Affordable Mudjacking Crystal Lake

Affordable Mudjacking Crystal Lake

Garage Apron Repair

But how exactly do they achieve these remarkable transformations, and what makes their method stand out from traditional repair techniques? Considering the growing concern for our planet, it's crucial to scrutinize the environmental impact of any construction or repair method, including polyurethane concrete raising. Acme's system means your property is back to normal, faster than you'd expect, minimizing inconvenience for you and your family.

Concrete Support Injection

  1. Structural Slab Lifting
  2. Concrete Contractors Crystal Lake
  3. Affordable Concrete Raising
  4. Slabjacking
  5. Subgrade Stabilization
  6. Sinking Slab Correction
  7. Concrete Patching Services
  8. Concrete Pressure Grouting
  9. Backyard Patio Repair
  10. Soil Stabilization
  11. Slab Leveling Solutions
  12. Structural Concrete Repair
  13. Residential Driveway Leveling
  14. Concrete Crack Injection
  15. Sustainable Concrete Repair
  16. Foam Injection Contractors
Learn more about Affordable Mudjacking Crystal Lake here That's why we're committed to providing Crystal Lake with services that don't just look good but significantly reduce the risk of trips and falls.
Their team uses the latest technology in concrete lifting, ensuring your repairs aren't only effective but also environmentally friendly. This foam expands, filling voids and gently lifting the concrete back to its original level. Residential Concrete Services Cracked or uneven sidewalks can lead to trips and falls, making them a liability concern.
As we peel back the layers of this essential service, you'll discover the intricate process and the benefits it holds for your home. Pool Deck Repair In short, opting for Acme's repair services is a smart financial decision. Learn more about Acme Concrete Raising & Repair Inc. here. Recognizing these challenges, Acme Concrete has developed an advanced repair system that not only addresses the immediate issues but also fortifies your concrete against future damage.
She couldn't believe the transformation of her sunken patio back to its original glory.

Garage Apron Repair

  • Level Concrete Surfaces
  • Garage Apron Repair
  • Settled Concrete Solutions
  • Concrete Crack Repair
  • Concrete Expansion Joint Repair
  • Sunken Step Repair
  • Concrete Lifting Specialists
  • Polyurethane Concrete Lifting
  • Water-Resistant Foam Injection
  • Affordable Slab Lifting Crystal Lake
  • Uneven Concrete Repair
  • Cracked Driveway Repair
  • Concrete Raising Cost Estimate
  • Mudjacking
  • Concrete Preservation
  • Sidewalk Leveling
  • Foam Jacking
  • Concrete Raising Experts
'Acme's team was professional, quick, and the results were beyond my expectations,' she raves.

No-Dig Concrete Repair

  1. Concrete Repair Estimate Crystal Lake
  2. Fast Dry Concrete Lifting
  3. Concrete Resurfacing
  4. Foundation Repair
  5. Interior Floor Lifting
  6. Concrete Slab Stabilization
  7. Driveway Leveling Crystal Lake
  8. Concrete Waterproofing
  9. Basement Floor Lifting
  10. Level Concrete Surfaces
  11. Garage Apron Repair
  12. Settled Concrete Solutions
  13. Concrete Crack Repair
  14. Concrete Expansion Joint Repair
  15. Sunken Step Repair
  16. Concrete Lifting Specialists
  17. Polyurethane Concrete Lifting
  18. Water-Resistant Foam Injection
For Crystal Lake residents, this means you can maintain your property's safety and aesthetics without compromising on sustainability. Over time, water seeps into the ground, washing away the soil or compacting it unevenly.

This proactive approach could revolutionize maintenance strategies, making them more efficient and cost-effective. Here's how it works: small holes are drilled into the sunken concrete slab. This can be done through their website or by giving them a call. Firstly, the weight of the slurry mixture used in mudjacking can lead to further settling over time.

This step is vital for ensuring the longevity of our repair work.

Concrete Leveling Companies

  1. Fix Uneven Driveway Crystal Lake
  2. Driveway Settling Solutions
  3. Leveling Concrete Slabs
  4. Concrete Floor Repair
  5. Garage Floor Lifting
  6. Crystal Lake Concrete Experts
  7. Concrete Lifting
  8. Concrete Pressure Injection
  9. Chicagoland Concrete Solutions
  10. Driveway Repair
  11. Quick Concrete Lifting Service
  12. Concrete Void Filling
  13. Local Concrete Leveling Services
  14. Concrete Raising Contractors
  15. Trip Hazard Removal
Moreover, it extends the life of existing concrete, preventing unnecessary demolition and waste. We've helped countless homeowners in Crystal Lake and beyond, transforming problematic concrete into stable, level surfaces.

They're not just about fixing your concrete; they're committed to offering solutions that last. This isn't just any foam; it's a specially formulated compound that reacts and expands beneath the concrete, gently raising it back to its original position. Acme Concrete's advanced repair system enhances safety by addressing potential hazards before they escalate.

So, when you weigh the benefits, it's clear why Acme's innovative approach is outshining traditional methods in the Crystal Lake area.

Commercial Concrete Services

  1. Chicagoland Concrete Solutions
  2. Driveway Repair
  3. Quick Concrete Lifting Service
  4. Concrete Void Filling
  5. Local Concrete Leveling Services
  6. Concrete Raising Contractors
  7. Trip Hazard Removal
  8. Concrete Repair Estimate Crystal Lake
  9. Fast Dry Concrete Lifting
  10. Concrete Resurfacing
  11. Foundation Repair
  12. Interior Floor Lifting
  13. Concrete Slab Stabilization
  14. Driveway Leveling Crystal Lake
  15. Concrete Waterproofing
  16. Basement Floor Lifting
We understand the importance of minimizing our environmental footprint, which is why we've adopted green practices in all our repair and maintenance services. Concrete Driveway Maintenance They'll come to your location, inspect the condition of your concrete, and discuss what you're hoping to achieve.

Citations and other links

Slab Jacking Contractors Crystal Lake

You're not just getting a service; you're gaining a partner who values your satisfaction above all. The integration of digital tools and IoT (Internet of Things) into concrete raising will enable real-time monitoring of conditions, predicting potential issues before they become problems. Building on their commitment to quality and efficiency, Acme Concrete Raising & Repair employs innovative repair techniques to ensure your walkways aren't only safer but also aesthetically pleasing. There are no hidden fees or surprises; what we quote is what you'll pay. What's truly impressive is how quickly the transformation takes place.

Acme Concrete Raising & Repair emphasizes the importance of regular inspections to catch and address minor issues before they escalate. Another highlight includes lifting a large patio that had settled over time, causing water to pool and creating potential foundation issues. Another success story comes from a small business downtown. This longevity reduces the demand for raw materials over time, further lessening the environmental impact.

It's a quick, non-invasive solution that allows you to use your driveway, walkway, or patio almost immediately after the job is done. Water often undermines concrete by washing away the soil underneath or causing freeze-thaw cycles that lead to cracks and sinking. What's more, the Smart Lift System is remarkably efficient. We're constantly updating our knowledge base with the latest techniques and technologies in the industry. Garage Apron Repair

The right contractor won't just promise quick fixes; they'll offer sustainable solutions that address the root cause of your concrete issues. You won't have to deal with a large crew trampling through your property or a long, drawn-out process. Crystal Lake Mudjacking Company It's also lightweight, reducing the risk of further sinking, and it's water-resistant, which guards against the very erosion that caused the problem. Acme's Smart Lift System works quickly, meaning your operations won't be significantly disrupted.

Slab Jacking Contractors Crystal Lake
Sunken Sidewalk Lifting Crystal Lake

Sunken Sidewalk Lifting Crystal Lake

Why should businesses consider Acme's Smart Lift System for their commercial concrete repair needs? It's a precise, controlled process that allows us to lift your concrete without causing further damage. Across the globe, homeowners and businesses alike have witnessed the transformative power of the Smart Lift system through numerous real-life success stories. Soil erosion and compaction, along with poor drainage, can undermine the foundation of your concrete structures. You won't have to wait days to use the treated area; it's ready in hours.
This process not only corrects uneven concrete surfaces but also prevents the potential trip hazards they pose. Void Filling You're not waiting around for concrete to cure or dealing with a torn-up yard. Water is a major enemy of concrete, and ensuring it flows away from the repaired surfaces can significantly reduce the risk of future issues. Concrete Leveling Companies This isn't your average filler.
Where there once were trip hazards and unsightly cracks, there's now a seamless transition from one concrete slab to another. When you choose Acme Concrete's advanced repair system for your sidewalks and driveways, you're making a decision that benefits everyone around you. Read more about Affordable Mudjacking Crystal Lake here Imagine a driveway in Crystal Lake, sunken and cracked, posing a tripping hazard and diminishing the property's curb appeal. Secondly, the invasiveness of the process can damage the structural integrity of the concrete.
They use techniques that make repairs almost invisible, blending seamlessly with the original concrete. Facing the challenge of sinking concrete, homeowners often find themselves at a loss for effective solutions. Sunken concrete has become a stumbling block for many homeowners in Crystal Lake, causing both aesthetic and structural issues. So, when you opt for Acme Concrete, you're not just getting a service; you're securing peace of mind knowing that your property is in good hands.

Concrete Garage Floor Repair Crystal Lake

This precision means you're not left with a patchwork of repairs but a seamlessly restored sidewalk or driveway. To ensure you're making the best choice, look for a contractor with a proven track record of success. Look for signs of uneven surfaces, cracks, or sinking areas that could benefit from Acme Concrete's innovative repair solutions. You're looking at a solution that not only quickly returns your driveways, sidewalks, and patios to their original level but also ensures they stay that way for years to come.

They're not just about fixing concrete; they're about building trust. Furthermore, we're always here when you need us. Lastly, consider implementing proper drainage solutions around the concrete area.

Beyond enhancing beauty, ensuring your safety is our top priority when it comes to walkway repairs and maintenance. At Acme Concrete Raising & Repair, we're committed to not only improving your walkways but also doing so with eco-friendly solutions that protect our planet. You can expect transparency in every interaction.

Concrete Lifting Near Me

  • Helical Piers
  • Concrete Grinding
  • Precision Concrete Leveling
  • Illinois Concrete Repair
  • Concrete Surface Repair
  • Patio Leveling
  • Sidewalk Leveling Experts
  • Sunken Concrete
  • Driveway Void Repair
  • Porch Leveling
  • Concrete Sinking
  • Local Concrete Repair Crystal Lake
  • Polyjacking Services
  • Concrete Foundation Settlement
  • Sidewalk Trip Hazard Fix
  • Foundation Leveling Services
  • Concrete Leveling
  • Slab Foundation Repair
  • Eco-Friendly Concrete Lifting
  • Structural Slab Lifting


Over the years, we've successfully completed numerous projects, each showcasing our commitment to excellence and attention to detail.

Void Filling

  1. Concrete Raising Experts
  2. Helical Piers
  3. Concrete Grinding
  4. Precision Concrete Leveling
  5. Illinois Concrete Repair
  6. Concrete Surface Repair
  7. Patio Leveling
  8. Sidewalk Leveling Experts
  9. Sunken Concrete
  10. Driveway Void Repair
  11. Porch Leveling
  12. Concrete Sinking
  13. Local Concrete Repair Crystal Lake
  14. Polyjacking Services
  15. Concrete Foundation Settlement
  16. Sidewalk Trip Hazard Fix
  17. Foundation Leveling Services
  18. Concrete Leveling
  19. Slab Foundation Repair
  20. Eco-Friendly Concrete Lifting
The root of the problem often lies beneath the surface.

Pool Deck Repair

  • Concrete Sinking
  • Local Concrete Repair Crystal Lake
  • Polyjacking Services
  • Concrete Foundation Settlement
  • Sidewalk Trip Hazard Fix
  • Foundation Leveling Services
  • Concrete Leveling
  • Slab Foundation Repair
  • Eco-Friendly Concrete Lifting
  • Structural Slab Lifting
  • Concrete Contractors Crystal Lake
  • Affordable Concrete Raising
  • Slabjacking
  • Subgrade Stabilization
  • Sinking Slab Correction
  • Concrete Patching Services
Looking ahead, the future of concrete raising appears increasingly promising thanks to innovative technologies like the Smart Lift system.

Concrete Garage Floor Repair Crystal Lake
Garage Slab Lifting Services Crystal Lake
Garage Slab Lifting Services Crystal Lake

The system uses a specially formulated material that's both strong and eco-friendly, avoiding the need for chemical-laden solutions or the excessive waste often associated with older methods. It's designed to be long-lasting and doesn't degrade into pollutants over time. Moreover, concrete raising maintains the integrity of your original concrete, ensuring that your property's aesthetic remains consistent. These before and after snapshots not only highlight the aesthetic improvement but also underscore the importance of safety and accessibility enhancements provided by our concrete raising services. Forget about the extensive disruptions common with traditional concrete replacement. Curb Lifting

The repairs made with the Smart Lift System are designed to last, offering you peace of mind that you won't need to revisit the same issue year after year.

Concrete Floor Leveling Contractors

  1. Affordable Slab Lifting Crystal Lake
  2. Uneven Concrete Repair
  3. Cracked Driveway Repair
  4. Concrete Raising Cost Estimate
  5. Mudjacking
  6. Concrete Preservation
  7. Sidewalk Leveling
  8. Foam Jacking
  9. Concrete Raising Experts
  10. Helical Piers
  11. Concrete Grinding
  12. Precision Concrete Leveling
  13. Illinois Concrete Repair
  14. Concrete Surface Repair
  15. Patio Leveling
  16. Sidewalk Leveling Experts
  17. Sunken Concrete
  18. Driveway Void Repair
  19. Porch Leveling
You're likely familiar with the unsightly cracks and uneven surfaces that result from this issue. Imagine you've noticed your driveway, patio, or sidewalk starting to sink. Building on the remarkable revitalization of Crystal Lake's concrete landscapes, let's explore how Acme Concrete's polyurethane raising technique has directly benefited our clients through their success stories.

