPhysics. Archived from the original on 24 November 2014. Retrieved 19 November 2014.
  46. ^ "The Piano Case". Five Lectures on the Acoustics of the Piano. Royal Swedish Academy of Music. 1990. Archived from the original on 19 July 2010. Retrieved 30 August 2010.
  47. ^ Navi, Parvis; Sandberg, Dick (2012). Thermo-Hydro-Mechanical Wood Processing. CRC Press. p. 46. ISBN 978-1-4398-6042-7.
  48. ^ p. 65
  49. ^ Fine, Larry (2007). 2007–2008 Annual Supplement to The Piano Book. Brookside Press. p. 31. ISBN 978-1-929145-21-8.
  50. ^ The "resonance case principle" is described by Bösendorfer in terms of manufacturing technique Archived 2015-04-02 at the Wayback Machine and description of effect Archived 2015-04-11 at the Wayback Machine.
  51. ^ Barbieri, Patrizio (2001). "Fazioli, Paolo". Grove Music Online. Vol. 1. Oxford University Press. doi:10.1093/gmo/9781561592630.article.42578.
  52. ^ "Model F308" Archived 2015-03-16 at the Wayback Machine, Official Fazioli Website. Accessed 6 March 2015.
  53. ^ Richardson 1998, p. 97.
  54. ^ "The Hindenburg's Aluminum Piano". AIRSHIPS.NET. 5 June 2010.
  55. ^ Fletcher & Rossing 1998, p. 374.
  56. ^ Dolge 1911, p. 97.
  57. ^ King, Rosie (14 September 2018). "World's first 108-key concert grand piano built by Australia's only piano maker". ABC. Archived from the original on 15 September 2018. Retrieved 15 September 2018.
  58. ^ Baron, James (15 July 2007). "Let's Play Two: Singular Piano". New York Times. Archived from the original on 28 June 2017. Retrieved 3 March 2015.
  59. ^ a b Richardson 1998, p. 101.
  60. ^ Fletcher & Rossing 1998, p. 362.
  61. ^ "Fourth pedal". Fazioli. Archived from the original on 16 April 2008. Retrieved 21 April 2008.
  62. ^ "Piano with instrumental attachments". Musica Viva. Archived from the original on 14 July 2011. Retrieved 27 August 2010.
  63. ^ "Wing & Son". Antique Piano Shop. Archived from the original on 1 October 2010. Retrieved 27 August 2010.
  64. ^ Macaulay, David. The New How Things Work. From Levers to Lasers, Windmills to Web Sites, A Visual guide to the World of Machines. Houghton Mifflin Company, United States. 1998. ISBN 0-395-93847-3. pp. 26–27.
  65. ^ Richardson 1998, p. 96.
  66. ^ a b c "Physics of the Piano : Piano Tuners Guild, June 5, 2000". 9 March 2003. Archived from the original on 9 March 2003. Retrieved 18 April 2021.
  67. ^ Reblitz 1993, p. 206.
  68. ^ Reblitz 1993, p. 205.
  69. ^ Matthay, Tobias (1947). The Visible and Invisible in Pianoforte Technique : Being a Digest of the Author's Technical Teachings Up to Date. London: Oxford University Press. p. 3. ISBN 978-0-19-318412-1.
  70. ^ Harrison, Sidney (1953). Piano Technique. London: I. Pitman. p. 57.
  71. ^ Fielden, Thomas (1934). The Science of Pianoforte Technique. London: Macmillan. p. 162.
  72. ^ Boulanger, Nadia. "Sayings of Great Teachers". The Piano Quarterly. Winter 1958–1959: 26.
  73. ^ "Freddie Mercury: Queen star's piano and other items fetch high prices at auction". BBC News. 6 September 2023. Retrieved 23 September 2023.

Bibliography

[edit]

Further reading

[edit]
[edit]

Frequently Asked Questions

BBX Moving ensures the privacy and security of personal items by using secure packing materials, conducting background checks on staff, and offering tracking services for each move. They're committed to keeping customers' belongings safe.

BBX Moving tackles unexpected weather on moving day by adjusting schedules, using protective gear, and ensuring safe transport. They're committed to keeping both the move and their clients' belongings secure despite the weather.

BBX Moving takes extra precautions to secure specialty items like pianos or antique furniture. They use custom crating and padding, ensuring everything's safely transported. Their team's trained to handle these delicate items with care.