You'll find that setting up the system is surprisingly simple. Moreover, Acme Concrete values your time and property. They've literally raised the bar for home services,' he admits with a chuckle. Initially, technicians carefully assess your sunken concrete to determine the best approach.

Homeowners across Crystal Lake are enjoying smoother driveways, revitalized sidewalks, and sturdy patios, thanks to Acme's innovative approach. By sealing cracks and ensuring proper drainage, you're taking proactive steps to preserve your walkway's structure and aesthetic appeal. This not only reduces the visual impact but also maintains the structural integrity of the slab far better than the heavier, more invasive mudjacking process. With years of hands-on experience, we've honed our skills to provide not just quick fixes, but long-lasting solutions that stand the test of time.

Concrete Lifting Crystal Lake

Once the concrete is lifted and the foam has cured, which doesn't take long, the drilled holes are patched with a strong, quick-setting concrete to blend seamlessly with the surrounding surface. This approach also protects your vehicle's tires from damage caused by uneven surfaces. These holes can weaken the concrete, making it more susceptible to cracking and breaking, especially under heavy loads or in areas of high traffic. It's no wonder it's rising in popularity.
Whether it's a residential driveway or a commercial sidewalk, the Smart Lift system is changing the game, one successful lift at a time. You're at the forefront of witnessing an industry evolution, where technological innovations and eco-friendly solutions are becoming the norm. Getting started with us means putting your trust in experts who care about the longevity and appearance of your property.
You won't have to worry about mismatched concrete patches disrupting your home's overall look. The precision and control during this process mean there's less mess and disruption compared to traditional methods.

Curb Lifting

  1. Concrete Pressure Grouting
  2. Backyard Patio Repair
  3. Soil Stabilization
  4. Slab Leveling Solutions
  5. Structural Concrete Repair
  6. Residential Driveway Leveling
  7. Concrete Crack Injection
  8. Sustainable Concrete Repair
  9. Foam Injection Contractors
  10. Crystal Lake IL Contractors
  11. Concrete Raising Reviews
  12. Crystal Lake Home Services
  13. Concrete Leveling Companies
  14. Soil Erosion Under Slab
  15. Concrete Settling
This foam, unlike other materials, doesn't release harmful chemicals into the surrounding soil and water.
Simple actions like removing debris, leaves, and standing water can significantly extend the lifespan of your walkway. It's filled with stories of relief, satisfaction, and newfound trust in our expertise. They've harnessed the power of polyurethane foam, a material that not only raises your sinking concrete but also stabilizes the soil underneath, preventing future issues.

Explore Affordable Mudjacking Crystal Lake here
Concrete Lifting Crystal Lake

 

A single concrete block, as used for construction

Concrete is a composite material composed of aggregate bound together with a fluid cement that cures to a solid over time. It is the second-most-used substance (after water),[1] the most–widely used building material,[2] and the most-manufactured material in the world.[3]

When aggregate is mixed with dry Portland cement and water, the mixture forms a fluid slurry that can be poured and molded into shape. The cement reacts with the water through a process called hydration,[4] which hardens it after several hours to form a solid matrix that binds the materials together into a durable stone-like material with various uses.[5] This time allows concrete to not only be cast in forms, but also to have a variety of tooled processes performed. The hydration process is exothermic, which means that ambient temperature plays a significant role in how long it takes concrete to set. Often, additives (such as pozzolans or superplasticizers) are included in the mixture to improve the physical properties of the wet mix, delay or accelerate the curing time, or otherwise modify the finished material. Most structural concrete is poured with reinforcing materials (such as steel rebar) embedded to provide tensile strength, yielding reinforced concrete.

Before the invention of Portland cement in the early 1800s, lime-based cement binders, such as lime putty, were often used. The overwhelming majority of concretes are produced using Portland cement, but sometimes with other hydraulic cements, such as calcium aluminate cement.[6][7] Many other non-cementitious types of concrete exist with other methods of binding aggregate together, including asphalt concrete with a bitumen binder, which is frequently used for road surfaces, and polymer concretes that use polymers as a binder.

Concrete is distinct from mortar.[8] Whereas concrete is itself a building material, and contains both coarse (large) and fine (small) aggregate particles, mortar contains only fine aggregates and is mainly used as a bonding agent to hold bricks, tiles and other masonry units together.[9] Grout is another material associated with concrete and cement. It also does not contain coarse aggregates and is usually either pourable or thixotropic, and is used to fill gaps between masonry components or coarse aggregate which has already been put in place. Some methods of concrete manufacture and repair involve pumping grout into the gaps to make up a solid mass in situ.

Etymology

[edit]

The word concrete comes from the Latin word "concretus" (meaning compact or condensed),[10] the perfect passive participle of "concrescere", from "con-" (together) and "crescere" (to grow).

History

[edit]

Ancient times

[edit]

Concrete floors were found in the royal palace of Tiryns, Greece, which dates roughly to 1400 to 1200 BC.[11][12] Lime mortars were used in Greece, such as in Crete and Cyprus, in 800 BC. The Assyrian Jerwan Aqueduct (688 BC) made use of waterproof concrete.[13] Concrete was used for construction in many ancient structures.[14]

Mayan concrete at the ruins of Uxmal (AD 850–925) is referenced in Incidents of Travel in the Yucatán by John L. Stephens. "The roof is flat and had been covered with cement". "The floors were cement, in some places hard, but, by long exposure, broken, and now crumbling under the feet." "But throughout the wall was solid, and consisting of large stones imbedded in mortar, almost as hard as rock."

Small-scale production of concrete-like materials was pioneered by the Nabatean traders who occupied and controlled a series of oases and developed a small empire in the regions of southern Syria and northern Jordan from the 4th century BC. They discovered the advantages of hydraulic lime, with some self-cementing properties, by 700 BC. They built kilns to supply mortar for the construction of rubble masonry houses, concrete floors, and underground waterproof cisterns. They kept the cisterns secret as these enabled the Nabataeans to thrive in the desert.[15] Some of these structures survive to this day.[15]

In the Ancient Egyptian and later Roman eras, builders discovered that adding volcanic ash to lime allowed the mix to set underwater. They discovered the pozzolanic reaction.[16]

Classical era

[edit]
Exterior of the Roman Pantheon, finished 128 AD, the largest unreinforced concrete dome in the world.[17]
Interior of the Pantheon dome, seen from beneath. The concrete for the coffered dome was laid on moulds, mounted on temporary scaffolding.
Opus caementicium exposed in a characteristic Roman arch. In contrast to modern concrete structures, the concrete used in Roman buildings was usually covered with brick or stone.

The Romans used concrete extensively from 300 BC to AD 476.[18] During the Roman Empire, Roman concrete (or opus caementicium) was made from quicklime, pozzolana and an aggregate of pumice.[19] Its widespread use in many Roman structures, a key event in the history of architecture termed the Roman architectural revolution, freed Roman construction from the restrictions of stone and brick materials. It enabled revolutionary new designs in terms of both structural complexity and dimension.[20] The Colosseum in Rome was built largely of concrete, and the Pantheon has the world's largest unreinforced concrete dome.[21]

Concrete, as the Romans knew it, was a new and revolutionary material. Laid in the shape of arches, vaults and domes, it quickly hardened into a rigid mass, free from many of the internal thrusts and strains that troubled the builders of similar structures in stone or brick.[22]

Modern tests show that opus caementicium had a similar compressive strength to modern Portland-cement concrete (c. 200 kg/cm2 [20 MPa; 2,800 psi]).[23] However, due to the absence of reinforcement, its tensile strength was far lower than modern reinforced concrete, and its mode of application also differed:[24]

Modern structural concrete differs from Roman concrete in two important details. First, its mix consistency is fluid and homogeneous, allowing it to be poured into forms rather than requiring hand-layering together with the placement of aggregate, which, in Roman practice, often consisted of rubble. Second, integral reinforcing steel gives modern concrete assemblies great strength in tension, whereas Roman concrete could depend only upon the strength of the concrete bonding to resist tension.[25]

The long-term durability of Roman concrete structures was found to be due to the presence of pyroclastic (volcanic) rock and ash in the concrete mix. The crystallization of strätlingite (a complex calcium aluminosilicate hydrate)[26] during the formation of the concrete and its merging with similar calcium–aluminium-silicate–hydrate structures helped give the Roman concrete a greater degree of fracture resistance compared to modern concrete.[27] In addition, Roman concrete is significantly more resistant to erosion by seawater than modern concrete; the aforementioned pyroclastic materials react with seawater to form Al-tobermorite crystals over time.[28][29] The use of hot mixing in preparation of concrete, leading to the formation of lime clasts in the final product, has been proposed to give the Roman concrete a self-healing ability.[30][31]

The widespread use of concrete in many Roman structures ensured that many survive to the present day. The Baths of Caracalla in Rome are just one example. Many Roman aqueducts and bridges, such as the magnificent Pont du Gard in southern France, have masonry cladding on a concrete core, as does the dome of the Pantheon.

Middle Ages

[edit]

After the Roman Empire, the use of burned lime and pozzolana was greatly reduced. Low kiln temperatures in the burning of lime, lack of pozzolana, and poor mixing all contributed to a decline in the quality of concrete and mortar. From the 11th century, the increased use of stone in church and castle construction led to an increased demand for mortar. Quality began to improve in the 12th century through better grinding and sieving. Medieval lime mortars and concretes were non-hydraulic and were used for binding masonry, "hearting" (binding rubble masonry cores) and foundations. Bartholomaeus Anglicus in his De proprietatibus rerum (1240) describes the making of mortar. In an English translation from 1397, it reads "lyme ... is a stone brent; by medlynge thereof with sonde and water sement is made". From the 14th century, the quality of mortar was again excellent, but only from the 17th century was pozzolana commonly added.[32]

The Canal du Midi was built using concrete in 1670.[33]

Industrial era

[edit]
Smeaton's Tower in Devon, England

Perhaps the greatest step forward in the modern use of concrete was Smeaton's Tower, built by British engineer John Smeaton in Devon, England, between 1756 and 1759. This third Eddystone Lighthouse pioneered the use of hydraulic lime in concrete, using pebbles and powdered brick as aggregate.[34]

A method for producing Portland cement was developed in England and patented by Joseph Aspdin in 1824.[35] Aspdin chose the name for its similarity to Portland stone, which was quarried on the Isle of Portland in Dorset, England. His son William continued developments into the 1840s, earning him recognition for the development of "modern" Portland cement.[36]

Reinforced concrete was invented in 1849 by Joseph Monier.[37] and the first reinforced concrete house was built by François Coignet[38] in 1853. The first concrete reinforced bridge was designed and built by Joseph Monier in 1875.[39]

Prestressed concrete and post-tensioned concrete were pioneered by Eugène Freyssinet, a French structural and civil engineer. Concrete components or structures are compressed by tendon cables during, or after, their fabrication in order to strengthen them against tensile forces developing when put in service. Freyssinet patented the technique on 2 October 1928.[40]

Composition

[edit]

Concrete is an artificial composite material, comprising a matrix of cementitious binder (typically Portland cement paste or asphalt) and a dispersed phase or "filler" of aggregate (typically a rocky material, loose stones, and sand). The binder "glues" the filler together to form a synthetic conglomerate.[41] Many types of concrete are available, determined by the formulations of binders and the types of aggregate used to suit the application of the engineered material. These variables determine strength and density, as well as chemical and thermal resistance of the finished product.

Cross section of a concrete railway sleeper below a rail

Construction aggregates consist of large chunks of material in a concrete mix, generally a coarse gravel or crushed rocks such as limestone, or granite, along with finer materials such as sand.

Cement paste, most commonly made of Portland cement, is the most prevalent kind of concrete binder. For cementitious binders, water is mixed with the dry cement powder and aggregate, which produces a semi-liquid slurry (paste) that can be shaped, typically by pouring it into a form. The concrete solidifies and hardens through a chemical process called hydration. The water reacts with the cement, which bonds the other components together, creating a robust, stone-like material. Other cementitious materials, such as fly ash and slag cement, are sometimes added—either pre-blended with the cement or directly as a concrete component—and become a part of the binder for the aggregate.[42] Fly ash and slag can enhance some properties of concrete such as fresh properties and durability.[42] Alternatively, other materials can also be used as a concrete binder: the most prevalent substitute is asphalt, which is used as the binder in asphalt concrete.

Admixtures are added to modify the cure rate or properties of the material. Mineral admixtures use recycled materials as concrete ingredients. Conspicuous materials include fly ash, a by-product of coal-fired power plants; ground granulated blast furnace slag, a by-product of steelmaking; and silica fume, a by-product of industrial electric arc furnaces.

Structures employing Portland cement concrete usually include steel reinforcement because this type of concrete can be formulated with high compressive strength, but always has lower tensile strength. Therefore, it is usually reinforced with materials that are strong in tension, typically steel rebar.

The mix design depends on the type of structure being built, how the concrete is mixed and delivered, and how it is placed to form the structure.

Cement

[edit]
Several tons of bagged cement, about two minutes of output from a 10,000 ton per day cement kiln

Portland cement is the most common type of cement in general usage. It is a basic ingredient of concrete, mortar, and many plasters.[43] It consists of a mixture of calcium silicates (alite, belite), aluminates and ferrites—compounds, which will react with water. Portland cement and similar materials are made by heating limestone (a source of calcium) with clay or shale (a source of silicon, aluminium and iron) and grinding this product (called clinker) with a source of sulfate (most commonly gypsum).

Cement kilns are extremely large, complex, and inherently dusty industrial installations. Of the various ingredients used to produce a given quantity of concrete, the cement is the most energetically expensive. Even complex and efficient kilns require 3.3 to 3.6 gigajoules of energy to produce a ton of clinker and then grind it into cement. Many kilns can be fueled with difficult-to-dispose-of wastes, the most common being used tires. The extremely high temperatures and long periods of time at those temperatures allows cement kilns to efficiently and completely burn even difficult-to-use fuels.[44] The five major compounds of calcium silicates and aluminates comprising Portland cement range from 5 to 50% in weight.

Curing

[edit]

Combining water with a cementitious material forms a cement paste by the process of hydration. The cement paste glues the aggregate together, fills voids within it, and makes it flow more freely.[45]

As stated by Abrams' law, a lower water-to-cement ratio yields a stronger, more durable concrete, whereas more water gives a freer-flowing concrete with a higher slump.[46] The hydration of cement involves many concurrent reactions. The process involves polymerization, the interlinking of the silicates and aluminate components as well as their bonding to sand and gravel particles to form a solid mass.[47] One illustrative conversion is the hydration of tricalcium silicate:

Cement chemist notation:    C3S + H → C-S-H + CH + heat
Standard notation:               Ca3SiO5 + H2O → CaO・SiO2・H2O (gel) + Ca(OH)2 + heat
Balanced:                             2 Ca3SiO5 + 7 H2O → 3 CaO・2 SiO2・4 H2O (gel) + 3 Ca(OH)2 + heat
                                             (approximately as the exact ratios of CaO, SiO2 and H2O in C-S-H can vary)[47]

The hydration (curing) of cement is irreversible.[48]

Aggregates

[edit]
Crushed stone aggregates

Fine and coarse aggregates make up the bulk of a concrete mixture. Sand, natural gravel, and crushed stone are used mainly for this purpose. Recycled aggregates (from construction, demolition, and excavation waste) are increasingly used as partial replacements for natural aggregates, while a number of manufactured aggregates, including air-cooled blast furnace slag and bottom ash are also permitted.[49]

The size distribution of the aggregate determines how much binder is required. Aggregate with a very even size distribution has the biggest gaps whereas adding aggregate with smaller particles tends to fill these gaps. The binder must fill the gaps between the aggregate as well as paste the surfaces of the aggregate together, and is typically the most expensive component. Thus, variation in sizes of the aggregate reduces the cost of concrete.[50] The aggregate is nearly always stronger than the binder, so its use does not negatively affect the strength of the concrete.

Redistribution of aggregates after compaction often creates non-homogeneity due to the influence of vibration. This can lead to strength gradients.[51]

Decorative stones such as quartzite, small river stones or crushed glass are sometimes added to the surface of concrete for a decorative "exposed aggregate" finish, popular among landscape designers.

Admixtures

[edit]

Admixtures are materials in the form of powder or fluids that are added to the concrete to give it certain characteristics not obtainable with plain concrete mixes. Admixtures are defined as additions "made as the concrete mix is being prepared".[52] The most common admixtures are retarders and accelerators. In normal use, admixture dosages are less than 5% by mass of cement and are added to the concrete at the time of batching/mixing.[53] (See § Production below.) The common types of admixtures[54] are as follows:

  • Accelerators speed up the hydration (hardening) of the concrete. Typical materials used are calcium chloride, calcium nitrate and sodium nitrate. However, use of chlorides may cause corrosion in steel reinforcing and is prohibited in some countries, so that nitrates may be favored, even though they are less effective than the chloride salt. Accelerating admixtures are especially useful for modifying the properties of concrete in cold weather.
  • Air entraining agents add and entrain tiny air bubbles in the concrete, which reduces damage during freeze-thaw cycles, increasing durability. However, entrained air entails a tradeoff with strength, as each 1% of air may decrease compressive strength by 5%.[55] If too much air becomes trapped in the concrete as a result of the mixing process, defoamers can be used to encourage the air bubble to agglomerate, rise to the surface of the wet concrete and then disperse.
  • Bonding agents are used to create a bond between old and new concrete (typically a type of polymer) with wide temperature tolerance and corrosion resistance.
  • Corrosion inhibitors are used to minimize the corrosion of steel and steel bars in concrete.
  • Crystalline admixtures are typically added during batching of the concrete to lower permeability. The reaction takes place when exposed to water and un-hydrated cement particles to form insoluble needle-shaped crystals, which fill capillary pores and micro-cracks in the concrete to block pathways for water and waterborne contaminates. Concrete with crystalline admixture can expect to self-seal as constant exposure to water will continuously initiate crystallization to ensure permanent waterproof protection.
  • Pigments can be used to change the color of concrete, for aesthetics.
  • Plasticizers increase the workability of plastic, or "fresh", concrete, allowing it to be placed more easily, with less consolidating effort. A typical plasticizer is lignosulfonate. Plasticizers can be used to reduce the water content of a concrete while maintaining workability and are sometimes called water-reducers due to this use. Such treatment improves its strength and durability characteristics.
  • Superplasticizers (also called high-range water-reducers) are a class of plasticizers that have fewer deleterious effects and can be used to increase workability more than is practical with traditional plasticizers. Superplasticizers are used to increase compressive strength. It increases the workability of the concrete and lowers the need for water content by 15–30%.
  • Pumping aids improve pumpability, thicken the paste and reduce separation and bleeding.
  • Retarders slow the hydration of concrete and are used in large or difficult pours where partial setting is undesirable before completion of the pour. Typical retarders include sugar, sodium gluconate, citric acid, and tartaric acid.[56]

Mineral admixtures and blended cements

[edit]
Components of cement:
comparison of chemical and physical characteristics[a][57][58][59]
Property Portland
cement
Siliceous[b]
fly ash
Calcareous[c]
fly ash
Slag
cement
Silica
fume
Proportion by mass (%)
SiO2 21.9 52 35 35 85–97
Al2O3 6.9 23 18 12
Fe2O3 3 11 6 1
CaO 63 5 21 40 < 1
MgO 2.5
SO3 1.7
Specific surface (m2/kg)[d] 370 420 420 400 15,000
– 30,000
Specific gravity 3.15 2.38 2.65 2.94 2.22
General purpose Primary binder Cement replacement Cement replacement Cement replacement Property enhancer
  1. ^ Values shown are approximate: those of a specific material may vary.
  2. ^ ASTM C618 Class F
  3. ^ ASTM C618 Class C
  4. ^ Specific surface measurements for silica fume by nitrogen adsorption (BET) method, others by air permeability method (Blaine).

Inorganic materials that have pozzolanic or latent hydraulic properties, these very fine-grained materials are added to the concrete mix to improve the properties of concrete (mineral admixtures),[53] or as a replacement for Portland cement (blended cements).[60] Products which incorporate limestone, fly ash, blast furnace slag, and other useful materials with pozzolanic properties into the mix, are being tested and used. These developments are ever growing in relevance to minimize the impacts caused by cement use, notorious for being one of the largest producers (at about 5 to 10%) of global greenhouse gas emissions.[61] The use of alternative materials also is capable of lowering costs, improving concrete properties, and recycling wastes, the latest being relevant for circular economy aspects of the construction industry, whose demand is ever growing with greater impacts on raw material extraction, waste generation and landfill practices.

  • Fly ash: A by-product of coal-fired electric generating plants, it is used to partially replace Portland cement (by up to 60% by mass). The properties of fly ash depend on the type of coal burnt. In general, siliceous fly ash is pozzolanic, while calcareous fly ash has latent hydraulic properties.[62]
  • Ground granulated blast furnace slag (GGBFS or GGBS): A by-product of steel production is used to partially replace Portland cement (by up to 80% by mass). It has latent hydraulic properties.[63]
  • Silica fume: A by-product of the production of silicon and ferrosilicon alloys. Silica fume is similar to fly ash, but has a particle size 100 times smaller. This results in a higher surface-to-volume ratio and a much faster pozzolanic reaction. Silica fume is used to increase strength and durability of concrete, but generally requires the use of superplasticizers for workability.[64]
  • High reactivity metakaolin (HRM): Metakaolin produces concrete with strength and durability similar to concrete made with silica fume. While silica fume is usually dark gray or black in color, high-reactivity metakaolin is usually bright white in color, making it the preferred choice for architectural concrete where appearance is important.
  • Carbon nanofibers can be added to concrete to enhance compressive strength and gain a higher Young's modulus, and also to improve the electrical properties required for strain monitoring, damage evaluation and self-health monitoring of concrete. Carbon fiber has many advantages in terms of mechanical and electrical properties (e.g., higher strength) and self-monitoring behavior due to the high tensile strength and high electrical conductivity.[65]
  • Carbon products have been added to make concrete electrically conductive, for deicing purposes.[66]
  • New research from Japan's University of Kitakyushu shows that a washed and dried recycled mix of used diapers can be an environmental solution to producing less landfill and using less sand in concrete production. A model home was built in Indonesia to test the strength and durability of the new diaper-cement composite.[67]

Production

[edit]
Concrete plant showing a concrete mixer being filled from ingredient silos
Concrete mixing plant in Birmingham, Alabama, in 1936

Concrete production is the process of mixing together the various ingredients—water, aggregate, cement, and any additives—to produce concrete. Concrete production is time-sensitive. Once the ingredients are mixed, workers must put the concrete in place before it hardens. In modern usage, most concrete production takes place in a large type of industrial facility called a concrete plant, or often a batch plant. The usual method of placement is casting in formwork, which holds the mix in shape until it has set enough to hold its shape unaided.

Concrete plants come in two main types, ready-mix plants and central mix plants. A ready-mix plant blends all of the solid ingredients, while a central mix does the same but adds water. A central-mix plant offers more precise control of the concrete quality. Central mix plants must be close to the work site where the concrete will be used, since hydration begins at the plant.

A concrete plant consists of large hoppers for storage of various ingredients like cement, storage for bulk ingredients like aggregate and water, mechanisms for the addition of various additives and amendments, machinery to accurately weigh, move, and mix some or all of those ingredients, and facilities to dispense the mixed concrete, often to a concrete mixer truck.

Modern concrete is usually prepared as a viscous fluid, so that it may be poured into forms. The forms are containers that define the desired shape. Concrete formwork can be prepared in several ways, such as slip forming and steel plate construction. Alternatively, concrete can be mixed into dryer, non-fluid forms and used in factory settings to manufacture precast concrete products.

Interruption in pouring the concrete can cause the initially placed material to begin to set before the next batch is added on top. This creates a horizontal plane of weakness called a cold joint between the two batches.[68] Once the mix is where it should be, the curing process must be controlled to ensure that the concrete attains the desired attributes. During concrete preparation, various technical details may affect the quality and nature of the product.

Design mix

[edit]

Design mix ratios are decided by an engineer after analyzing the properties of the specific ingredients being used. Instead of using a 'nominal mix' of 1 part cement, 2 parts sand, and 4 parts aggregate, a civil engineer will custom-design a concrete mix to exactly meet the requirements of the site and conditions, setting material ratios and often designing an admixture package to fine-tune the properties or increase the performance envelope of the mix. Design-mix concrete can have very broad specifications that cannot be met with more basic nominal mixes, but the involvement of the engineer often increases the cost of the concrete mix.

Concrete mixes are primarily divided into nominal mix, standard mix and design mix.

Nominal mix ratios are given in volume of . Nominal mixes are a simple, fast way of getting a basic idea of the properties of the finished concrete without having to perform testing in advance.

Various governing bodies (such as British Standards) define nominal mix ratios into a number of grades, usually ranging from lower compressive strength to higher compressive strength. The grades usually indicate the 28-day cure strength.[69]

Mixing

[edit]

Thorough mixing is essential to produce uniform, high-quality concrete.

Separate paste mixing has shown that the mixing of cement and water into a paste before combining these materials with aggregates can increase the compressive strength of the resulting concrete.[70] The paste is generally mixed in a high-speed, shear-type mixer at a w/c (water to cement ratio) of 0.30 to 0.45 by mass. The cement paste premix may include admixtures such as accelerators or retarders, superplasticizers, pigments, or silica fume. The premixed paste is then blended with aggregates and any remaining batch water and final mixing is completed in conventional concrete mixing equipment.[71]

Resonant acoustic mixing has also been found effective in producing ultra-high performance cementitious materials, as it produces a dense matrix with lowc porosity.[72]

Sample analysis—workability

[edit]
Concrete floor of a parking garage being placed
Pouring and smoothing out concrete at Palisades Park in Washington, DC

Workability is the ability of a fresh (plastic) concrete mix to fill the form/mold properly with the desired work (pouring, pumping, spreading, tamping, vibration) and without reducing the concrete's quality. Workability depends on water content, aggregate (shape and size distribution), cementitious content and age (level of hydration) and can be modified by adding chemical admixtures, like superplasticizer. Raising the water content or adding chemical admixtures increases concrete workability. Excessive water leads to increased bleeding or segregation of aggregates (when the cement and aggregates start to separate), with the resulting concrete having reduced quality. Changes in gradation can also affect workability of the concrete, although a wide range of gradation can be used for various applications.[73][74] An undesirable gradation can mean using a large aggregate that is too large for the size of the formwork, or which has too few smaller aggregate grades to serve to fill the gaps between the larger grades, or using too little or too much sand for the same reason, or using too little water, or too much cement, or even using jagged crushed stone instead of smoother round aggregate such as pebbles. Any combination of these factors and others may result in a mix which is too harsh, i.e., which does not flow or spread out smoothly, is difficult to get into the formwork, and which is difficult to surface finish.[75]

Workability can be measured by the concrete slump test, a simple measure of the plasticity of a fresh batch of concrete following the ASTM C 143 or EN 12350-2 test standards. Slump is normally measured by filling an "Abrams cone" with a sample from a fresh batch of concrete. The cone is placed with the wide end down onto a level, non-absorptive surface. It is then filled in three layers of equal volume, with each layer being tamped with a steel rod to consolidate the layer. When the cone is carefully lifted off, the enclosed material slumps a certain amount, owing to gravity. A relatively dry sample slumps very little, having a slump value of one to two inches (25 to 51 mm) out of one foot (300 mm). A relatively wet concrete sample may slump as much as eight inches (200 mm). Workability can also be measured by the flow table test.

Slump can be increased by addition of chemical admixtures such as plasticizer or superplasticizer without changing the water-cement ratio.[76] Some other admixtures, especially air-entraining admixture, can increase the slump of a mix.

High-flow concrete, like self-consolidating concrete, is tested by other flow-measuring methods. One of these methods includes placing the cone on the narrow end and observing how the mix flows through the cone while it is gradually lifted.

After mixing, concrete is a fluid and can be pumped to the location where needed.

Curing

[edit]
A concrete slab being kept hydrated during water curing by submersion (ponding)

Maintaining optimal conditions for cement hydration

[edit]

Concrete must be kept moist during curing in order to achieve optimal strength and durability.[77] During curing hydration occurs, allowing calcium-silicate hydrate (C-S-H) to form. Over 90% of a mix's final strength is typically reached within four weeks, with the remaining 10% achieved over years or even decades.[78] The conversion of calcium hydroxide in the concrete into calcium carbonate from absorption of CO2 over several decades further strengthens the concrete and makes it more resistant to damage. This carbonation reaction, however, lowers the pH of the cement pore solution and can corrode the reinforcement bars.

Hydration and hardening of concrete during the first three days is critical. Abnormally fast drying and shrinkage due to factors such as evaporation from wind during placement may lead to increased tensile stresses at a time when it has not yet gained sufficient strength, resulting in greater shrinkage cracking. The early strength of the concrete can be increased if it is kept damp during the curing process. Minimizing stress prior to curing minimizes cracking. High-early-strength concrete is designed to hydrate faster, often by increased use of cement that increases shrinkage and cracking. The strength of concrete changes (increases) for up to three years. It depends on cross-section dimension of elements and conditions of structure exploitation.[51] Addition of short-cut polymer fibers can improve (reduce) shrinkage-induced stresses during curing and increase early and ultimate compression strength.[79]

Properly curing concrete leads to increased strength and lower permeability and avoids cracking where the surface dries out prematurely. Care must also be taken to avoid freezing or overheating due to the exothermic setting of cement. Improper curing can cause spalling, reduced strength, poor abrasion resistance and cracking.

Curing techniques avoiding water loss by evaporation

[edit]

During the curing period, concrete is ideally maintained at controlled temperature and humidity. To ensure full hydration during curing, concrete slabs are often sprayed with "curing compounds" that create a water-retaining film over the concrete. Typical films are made of wax or related hydrophobic compounds. After the concrete is sufficiently cured, the film is allowed to abrade from the concrete through normal use.[80]

Traditional conditions for curing involve spraying or ponding the concrete surface with water. The adjacent picture shows one of many ways to achieve this, ponding—submerging setting concrete in water and wrapping in plastic to prevent dehydration. Additional common curing methods include wet burlap and plastic sheeting covering the fresh concrete.

For higher-strength applications, accelerated curing techniques may be applied to the concrete. A common technique involves heating the poured concrete with steam, which serves to both keep it damp and raise the temperature so that the hydration process proceeds more quickly and more thoroughly.

Alternative types

[edit]

Asphalt

[edit]

Asphalt concrete (commonly called asphalt,[81] blacktop, or pavement in North America, and tarmac, bitumen macadam, or rolled asphalt in the United Kingdom and Ireland) is a composite material commonly used to surface roads, parking lots, airports, as well as the core of embankment dams.[82] Asphalt mixtures have been used in pavement construction since the beginning of the twentieth century.[83] It consists of mineral aggregate bound together with asphalt, laid in layers, and compacted. The process was refined and enhanced by Belgian inventor and U.S. immigrant Edward De Smedt.[84]

The terms asphalt (or asphaltic) concrete, bituminous asphalt concrete, and bituminous mixture are typically used only in engineering and construction documents, which define concrete as any composite material composed of mineral aggregate adhered with a binder. The abbreviation, AC, is sometimes used for asphalt concrete but can also denote asphalt content or asphalt cement, referring to the liquid asphalt portion of the composite material.

Graphene enhanced concrete

[edit]

Graphene enhanced concretes are standard designs of concrete mixes, except that during the cement-mixing or production process, a small amount of chemically engineered graphene (typically < 0.5% by weight) is added.[85][86] These enhanced graphene concretes are designed around the concrete application.

Microbial

[edit]

Bacteria such as Bacillus pasteurii, Bacillus pseudofirmus, Bacillus cohnii, Sporosarcina pasteuri, and Arthrobacter crystallopoietes increase the compression strength of concrete through their biomass. Bacillus sp. CT-5. can reduce corrosion of reinforcement in reinforced concrete by up to four times. Sporosarcina pasteurii reduces water and chloride permeability. B. pasteurii increases resistance to acid.[87] Bacillus pasteurii and B. sphaericuscan induce calcium carbonate precipitation in the surface of cracks, adding compression strength.[88] However some forms of bacteria can also be concrete-destroying.[89]

Nanoconcrete

[edit]
Decorative plate made of Nano concrete with High-Energy Mixing (HEM)

Nanoconcrete (also spelled "nano concrete"' or "nano-concrete") is a class of materials that contains Portland cement particles that are no greater than 100 μm[90] and particles of silica no greater than 500 μm, which fill voids that would otherwise occur in normal concrete, thereby substantially increasing the material's strength.[91] It is widely used in foot and highway bridges where high flexural and compressive strength are indicated.[88]

Pervious

[edit]

Pervious concrete is a mix of specially graded coarse aggregate, cement, water, and little-to-no fine aggregates. This concrete is also known as "no-fines" or porous concrete. Mixing the ingredients in a carefully controlled process creates a paste that coats and bonds the aggregate particles. The hardened concrete contains interconnected air voids totaling approximately 15 to 25 percent. Water runs through the voids in the pavement to the soil underneath. Air entrainment admixtures are often used in freeze-thaw climates to minimize the possibility of frost damage. Pervious concrete also permits rainwater to filter through roads and parking lots, to recharge aquifers, instead of contributing to runoff and flooding.[92]

Polymer

[edit]

Polymer concretes are mixtures of aggregate and any of various polymers and may be reinforced. The cement is costlier than lime-based cements, but polymer concretes nevertheless have advantages; they have significant tensile strength even without reinforcement, and they are largely impervious to water. Polymer concretes are frequently used for the repair and construction of other applications, such as drains.

Plant fibers

[edit]

Plant fibers and particles can be used in a concrete mix or as a reinforcement.[93][94][95] These materials can increase ductility but the lignocellulosic particles hydrolyze during concrete curing as a result of alkaline environment and elevated temperatures[96][97][98] Such process, that is difficult to measure,[99] can affect the properties of the resulting concrete.

Sulfur concrete

[edit]

Sulfur concrete is a special concrete that uses sulfur as a binder and does not require cement or water.

Volcanic

[edit]

Volcanic concrete substitutes volcanic rock for the limestone that is burned to form clinker. It consumes a similar amount of energy, but does not directly emit carbon as a byproduct.[100] Volcanic rock/ash are used as supplementary cementitious materials in concrete to improve the resistance to sulfate, chloride and alkali silica reaction due to pore refinement.[101] Also, they are generally cost effective in comparison to other aggregates,[102] good for semi and light weight concretes,[102] and good for thermal and acoustic insulation.[102]

Pyroclastic materials, such as pumice, scoria, and ashes are formed from cooling magma during explosive volcanic eruptions. They are used as supplementary cementitious materials (SCM) or as aggregates for cements and concretes.[103] They have been extensively used since ancient times to produce materials for building applications. For example, pumice and other volcanic glasses were added as a natural pozzolanic material for mortars and plasters during the construction of the Villa San Marco in the Roman period (89 BC – 79 AD), which remain one of the best-preserved otium villae of the Bay of Naples in Italy.[104]

Waste light

[edit]

Waste light is a form of polymer modified concrete. The specific polymer admixture allows the replacement of all the traditional aggregates (gravel, sand, stone) by any mixture of solid waste materials in the grain size of 3–10 mm to form a low-compressive-strength (3–20 N/mm2) product[105] for road and building construction. One cubic meter of waste light concrete contains 1.1–1.3 m3 of shredded waste and no other aggregates.

Recycled Aggregate Concrete (RAC)

[edit]

Recycled aggregate concretes are standard concrete mixes with the addition or substitution of natural aggregates with recycled aggregates sourced from construction and demolition wastes, disused pre-cast concretes or masonry. In most cases, recycled aggregate concrete results in higher water absorption levels by capillary action and permeation, which are the prominent determiners of the strength and durability of the resulting concrete. The increase in water absorption levels is mainly caused by the porous adhered mortar that exists in the recycled aggregates. Accordingly, recycled concrete aggregates that have been washed to reduce the quantity of mortar adhered to aggregates show lower water absorption levels compared to untreated recycled aggregates.

The quality of the recycled aggregate concrete is determined by several factors, including the size, the number of replacement cycles, and the moisture levels of the recycled aggregates. When the recycled concrete aggregates are crushed into coarser fractures, the mixed concrete shows better permeability levels, resulting in an overall increase in strength. In contrast, recycled masonry aggregates provide better qualities when crushed in finer fractures. With each generation of recycled concrete, the resulting compressive strength decreases.

Properties

[edit]

Concrete has relatively high compressive strength, but much lower tensile strength.[106] Therefore, it is usually reinforced with materials that are strong in tension (often steel). The elasticity of concrete is relatively constant at low stress levels but starts decreasing at higher stress levels as matrix cracking develops. Concrete has a very low coefficient of thermal expansion and shrinks as it matures. All concrete structures crack to some extent, due to shrinkage and tension. Concrete that is subjected to long-duration forces is prone to creep.

Tests can be performed to ensure that the properties of concrete correspond to specifications for the application.

Compression testing of a concrete cylinder

The ingredients affect the strengths of the material. Concrete strength values are usually specified as the lower-bound compressive strength of either a cylindrical or cubic specimen as determined by standard test procedures.

The strengths of concrete is dictated by its function. Very low-strength—14 MPa (2,000 psi) or less—concrete may be used when the concrete must be lightweight.[107] Lightweight concrete is often achieved by adding air, foams, or lightweight aggregates, with the side effect that the strength is reduced. For most routine uses, 20 to 32 MPa (2,900 to 4,600 psi) concrete is often used. 40 MPa (5,800 psi) concrete is readily commercially available as a more durable, although more expensive, option. Higher-strength concrete is often used for larger civil projects.[108] Strengths above 40 MPa (5,800 psi) are often used for specific building elements. For example, the lower floor columns of high-rise concrete buildings may use concrete of 80 MPa (11,600 psi) or more, to keep the size of the columns small. Bridges may use long beams of high-strength concrete to lower the number of spans required.[109][110] Occasionally, other structural needs may require high-strength concrete. If a structure must be very rigid, concrete of very high strength may be specified, even much stronger than is required to bear the service loads. Strengths as high as 130 MPa (18,900 psi) have been used commercially for these reasons.[109]

Energy efficiency

[edit]

The cement produced for making concrete accounts for about 8% of worldwide CO2 emissions per year (compared to, e.g., global aviation at 1.9%).[111] The two largest sources of CO2 are produced by the cement manufacturing process, arising from (1) the decarbonation reaction of limestone in the cement kiln (T ≈ 950 °C), and (2) from the combustion of fossil fuel to reach the sintering temperature (T ≈ 1450 °C) of cement clinker in the kiln. The energy required for extracting, crushing, and mixing the raw materials (construction aggregates used in the concrete production, and also limestone and clay feeding the cement kiln) is lower. Energy requirement for transportation of ready-mix concrete is also lower because it is produced nearby the construction site from local resources, typically manufactured within 100 kilometers of the job site.[112] The overall embodied energy of concrete at roughly 1 to 1.5 megajoules per kilogram is therefore lower than for many structural and construction materials.[113]

Once in place, concrete offers a great energy efficiency over the lifetime of a building.[114] Concrete walls leak air far less than those made of wood frames.[115] Air leakage accounts for a large percentage of energy loss from a home. The thermal mass properties of concrete increase the efficiency of both residential and commercial buildings. By storing and releasing the energy needed for heating or cooling, concrete's thermal mass delivers year-round benefits by reducing temperature swings inside and minimizing heating and cooling costs.[116] While insulation reduces energy loss through the building envelope, thermal mass uses walls to store and release energy. Modern concrete wall systems use both external insulation and thermal mass to create an energy-efficient building. Insulating concrete forms (ICFs) are hollow blocks or panels made of either insulating foam or rastra that are stacked to form the shape of the walls of a building and then filled with reinforced concrete to create the structure.

Fire safety

[edit]
Boston City Hall (1968) is a Brutalist design constructed largely of precast and poured in place concrete.

Concrete buildings are more resistant to fire than those constructed using steel frames, since concrete has lower heat conductivity than steel and can thus last longer under the same fire conditions. Concrete is sometimes used as a fire protection for steel frames, for the same effect as above. Concrete as a fire shield, for example Fondu fyre, can also be used in extreme environments like a missile launch pad.

Options for non-combustible construction include floors, ceilings and roofs made of cast-in-place and hollow-core precast concrete. For walls, concrete masonry technology and Insulating Concrete Forms (ICFs) are additional options. ICFs are hollow blocks or panels made of fireproof insulating foam that are stacked to form the shape of the walls of a building and then filled with reinforced concrete to create the structure.

Concrete also provides good resistance against externally applied forces such as high winds, hurricanes, and tornadoes owing to its lateral stiffness, which results in minimal horizontal movement. However, this stiffness can work against certain types of concrete structures, particularly where a relatively higher flexing structure is required to resist more extreme forces.

Earthquake safety

[edit]

As discussed above, concrete is very strong in compression, but weak in tension. Larger earthquakes can generate very large shear loads on structures. These shear loads subject the structure to both tensile and compressional loads. Concrete structures without reinforcement, like other unreinforced masonry structures, can fail during severe earthquake shaking. Unreinforced masonry structures constitute one of the largest earthquake risks globally.[117] These risks can be reduced through seismic retrofitting of at-risk buildings, (e.g. school buildings in Istanbul, Turkey).[118]

Construction

[edit]
The City Court Building in Buffalo, New York

Concrete is one of the most durable building materials. It provides superior fire resistance compared with wooden construction and gains strength over time. Structures made of concrete can have a long service life.[119] Concrete is used more than any other artificial material in the world.[120] As of 2006, about 7.5 billion cubic meters of concrete are made each year, more than one cubic meter for every person on Earth.[121]

Reinforced

[edit]
Christ the Redeemer statue in Rio de Janeiro, Brazil. It is made of reinforced concrete clad in a mosaic of thousands of triangular soapstone tiles.[122]

The use of reinforcement, in the form of iron was introduced in the 1850s by French industrialist François Coignet, and it was not until the 1880s that German civil engineer G. A. Wayss used steel as reinforcement. Concrete is a relatively brittle material that is strong under compression but less in tension. Plain, unreinforced concrete is unsuitable for many structures as it is relatively poor at withstanding stresses induced by vibrations, wind loading, and so on. Hence, to increase its overall strength, steel rods, wires, mesh or cables can be embedded in concrete before it is set. This reinforcement, often known as rebar, resists tensile forces.[123]

Reinforced concrete (RC) is a versatile composite and one of the most widely used materials in modern construction. It is made up of different constituent materials with very different properties that complement each other. In the case of reinforced concrete, the component materials are almost always concrete and steel. These two materials form a strong bond together and are able to resist a variety of applied forces, effectively acting as a single structural element.[124]

Reinforced concrete can be precast or cast-in-place (in situ) concrete, and is used in a wide range of applications such as; slab, wall, beam, column, foundation, and frame construction. Reinforcement is generally placed in areas of the concrete that are likely to be subject to tension, such as the lower portion of beams. Usually, there is a minimum of 50 mm cover, both above and below the steel reinforcement, to resist spalling and corrosion which can lead to structural instability.[123] Other types of non-steel reinforcement, such as Fibre-reinforced concretes are used for specialized applications, predominately as a means of controlling cracking.[124]

Precast

[edit]

Precast concrete is concrete which is cast in one place for use elsewhere and is a mobile material. The largest part of precast production is carried out in the works of specialist suppliers, although in some instances, due to economic and geographical factors, scale of product or difficulty of access, the elements are cast on or adjacent to the construction site.[125] Precasting offers considerable advantages because it is carried out in a controlled environment, protected from the elements, but the downside of this is the contribution to greenhouse gas emission from transportation to the construction site.[124]

Advantages to be achieved by employing precast concrete:[125]

  • Preferred dimension schemes exist, with elements of tried and tested designs available from a catalogue.
  • Major savings in time result from manufacture of structural elements apart from the series of events which determine overall duration of the construction, known by planning engineers as the 'critical path'.
  • Availability of Laboratory facilities capable of the required control tests, many being certified for specific testing in accordance with National Standards.
  • Equipment with capability suited to specific types of production such as stressing beds with appropriate capacity, moulds and machinery dedicated to particular products.
  • High-quality finishes achieved direct from the mould eliminate the need for interior decoration and ensure low maintenance costs.

Mass structures

[edit]
Aerial photo of reconstruction at Taum Sauk (Missouri) pumped storage facility in late November 2009. After the original reservoir failed, the new reservoir was made of roller-compacted concrete.

Due to cement's exothermic chemical reaction while setting up, large concrete structures such as dams, navigation locks, large mat foundations, and large breakwaters generate excessive heat during hydration and associated expansion. To mitigate these effects, post-cooling[126] is commonly applied during construction. An early example at Hoover Dam used a network of pipes between vertical concrete placements to circulate cooling water during the curing process to avoid damaging overheating. Similar systems are still used; depending on volume of the pour, the concrete mix used, and ambient air temperature, the cooling process may last for many months after the concrete is placed. Various methods also are used to pre-cool the concrete mix in mass concrete structures.[126]

Another approach to mass concrete structures that minimizes cement's thermal by-product is the use of roller-compacted concrete, which uses a dry mix which has a much lower cooling requirement than conventional wet placement. It is deposited in thick layers as a semi-dry material then roller compacted into a dense, strong mass.

Surface finishes

[edit]
Black basalt polished concrete floor

Raw concrete surfaces tend to be porous and have a relatively uninteresting appearance. Many finishes can be applied to improve the appearance and preserve the surface against staining, water penetration, and freezing.

Examples of improved appearance include stamped concrete where the wet concrete has a pattern impressed on the surface, to give a paved, cobbled or brick-like effect, and may be accompanied with coloration. Another popular effect for flooring and table tops is polished concrete where the concrete is polished optically flat with diamond abrasives and sealed with polymers or other sealants.

Other finishes can be achieved with chiseling, or more conventional techniques such as painting or covering it with other materials.

The proper treatment of the surface of concrete, and therefore its characteristics, is an important stage in the construction and renovation of architectural structures.[127]

Prestressed

[edit]
Stylized cacti decorate a sound/retaining wall in Scottsdale, Arizona

Prestressed concrete is a form of reinforced concrete that builds in compressive stresses during construction to oppose tensile stresses experienced in use. This can greatly reduce the weight of beams or slabs, by better distributing the stresses in the structure to make optimal use of the reinforcement. For example, a horizontal beam tends to sag. Prestressed reinforcement along the bottom of the beam counteracts this. In pre-tensioned concrete, the prestressing is achieved by using steel or polymer tendons or bars that are subjected to a tensile force prior to casting, or for post-tensioned concrete, after casting.

There are two different systems being used:[124]

  • Pretensioned concrete is almost always precast, and contains steel wires (tendons) that are held in tension while the concrete is placed and sets around them.
  • Post-tensioned concrete has ducts through it. After the concrete has gained strength, tendons are pulled through the ducts and stressed. The ducts are then filled with grout. Bridges built in this way have experienced considerable corrosion of the tendons, so external post-tensioning may now be used in which the tendons run along the outer surface of the concrete.

More than 55,000 miles (89,000 km) of highways in the United States are paved with this material. Reinforced concrete, prestressed concrete and precast concrete are the most widely used types of concrete functional extensions in modern days. For more information see Brutalist architecture.

Placement

[edit]
Concrete hoppers to store concrete from concrete mixing transport trucks

Once mixed, concrete is typically transported to the place where it is intended to become a structural item. Various methods of transportation and placement are used depending on the distances involve, quantity needed, and other details of application. Large amounts are often transported by truck, poured free under gravity or through a tremie, or pumped through a pipe. Smaller amounts may be carried in a skip (a metal container which can be tilted or opened to release the contents, usually transported by crane or hoist), or wheelbarrow, or carried in toggle bags for manual placement underwater.

Cold weather placement

[edit]
Pohjolatalo, an office building made of concrete in the city center of Kouvola in Kymenlaakso, Finland

Extreme weather conditions (extreme heat or cold; windy conditions, and humidity variations) can significantly alter the quality of concrete. Many precautions are observed in cold weather placement.[128] Low temperatures significantly slow the chemical reactions involved in hydration of cement, thus affecting the strength development. Preventing freezing is the most important precaution, as formation of ice crystals can cause damage to the crystalline structure of the hydrated cement paste. If the surface of the concrete pour is insulated from the outside temperatures, the heat of hydration will prevent freezing.

The American Concrete Institute (ACI) definition of cold weather placement, ACI 306,[129] is:

  • A period when for more than three successive days the average daily air temperature drops below 40 °F (~ 4.5 °C), and
  • Temperature stays below 50 °F (10 °C) for more than one-half of any 24-hour period.

In Canada, where temperatures tend to be much lower during the cold season, the following criteria are used by CSA A23.1:

  • When the air temperature is ≤ 5 °C, and
  • When there is a probability that the temperature may fall below 5 °C within 24 hours of placing the concrete.

The minimum strength before exposing concrete to extreme cold is 500 psi (3.4 MPa). CSA A 23.1 specified a compressive strength of 7.0 MPa to be considered safe for exposure to freezing.

Underwater placement

[edit]
Assembled tremie placing concrete underwater

Concrete may be placed and cured underwater. Care must be taken in the placement method to prevent washing out the cement. Underwater placement methods include the tremie, pumping, skip placement, manual placement using toggle bags, and bagwork.[130]

A tremie is a vertical, or near-vertical, pipe with a hopper at the top used to pour concrete underwater in a way that avoids washout of cement from the mix due to turbulent water contact with the concrete while it is flowing. This produces a more reliable strength of the product. The toggle bag method is generally used for placing small quantities and for repairs. Wet concrete is loaded into a reusable canvas bag and squeezed out at the required place by the diver. Care must be taken to avoid washout of the cement and fines.

 

Underwater bagwork is the manual placement by divers of woven cloth bags containing dry mix, followed by piercing the bags with steel rebar pins to tie the bags together after every two or three layers, and create a path for hydration to induce curing, which can typically take about 6 to 12 hours for initial hardening and full hardening by the next day. Bagwork concrete will generally reach full strength within 28 days. Each bag must be pierced by at least one, and preferably up to four pins. Bagwork is a simple and convenient method of underwater concrete placement which does not require pumps, plant, or formwork, and which can minimise environmental effects from dispersing cement in the water. Prefilled bags are available, which are sealed to prevent premature hydration if stored in suitable dry conditions. The bags may be biodegradable.[131]

 

Grouted aggregate is an alternative method of forming a concrete mass underwater, where the forms are filled with coarse aggregate and the voids then completely filled from the bottom by displacing the water with pumped grout.[130]

Roads

[edit]

Concrete roads are more fuel efficient to drive on,[132] more reflective and last significantly longer than other paving surfaces, yet have a much smaller market share than other paving solutions. Modern-paving methods and design practices have changed the economics of concrete paving, so that a well-designed and placed concrete pavement will be less expensive on initial costs and significantly less expensive over the life cycle. Another major benefit is that pervious concrete can be used, which eliminates the need to place storm drains near the road, and reducing the need for slightly sloped roadway to help rainwater to run off. No longer requiring discarding rainwater through use of drains also means that less electricity is needed (more pumping is otherwise needed in the water-distribution system), and no rainwater gets polluted as it no longer mixes with polluted water. Rather, it is immediately absorbed by the ground.[citation needed]

Tube forest

[edit]

Cement molded into a forest of tubular structures can be 5.6 times more resistant to cracking/failure than standard concrete. The approach mimics mammalian cortical bone that features elliptical, hollow osteons suspended in an organic matrix, connected by relatively weak "cement lines". Cement lines provide a preferable in-plane crack path. This design fails via a "stepwise toughening mechanism". Cracks are contained within the tube, reducing spreading, by dissipating energy at each tube/step.[133]

Environment, health and safety

[edit]

The manufacture and use of concrete produce a wide range of environmental, economic and social impacts.

Health and safety

[edit]
Concrete dust emission from the use of power tool
Recycled crushed concrete, to be reused as granular fill, is loaded into a semi-dump truck

Grinding of concrete can produce hazardous dust. Exposure to cement dust can lead to issues such as silicosis, kidney disease, skin irritation and similar effects. The U.S. National Institute for Occupational Safety and Health in the United States recommends attaching local exhaust ventilation shrouds to electric concrete grinders to control the spread of this dust. In addition, the Occupational Safety and Health Administration (OSHA) has placed more stringent regulations on companies whose workers regularly come into contact with silica dust. An updated silica rule, which OSHA put into effect 23 September 2017 for construction companies, restricted the amount of breathable crystalline silica workers could legally come into contact with to 50 micro grams per cubic meter of air per 8-hour workday. That same rule went into effect 23 June 2018 for general industry, hydraulic fracturing and maritime. That deadline was extended to 23 June 2021 for engineering controls in the hydraulic fracturing industry. Companies which fail to meet the tightened safety regulations can face financial charges and extensive penalties. The presence of some substances in concrete, including useful and unwanted additives, can cause health concerns due to toxicity and radioactivity. Fresh concrete (before curing is complete) is highly alkaline and must be handled with proper protective equipment.

Cement

[edit]

A major component of concrete is cement, a fine powder used mainly to bind sand and coarser aggregates together in concrete. Although a variety of cement types exist, the most common is "Portland cement", which is produced by mixing clinker with smaller quantities of other additives such as gypsum and ground limestone. The production of clinker, the main constituent of cement, is responsible for the bulk of the sector's greenhouse gas emissions, including both energy intensity and process emissions.[134]

The cement industry is one of the three primary producers of carbon dioxide, a major greenhouse gas – the other two being energy production and transportation industries. On average, every tonne of cement produced releases one tonne of CO2 into the atmosphere. Pioneer cement manufacturers have claimed to reach lower carbon intensities, with 590 kg of CO2eq per tonne of cement produced.[135] The emissions are due to combustion and calcination processes,[136] which roughly account for 40% and 60% of the greenhouse gases, respectively. Considering that cement is only a fraction of the constituents of concrete, it is estimated that a tonne of concrete is responsible for emitting about 100–200 kg of CO2.[137][138] Every year more than 10 billion tonnes of concrete are used worldwide.[138] In the coming years, large quantities of concrete will continue to be used, and the mitigation of CO2 emissions from the sector will be even more critical.

Concrete is used to create hard surfaces that contribute to surface runoff, which can cause heavy soil erosion, water pollution, and flooding, but conversely can be used to divert, dam, and control flooding. Concrete dust released by building demolition and natural disasters can be a major source of dangerous air pollution. Concrete is a contributor to the urban heat island effect, though less so than asphalt.

Climate change mitigation

[edit]

Reducing the cement clinker content might have positive effects on the environmental life-cycle assessment of concrete. Some research work on reducing the cement clinker content in concrete has already been carried out. However, there exist different research strategies. Often replacement of some clinker for large amounts of slag or fly ash was investigated based on conventional concrete technology. This could lead to a waste of scarce raw materials such as slag and fly ash. The aim of other research activities is the efficient use of cement and reactive materials like slag and fly ash in concrete based on a modified mix design approach.[139]

The embodied carbon of a precast concrete facade can be reduced by 50% when using the presented fiber reinforced high performance concrete in place of typical reinforced concrete cladding.[140] Studies have been conducted about commercialization of low-carbon concretes. Life cycle assessment (LCA) of low-carbon concrete was investigated according to the ground granulated blast-furnace slag (GGBS) and fly ash (FA) replacement ratios. Global warming potential (GWP) of GGBS decreased by 1.1 kg CO2 eq/m3, while FA decreased by 17.3 kg CO2 eq/m3 when the mineral admixture replacement ratio was increased by 10%. This study also compared the compressive strength properties of binary blended low-carbon concrete according to the replacement ratios, and the applicable range of mixing proportions was derived.[141]

Climate change adaptation

[edit]

High-performance building materials will be particularly important for enhancing resilience, including for flood defenses and critical-infrastructure protection.[142] Risks to infrastructure and cities posed by extreme weather events are especially serious for those places exposed to flood and hurricane damage, but also where residents need protection from extreme summer temperatures. Traditional concrete can come under strain when exposed to humidity and higher concentrations of atmospheric CO2. While concrete is likely to remain important in applications where the environment is challenging, novel, smarter and more adaptable materials are also needed.[138][143]

End-of-life: degradation and waste

[edit]
The Tunkhannock Viaduct in northeastern Pennsylvania opened in 1915 and is still in regular use today
Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars, the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damage is caused by the formation of expansive products produced by chemical reactions (from carbonatation, chlorides, sulfates and distillate water), by aggressive chemical species present in groundwater and seawater (chlorides, sulfates, magnesium ions), or by microorganisms (bacteria, fungi...) Other damaging processes can also involve calcium leaching by water infiltration, physical phenomena initiating cracks formation and propagation, fire or radiant heat, aggregate expansion, sea water effects, leaching, and erosion by fast-flowing water.[144]

Recycling

[edit]
 
Concrete recycling is the use of rubble from demolished concrete structures. Recycling is cheaper and more ecological than trucking rubble to a landfill.[145] Crushed rubble can be used for road gravel, revetments, retaining walls, landscaping gravel, or raw material for new concrete. Large pieces can be used as bricks or slabs, or incorporated with new concrete into structures, a material called urbanite.[146][147]

There have been concerns about the recycling of painted concrete due to possible lead content. Studies have indicated that recycled concrete exhibits lower strength and durability compared to concrete produced using natural aggregates.[148][149][150][151] This deficiency can be addressed by incorporating supplementary materials such as fly ash into the mixture.[152]

Recygenie has built a 220-unit housing complex out of 100% recycled concrete, strengthening the concrete by adding recycled sand, steel slag, and other byproducts.[153]

World records

[edit]

The world record for the largest concrete pour in a single project is the Three Gorges Dam in Hubei Province, China by the Three Gorges Corporation. The amount of concrete used in the construction of the dam is estimated at 16 million cubic meters over 17 years. The previous record was 12.3 million cubic meters held by Itaipu hydropower station in Brazil.[154][155][156]

The world record for concrete pumping was set on 7 August 2009 during the construction of the Parbati Hydroelectric Project, near the village of Suind, Himachal Pradesh, India, when the concrete mix was pumped through a vertical height of 715 m (2,346 ft).[157][158]

The Polavaram dam works in Andhra Pradesh on 6 January 2019 entered the Guinness World Records by pouring 32,100 cubic metres of concrete in 24 hours.[159] The world record for the largest continuously poured concrete raft was achieved in August 2007 in Abu Dhabi by contracting firm Al Habtoor-CCC Joint Venture and the concrete supplier is Unibeton Ready Mix.[160][161] The pour (a part of the foundation for the Abu Dhabi's Landmark Tower) was 16,000 cubic meters of concrete poured within a two-day period.[162] The previous record, 13,200 cubic meters poured in 54 hours despite a severe tropical storm requiring the site to be covered with tarpaulins to allow work to continue, was achieved in 1992 by joint Japanese and South Korean consortiums Hazama Corporation and the Samsung C&T Corporation for the construction of the Petronas Towers in Kuala Lumpur, Malaysia.[163]

The world record for largest continuously poured concrete floor was completed 8 November 1997, in Louisville, Kentucky by design-build firm EXXCEL Project Management. The monolithic placement consisted of 225,000 square feet (20,900 m2) of concrete placed in 30 hours, finished to a flatness tolerance of FF 54.60 and a levelness tolerance of FL 43.83. This surpassed the previous record by 50% in total volume and 7.5% in total area.[164][165]

The record for the largest continuously placed underwater concrete pour was completed 18 October 2010, in New Orleans, Louisiana by contractor C. J. Mahan Construction Company, LLC of Grove City, Ohio. The placement consisted of 10,251 cubic yards of concrete placed in 58.5 hours using two concrete pumps and two dedicated concrete batch plants. Upon curing, this placement allows the 50,180-square-foot (4,662 m2) cofferdam to be dewatered approximately 26 feet (7.9 m) below sea level to allow the construction of the Inner Harbor Navigation Canal Sill & Monolith Project to be completed in the dry.[166]

Art

[edit]

Concrete is used as an artistic medium.[167] Its appearance is also imitated in other media: for example Congolese artist Sardoine Mia creates canvases that look like concrete surfaces.[168]

See also

[edit]

References

[edit]
  1. ^ Gagg, Colin R. (May 2014). "Cement and concrete as an engineering material: An historic appraisal and case study analysis". Engineering Failure Analysis. 40: 114–140. doi:10.1016/j.engfailanal.2014.02.004.
  2. ^ Crow, James Mitchell (March 2008). "The concrete conundrum" (PDF). Chemistry World: 62–66. Archived (PDF) from the original on 9 October 2022.
  3. ^ "Cement Statistics and Information". usgs.gov. United States Geological Survey. Retrieved 21 March 2025.
  4. ^ "Scientific Principles". matse1.matse.illinois.edu. Retrieved 24 May 2023.
  5. ^ Li, Zongjin (2011). Advanced concrete technology. John Wiley & Sons. ISBN 978-0-470-90243-1.
  6. ^ Industrial Resources Council (2008). "Portland Cement Concrete". www.industrialresourcescouncil.org. Retrieved 15 June 2018.
  7. ^ National Highway Institute. "Portland Cement Concrete Materials" (PDF). Federal Highway Administration. Archived (PDF) from the original on 9 October 2022.
  8. ^ Limbachiya, Mukesh C.; Kew, Hsein Y. (3 September 2008). Excellence in Concrete Construction through Innovation: Proceedings of the conference held at the Kingston University, United Kingdom, 9 - 10 September 2008. CRC Press. p. 115. ISBN 978-0-203-88344-0.
  9. ^ Allen, Edward; Iano, Joseph (2013). Fundamentals of building construction: materials and methods (Sixth ed.). Hoboken: John Wiley & Sons. p. 314. ISBN 978-1-118-42086-7. OCLC 835621943.
  10. ^ "concretus". Latin Lookup. Archived from the original on 12 May 2013. Retrieved 1 October 2012.
  11. ^ Heinrich Schliemann; Wilhelm Dörpfeld; Felix Adler (1885). Tiryns: The Prehistoric Palace of the Kings of Tiryns, the Results of the Latest Excavations. New York: Charles Scribner's Sons. pp. 190, 203–204, 215.
  12. ^ Sparavigna, Amelia Carolina (2011). "Ancient concrete works". arXiv:1110.5230 [physics.pop-ph].
  13. ^ Jacobsen T and Lloyd S, (1935) "Sennacherib's Aqueduct at Jerwan," Oriental Institute Publications 24, Chicago University Press
  14. ^ Stella L. Marusin (1 January 1996). "Ancient Concrete Structures". Concrete International. 18 (1): 56–58.
  15. ^ a b Gromicko, Nick; Shepard, Kenton (2016). "The History of Concrete". International Association of Certified Home Inspectors, Inc. Retrieved 27 December 2018.
  16. ^ "Riddle solved: Why was Roman concrete so durable?". MIT News | Massachusetts Institute of Technology. 6 January 2023. Retrieved 25 October 2024.
  17. ^ Moore, David (6 October 2014). "Roman Concrete Research". Romanconcrete.com. Archived from the original on 6 October 2014. Retrieved 13 August 2022.
  18. ^ "The History of Concrete". Dept. of Materials Science and Engineering, University of Illinois, Urbana-Champaign. Archived from the original on 27 November 2012. Retrieved 8 January 2013.
  19. ^ Chiu, Y. C. (2010). An Introduction to the History of Project Management: From the Earliest Times to A.D. 1900. Eburon Uitgeverij B.V. p. 50. ISBN 978-90-5972-437-2.
  20. ^ Lancaster, Lynne (2005). Concrete Vaulted Construction in Imperial Rome. Innovations in Context. Cambridge University Press. ISBN 978-0-511-16068-4.
  21. ^ Moore, David (1999). "The Pantheon". romanconcrete.com. Archived from the original on 1 October 2011. Retrieved 26 September 2011.
  22. ^ D.S. Robertson (1969). Greek and Roman Architecture, Cambridge, p. 233
  23. ^ Cowan, Henry J. (1977). The master builders: a history of structural and environmental design from ancient Egypt to the nineteenth century. New York: Wiley. ISBN 0-471-02740-5. OCLC 2896326.
  24. ^ "CIVL 1101". www.ce.memphis.edu. Archived from the original on 27 February 2017.
  25. ^ Robert Mark, Paul Hutchinson: "On the Structure of the Roman Pantheon", Art Bulletin, Vol. 68, No. 1 (1986), p. 26, fn. 5
  26. ^ Kwan, Stephen; Larosa, Judith; Grutzeck, Michael W. (1995). "29Si and27Al MASNMR Study of Stratlingite". Journal of the American Ceramic Society. 78 (7): 1921–1926. doi:10.1111/j.1151-2916.1995.tb08910.x.
  27. ^ Jackson, Marie D.; Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R. (30 December 2014). "Mechanical resilience and cementitious processes in Imperial Roman architectural mortar". PNAS. 111 (52): 18484–18489. Bibcode:2014PNAS..11118484J. doi:10.1073/pnas.1417456111. PMC 4284584. PMID 25512521.
  28. ^ Marie D. Jackson; Sean R. Mulcahy; Heng Chen; Yao Li; Qinfei Li; Piergiulio Cappelletti; Hans-Rudolf Wenk (3 July 2017). "Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete". American Mineralogist. 102 (7): 1435–1450. Bibcode:2017AmMin.102.1435J. doi:10.2138/am-2017-5993CCBY. S2CID 53452767.
  29. ^ Knapton, Sarah (3 July 2017). "Secret of how Roman concrete survived tidal battering for 2,000 years revealed". The Telegraph. Archived from the original on 4 July 2017.
  30. ^ Seymour, Linda M.; Maragh, Janille; Sabatini, Paolo; Di Tommaso, Michel; Weaver, James C.; Masic, Admir (6 January 2023). "Hot mixing: Mechanistic insights into the durability of ancient Roman concrete". Science Advances. 9 (1): eadd1602. Bibcode:2023SciA....9D1602S. doi:10.1126/sciadv.add1602. PMC 9821858. PMID 36608117.cite journal: CS1 maint: article number as page number (link)
  31. ^ Starr, Michelle (1 February 2024). "We Finally Know How Ancient Roman Concrete Was Able to Last Thousands of Years". ScienceAlert. Retrieved 1 February 2024.
  32. ^ Peter Hewlett and Martin Liska (eds.), Lea's Chemistry of Cement and Concrete, 5th ed. (Butterworth-Heinemann, 2019), pp. 3–4.
  33. ^ Rassia, Stamatina Th; Pardalos, Panos M. (15 August 2013). Cities for Smart Environmental and Energy Futures: Impacts on Architecture and Technology. Springer Science & Business Media. p. 58. ISBN 978-3-642-37661-0.
  34. ^ Nick Gromicko & Kenton Shepard. "the History of Concrete". The International Association of Certified Home Inspectors (InterNACHI). Archived from the original on 15 January 2013. Retrieved 8 January 2013.
  35. ^ Herring, Benjamin. "The Secrets of Roman Concrete" (PDF). Romanconcrete.com. Archived (PDF) from the original on 15 September 2012. Retrieved 1 October 2012.
  36. ^ Courland, Robert (2011). Concrete planet: the strange and fascinating story of the world's most common man-made material. Amherst, NY: Prometheus Books. ISBN 978-1-61614-481-4. Archived from the original on 4 November 2015. Retrieved 28 August 2015.
  37. ^ "The History of Concrete and Cement". ThoughtCo. 9 April 2012. Retrieved 13 August 2022.
  38. ^ "Francois Coignet – French house builder". Retrieved 23 December 2016.
  39. ^ « Château de Chazelet » [archive], notice no PA00097319, base Mérimée, ministère français de la Culture.
  40. ^ Billington, David (1985). The Tower and the Bridge. Princeton: Princeton University Press. ISBN 0-691-02393-X.
  41. ^ "Concrete: Scientific Principles". matse1.matse.illinois.edu. Retrieved 6 October 2021.
  42. ^ a b Askarian, Mahya; Fakhretaha Aval, Siavash; Joshaghani, Alireza (22 January 2019). "A comprehensive experimental study on the performance of pumice powder in self-compacting concrete (SCC)". Journal of Sustainable Cement-Based Materials. 7 (6): 340–356. doi:10.1080/21650373.2018.1511486. S2CID 139554392.
  43. ^ Melander, John M.; Farny, James A.; Isberner, Albert W. Jr. (2003). "Portland Cement Plaster/Stucco Manual" (PDF). Portland Cement Association. Archived (PDF) from the original on 12 April 2021. Retrieved 13 July 2021.
  44. ^ Evelien Cochez; Wouter Nijs; Giorgio Simbolotti & Giancarlo Tosato. "Cement Production" (PDF). IEA ETSAP – Energy Technology Systems Analysis Programme. Archived from the original (PDF) on 24 January 2013. Retrieved 9 January 2013.
  45. ^ Gibbons, Jack (7 January 2008). "Measuring Water in Concrete". Concrete Construction. Archived from the original on 11 May 2013. Retrieved 1 October 2012.
  46. ^ "Chapter 9: Designing and Proportioning Normal Concrete Mixtures" (PDF). PCA manual. Portland Concrete Association. Archived (PDF) from the original on 26 May 2012. Retrieved 1 October 2012.
  47. ^ a b "Cement hydration". Understanding Cement. Archived from the original on 17 October 2012. Retrieved 1 October 2012.
  48. ^ Beaudoin, James; Odler, Ivan (2019). "Hydration, Setting and Hardening of Portland Cement". Lea's Chemistry of Cement and Concrete. pp. 157–250. doi:10.1016/B978-0-08-100773-0.00005-8. ISBN 978-0-08-100773-0.
  49. ^ Oikonomou, Nik. D. (1 February 2005). "Recycled concrete aggregates". Cement and Concrete Composites. Cement and Concrete Research in Greece. 27 (2): 315–318. doi:10.1016/j.cemconcomp.2004.02.020. ISSN 0958-9465.
  50. ^ "The Effect of Aggregate Properties on Concrete". www.engr.psu.edu. Engr.psu.edu. 25 December 2012. Archived from the original on 25 December 2012. Retrieved 13 August 2022.
  51. ^ a b Veretennykov, Vitaliy I.; Yugov, Anatoliy M.; Dolmatov, Andriy O.; Bulavytskyi, Maksym S.; Kukharev, Dmytro I.; Bulavytskyi, Artem S. (2008). "Concrete Inhomogeneity of Vertical Cast-in-Place Elements in Skeleton-Type Buildings". AEI 2008. pp. 1–10. doi:10.1061/41002(328)17. ISBN 978-0-7844-1002-8.
  52. ^ Gerry Bye; Paul Livesey; Leslie Struble (2011). "Admixtures and Special Cements". Portland Cement: Third edition. doi:10.1680/pc.36116.185 (inactive 11 July 2025). ISBN 978-0-7277-3611-6.cite book: CS1 maint: DOI inactive as of July 2025 (link)
  53. ^ a b U.S. Federal Highway Administration (14 June 1999). "Admixtures". Archived from the original on 27 January 2007. Retrieved 25 January 2007.
  54. ^ Cement Admixture Association. "Admixture Types". Archived from the original on 3 September 2011. Retrieved 25 December 2010.
  55. ^ Hamakareem, Madeh Izat (14 November 2013). "Effect of Air Entrainment on Concrete Strength". The Constructor. Retrieved 13 November 2020.
  56. ^ Bensted, John (1 January 1998), Hewlett, Peter C. (ed.), "14 - Special Cements", Lea's Chemistry of Cement and Concrete (Fourth Edition), Oxford: Butterworth-Heinemann, pp. 783–840, doi:10.1016/b978-075066256-7/50026-6, ISBN 978-0-7506-6256-7, retrieved 3 November 2024
  57. ^ Holland, Terence C. (2005). "Silica Fume User's Manual" (PDF). Silica Fume Association and United States Department of Transportation Federal Highway Administration Technical Report FHWA-IF-05-016. Retrieved 31 October 2014.
  58. ^ Kosmatka, S.; Kerkhoff, B.; Panerese, W. (2002). Design and Control of Concrete Mixtures (14 ed.). Portland Cement Association, Skokie, Illinois.
  59. ^ Gamble, William. "Cement, Mortar, and Concrete". In Baumeister; Avallone; Baumeister (eds.). Mark's Handbook for Mechanical Engineers (Eighth ed.). McGraw Hill. Section 6, page 177.
  60. ^ Kosmatka, S.H.; Panarese, W.C. (1988). Design and Control of Concrete Mixtures. Skokie, IL: Portland Cement Association. pp. 17, 42, 70, 184. ISBN 978-0-89312-087-0.
  61. ^ "Paving the way to greenhouse gas reductions". MIT News | Massachusetts Institute of Technology. 28 August 2011. Archived from the original on 31 October 2012. Retrieved 13 August 2022.
  62. ^ U.S. Federal Highway Administration (14 June 1999). "Fly Ash". Archived from the original on 21 June 2007. Retrieved 24 January 2007.
  63. ^ U.S. Federal Highway Administration. "Ground Granulated Blast-Furnace Slag". Archived from the original on 22 January 2007. Retrieved 24 January 2007.
  64. ^ U.S. Federal Highway Administration. "Silica Fume". Archived from the original on 22 January 2007. Retrieved 24 January 2007.
  65. ^ Mullapudi, Taraka Ravi Shankar; Gao, Di; Ayoub, Ashraf (September 2013). "Non-destructive evaluation of carbon nanofibre concrete". Magazine of Concrete Research. 65 (18): 1081–1091. doi:10.1680/macr.12.00187.
  66. ^ Tuan, Christopher; Yehia, Sherif (1 July 2004). "Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing". ACI Materials Journal. 101 (4): 287–293.
  67. ^ Kloosterman, Karin (23 May 2023). "Tiny house built from diapers and concrete". Green Prophet. Retrieved 6 October 2024.
  68. ^ "Cold Joints". www.concrete.org.uk. The Concrete Society. Archived from the original on 4 March 2016. Retrieved 30 December 2015.
  69. ^ "Grades of Concrete with Proportion (Mix Ratio)". 26 March 2018.
  70. ^ "Concrete International". concrete.org. 1 November 1989. Archived from the original on 28 September 2007. Retrieved 13 August 2022.
  71. ^ "ACI 304R-00: Guide for Measuring, Mixing, Transporting, and Placing Concrete (Reapproved 2009)".
  72. ^ Vandenberg, Aileen; Wille, Kay (2 June 2019). "The Effects of Resonant Acoustic Mixing on the Microstructure of UHPC". Second International Interactive Symposium on UHPC: The Effects of Resonant Acoustic Mixing on the Microstructure of UHPC. Vol. 2. doi:10.21838/uhpc.9636. ISSN 0000-0000. cite book: |journal= ignored (help)
  73. ^ Sarviel, Ed (1993). Construction Estimating Reference Data. Craftsman Book Company. p. 74. ISBN 978-0-934041-84-3.
  74. ^ Cook, Marllon Daniel; Ghaeezadah, Ashkan; Ley, M. Tyler (1 February 2018). "Impacts of Coarse-Aggregate Gradation on the Workability of Slip-Formed Concrete". Journal of Materials in Civil Engineering. 30 (2) 04017265. doi:10.1061/(ASCE)MT.1943-5533.0002126.
  75. ^ "Aggregate in Concrete – the Concrete Network". Archived from the original on 2 February 2017. Retrieved 15 January 2017.
  76. ^ Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J. (October 2011). "Multi-method approach to study influence of superplasticizers on cement suspensions". Cement and Concrete Research. 41 (10): 1058–1066. doi:10.1016/j.cemconres.2011.06.010.
  77. ^ "Curing Concrete" Peter C. Taylor CRC Press 2013. ISBN 978-0-415-77952-4. eBook ISBN 978-0-203-86613-9
  78. ^ "Concrete Testing". technology.calumet.purdue.edu. Archived from the original on 24 October 2008. Retrieved 10 November 2008.
  79. ^ ""Admixtures for Cementitious Applications."" (PDF). www.minifibers.com. Archived from the original (PDF) on 17 October 2016.
  80. ^ "Home" (PDF). www.daytonsuperior.com. Archived (PDF) from the original on 8 December 2015. Retrieved 12 November 2015.
  81. ^ The American Heritage Dictionary of the English Language. Boston: Houghton Mifflin Harcourt. 2011. p. 106. ISBN 978-0-547-04101-8.
  82. ^ "Asphalt concrete cores for embankment dams". International Water Power and Dam Construction. Archived from the original on 7 July 2012. Retrieved 3 April 2011.
  83. ^ Polaczyk, Pawel; Huang, Baoshan; Shu, Xiang; Gong, Hongren (September 2019). "Investigation into Locking Point of Asphalt Mixtures Utilizing Superpave and Marshall Compactors". Journal of Materials in Civil Engineering. 31 (9) 04019188. doi:10.1061/(ASCE)MT.1943-5533.0002839. S2CID 197635732.
  84. ^ Reid, Carlton (2015). Roads Were Not Built for Cars: How Cyclists Were the First to Push for Good Roads & Became the Pioneers of Motoring. Island Press. p. 120. ISBN 978-1-61091-689-9.
  85. ^ Dalal, Sejal P.; Dalal, Purvang (March 2021). "Experimental Investigation on Strength and Durability of Graphene Nanoengineered Concrete". Construction and Building Materials. 276 122236. doi:10.1016/j.conbuildmat.2020.122236. S2CID 233663658.
  86. ^ Dalal, Sejal P.; Desai, Kandarp; Shah, Dhairya; Prajapati, Sanjay; Dalal, Purvang; Gandhi, Vimal; Shukla, Atindra; Vithlani, Ravi (January 2022). "Strength and feasibility aspects of concrete mixes induced with low-cost surfactant functionalized graphene powder". Asian Journal of Civil Engineering. 23 (1): 39–52. doi:10.1007/s42107-021-00407-7. S2CID 257110774.
  87. ^ Metwally, Gehad A. M.; Mahdy, Mohamed; Abd El-Raheem, Ahmed El-Raheem H. (August 2020). "Performance of Bio Concrete by Using Bacillus Pasteurii Bacteria". Civil Engineering Journal. 6 (8): 1443–1456. doi:10.28991/cej-2020-03091559.
  88. ^ a b Raju, N. Krishna (2018). Prestressed Concrete, 6e. McGraw-Hill Education. p. 1131. ISBN 978-93-87886-25-4.
  89. ^ Falkow, Stanley; Rosenberg, Eugene; Schleifer, Karl-Heinz; Stackebrandt, Erko (13 July 2006). The Prokaryotes: Vol. 2: Ecophysiology and Biochemistry. Springer Science & Business Media. p. 1005. ISBN 978-0-387-25492-0.
  90. ^ Tiwari, AK; Chowdhury, Subrato (2013). "An over view of the application of nanotechnology in construction materials". Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM-2012). Cakrabartī, Subrata; Bhattacharya, Gautam. New Delhi: Springer India. p. 485. ISBN 978-81-322-0757-3. OCLC 831413888.
  91. ^ Thanmanaselvi, M; Ramasamy, V (2023). "A study on durability characteristics of nano-concrete". Materials Today: Proceedings. 80: 2360–2365. doi:10.1016/j.matpr.2021.06.349. ISSN 2214-7853.
  92. ^ "Ground Water Recharging Through Pervious Concrete Pavement". ResearchGate. Retrieved 26 January 2021.
  93. ^ Onuaguluchi, Obinna; Banthia, Nemkumar (1 April 2016). "Plant-based natural fibre reinforced cement composites: A review". Cement and Concrete Composites. 68: 96–108. doi:10.1016/j.cemconcomp.2016.02.014. ISSN 0958-9465.
  94. ^ Wu, Hansong; Shen, Aiqin; Cheng, Qianqian; Cai, Yanxia; Ren, Guiping; Pan, Hongmei; Deng, Shiyi (20 September 2023). "A review of recent developments in application of plant fibers as reinforcements in concrete". Journal of Cleaner Production. 419 138265. Bibcode:2023JCPro.41938265W. doi:10.1016/j.jclepro.2023.138265. ISSN 0959-6526.
  95. ^ Yan, Libo; Kasal, Bohumil; Huang, Liang (1 May 2016). "A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering". Composites Part B: Engineering. 92: 94–132. doi:10.1016/j.compositesb.2016.02.002. ISSN 1359-8368.
  96. ^ Li, Juan; Kasal, Bohumil (July 2023). "Degradation Mechanism of the Wood-Cell Wall Surface in a Cement Environment Measured by Atomic Force Microscopy". Journal of Materials in Civil Engineering. 35 (7) 04023164. doi:10.1061/JMCEE7.MTENG-14910. ISSN 0899-1561.
  97. ^ Li, Juan; Kasal, Bohumil (10 August 2022). "The immediate and short-term degradation of the wood surface in a cement environment measured by AFM". Materials and Structures. 55 (7): 179. doi:10.1617/s11527-022-01988-8. ISSN 1871-6873.
  98. ^ Li, Juan; Kasal, Bohumil (11 April 2022). "Effects of Thermal Aging on the Adhesion Forces of Biopolymers of Wood Cell Walls". Biomacromolecules. 23 (4): 1601–1609. doi:10.1021/acs.biomac.1c01397. ISSN 1525-7797. PMC 9006222. PMID 35303409.
  99. ^ Li, Juan; Bohumil, Kasal (5 February 2021). "Repeatability of Adhesion Force Measurement on Wood Longitudinal Cut Cell Wall Using Atomic Force Microscopy". Wood and Fiber Science. 53 (1): 3–16. doi:10.22382/wfs-2021-02. ISSN 0735-6161.
  100. ^ Lavars, Nick (10 June 2021). "Stanford's low-carbon cement swaps limestone for volcanic rock". New Atlas. Archived from the original on 10 June 2021. Retrieved 11 June 2021.
  101. ^ Celik, K.; Jackson, M.D.; Mancio, M.; Meral, C.; Emwas, A.-H.; Mehta, P.K.; Monteiro, P.J.M. (January 2014). "High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete". Cement and Concrete Composites. 45: 136–147. doi:10.1016/j.cemconcomp.2013.09.003. hdl:11511/37244. S2CID 138740924.
  102. ^ a b c Lemougna, Patrick N.; Wang, Kai-tuo; Tang, Qing; Nzeukou, A.N.; Billong, N.; Melo, U. Chinje; Cui, Xue-min (October 2018). "Review on the use of volcanic ashes for engineering applications". Resources, Conservation and Recycling. 137: 177–190. Bibcode:2018RCR...137..177L. doi:10.1016/j.resconrec.2018.05.031. S2CID 117442866.
  103. ^ Brown, R.J.; Calder, E.S. (2005). "Pyroclastics". Encyclopedia of Geology. pp. 386–397. doi:10.1016/b0-12-369396-9/00153-2. ISBN 978-0-12-369396-9.
  104. ^ Izzo, Francesco; Arizzi, Anna; Cappelletti, Piergiulio; Cultrone, Giuseppe; De Bonis, Alberto; Germinario, Chiara; Graziano, Sossio Fabio; Grifa, Celestino; Guarino, Vincenza; Mercurio, Mariano; Morra, Vincenzo; Langella, Alessio (August 2016). "The art of building in the Roman period (89 B.C. – 79 A.D.): Mortars, plasters and mosaic floors from ancient Stabiae (Naples, Italy)". Construction and Building Materials. 117: 129–143. doi:10.1016/j.conbuildmat.2016.04.101. hdl:10481/104379.
  105. ^ "MASUKO light concrete". Archived from the original on 15 November 2020. Retrieved 13 November 2020.
  106. ^ "Relation Between Compressive and Tensile Strength of Concrete". Archived from the original on 6 January 2019. Retrieved 6 January 2019.
  107. ^ "Structural lightweight concrete" (PDF). Concrete Construction. The Aberdeen Group. March 1981. Archived from the original (PDF) on 11 May 2013.
  108. ^ "Ordering Concrete by PSI". American Concrete. Archived from the original on 11 May 2013. Retrieved 10 January 2013.
  109. ^ a b Henry G. Russel, PE. "Why Use High Performance Concrete?" (PDF). Technical Talk. Archived (PDF) from the original on 15 May 2013. Retrieved 10 January 2013.
  110. ^ "Concrete in Practice: What, Why, and How?" (PDF). NRMCA-National Ready Mixed Concrete Association. Archived (PDF) from the original on 4 August 2012. Retrieved 10 January 2013.
  111. ^ "Making Concrete Change: Innovation in Low-carbon Cement and Concrete". Chatham House. 13 June 2018. Archived from the original on 19 December 2018. Retrieved 17 December 2018.
  112. ^ Rubenstein, Madeleine (9 May 2012). "Emissions from the Cement Industry". State of the Planet. Earth Institute, Columbia University. Archived from the original on 22 December 2016. Retrieved 13 December 2016.
  113. ^ "Concrete and Embodied Energy – Can using concrete be carbon neutral". 22 February 2013. Archived from the original on 16 January 2017. Retrieved 15 January 2017.
  114. ^ Gajda, John (2001). "Energy Use of Single-Family Houses with Various Exterior Walls" (PDF). Archived (PDF) from the original on 9 October 2022.
  115. ^ Green Building with Concrete. Taylor & Francis Group. 2015. ISBN 978-1-4987-0411-3.[page needed]
  116. ^ "Features and Usage of Foam Concrete". Archived from the original on 29 November 2012.
  117. ^ "Unreinforced Masonry Buildings and Earthquakes: Developing Successful Risk Reduction Programs FEMA P-774". Archived from the original on 12 September 2011.
  118. ^ Simsir, C.C.; Jain, A.; Hart, G.C.; Levy, M.P. (12–17 October 2008). Seismic Retrofit Design Of Historic Century-Old School Buildings In Istanbul, Turkey (PDF). 14th World Conference on Earthquake Engineering. Archived from the original (PDF) on 11 January 2012.
  119. ^ Nawy, Edward G. (2008). Concrete Construction Engineering Handbook. CRC Press. ISBN 978-1-4200-0765-7.
  120. ^ Lomborg, Bjørn (2001). The Skeptical Environmentalist: Measuring the Real State of the World. Cambridge University Press. p. 138. ISBN 978-0-521-80447-9.
  121. ^ "Minerals commodity summary – cement – 2007". US United States Geological Survey. 1 June 2007. Archived from the original on 13 December 2007. Retrieved 16 January 2008.
  122. ^ Murray, Lorraine. "Christ the Redeemer (last updated 13 January 2014)". Encyclopædia Britannica. Retrieved 5 November 2022.
  123. ^ a b "Reinforced concrete". www.designingbuildings.co.uk.
  124. ^ a b c d Claisse, Peter A. (2016), "Composites", Civil Engineering Materials, Elsevier, pp. 431–435, doi:10.1016/b978-0-08-100275-9.00038-3, ISBN 978-0-08-100275-9, retrieved 5 October 2021
  125. ^ a b Richardson, John (2003). "Precast concrete structural elements". Advanced Concrete Technology. pp. 3–46. doi:10.1016/B978-075065686-3/50307-4. ISBN 978-0-7506-5686-3.
  126. ^ a b "Mass Concret" (PDF). Archived from the original (PDF) on 27 September 2011.
  127. ^ Sadowski, Łukasz; Mathia, Thomas (2016). "Multi-scale Metrology of Concrete Surface Morphology: Fundamentals and specificity". Construction and Building Materials. 113: 613–621. doi:10.1016/j.conbuildmat.2016.03.099.
  128. ^ "Winter is Coming! Precautions for Cold Weather Concreting". FPrimeC Solutions. 14 November 2016. Archived from the original on 13 January 2017. Retrieved 11 January 2017.
  129. ^ "306R-16 Guide to Cold Weather Concreting". Archived from the original on 15 September 2017.
  130. ^ a b Larn, Richard; Whistler, Rex (1993). "17 – Underwater concreting". Commercial Diving Manual (3rd ed.). Newton Abbott, UK: David and Charles. pp. 297–308. ISBN 0-7153-0100-4.
  131. ^ Prefilled lined underwater hand-placed bagwork product datasheet (PDF). www.soluform.co.uk (Report). Soluform. Retrieved 8 September 2024.
  132. ^ "Mapping of Excess Fuel Consumption". Archived from the original on 2 January 2015.
  133. ^ Paul, Andrew (17 September 2024). "Bone-like, hollow concrete design makes it 5.6 times stronger". Popular Science. Retrieved 11 October 2024.
  134. ^ Akerman, Patrick; Cazzola, Pierpaolo; Christiansen, Emma Skov; Heusden, Renée Van; Iperen, Joanna Kolomanska-van; Christensen, Johannah; Crone, Kilian; Dawe, Keith; Smedt, Guillaume De; Keynes, Alex; Laporte, Anaïs; Gonsolin, Florie; Mensink, Marko; Hebebrand, Charlotte; Hoenig, Volker; Malins, Chris; Neuenhahn, Thomas; Pyc, Ireneusz; Purvis, Andrew; Saygin, Deger; Xiao, Carol; Yang, Yufeng (1 September 2020). "Reaching Zero with Renewables".
  135. ^ "Leading the way to carbon neutrality" (PDF). HeidelbergCement. 24 September 2020. Archived (PDF) from the original on 9 October 2022.
  136. ^ "Cement Clinker Calcination in Cement Production Process". AGICO Cement Plant Supplier. 4 April 2019.
  137. ^ "Carbon footprint" (PDF). Portland Cement Association. Archived (PDF) from the original on 9 October 2022.
  138. ^ a b c Lehne, Johanna; Preston, Felix (13 June 2018). "Making Concrete Change: Innovation in Low-carbon Cement and Concrete".
  139. ^ Proske, Tilo; Hainer, Stefan; Rezvani, Moien; Graubner, Carl-Alexander (September 2013). "Eco-friendly concretes with reduced water and cement contents – Mix design principles and laboratory tests". Cement and Concrete Research. 51: 38–46. doi:10.1016/j.cemconres.2013.04.011.
  140. ^ O'Hegarty, Richard; Kinnane, Oliver; Newell, John; West, Roger (November 2021). "High performance, low carbon concrete for building cladding applications". Journal of Building Engineering. 43 102566. doi:10.1016/j.jobe.2021.102566.
  141. ^ Lee, Jaehyun; Lee, Taegyu; Jeong, Jaewook; Jeong, Jaemin (January 2021). "Sustainability and performance assessment of binary blended low-carbon concrete using supplementary cementitious materials". Journal of Cleaner Production. 280 124373. Bibcode:2021JCPro.28024373L. doi:10.1016/j.jclepro.2020.124373. S2CID 224849505.
  142. ^ Sabry, Fouad (17 January 2022). Translucent Concrete: How-to see-through walls? Using nano optics and mixing fine concrete and optical fibers for illumination during day and night time. One Billion Knowledgeable.
  143. ^ Mehta, P. Kumar (1 February 2009). "Global Concrete Industry Sustainability". Concrete International. 31 (2): 45–48.
  144. ^ Luis Emilio Rendon Diaz Miron; Dessi A. Koleva (2017). Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance. Springer. pp. 2–. ISBN 978-3319554631.
  145. ^ "Home". ConcreteRecycling.org. Archived from the original on 12 April 2010. Retrieved 5 April 2010.
  146. ^ "Urbanite - Reusing Old Concrete - The Concrete Network". ConcreteNetwork.com. Retrieved 24 May 2020.
  147. ^ "Urbanite Construction". www.ecodesignarchitects.co.za. Archived from the original on 7 May 2021. Retrieved 24 May 2020.
  148. ^ Abdo, Ayman; El-Zohairy, Ayman; Alashker, Yasser; Badran, Mohamed Abd El-Aziz; Ahmed, Sayed (1 January 2024). "Effect of Treated/Untreated Recycled Aggregate Concrete: Structural Behavior of RC Beams". Sustainability. 16 (10): 4039. Bibcode:2024Sust...16.4039A. doi:10.3390/su16104039. ISSN 2071-1050.
  149. ^ "Khoan Cắt Bê Tông". Retrieved 25 October 2024.
  150. ^ Abdelfatah, Akmal S.; Tabsh, Sami W. (2011). "Review of Research on and Implementation of Recycled Concrete Aggregate in the GCC". Advances in Civil Engineering. 2011: 1–6. doi:10.1155/2011/567924. ISSN 1687-8086.
  151. ^ Lu, Linfeng (July 2024). "Optimal Replacement Ratio of Recycled Concrete Aggregate Balancing Mechanical Performance with Sustainability: A Review". Buildings. 14 (7): 2204. doi:10.3390/buildings14072204. ISSN 2075-5309.
  152. ^ Rao, Akash; Jha, Kumar N.; Misra, Sudhir (1 March 2007). "Use of aggregates from recycled construction and demolition waste in concrete". Resources, Conservation and Recycling. 50 (1): 71–81. Bibcode:2007RCR....50...71R. doi:10.1016/j.resconrec.2006.05.010. ISSN 0921-3449.
  153. ^ Peters, Adele (14 May 2024). "This sleek Paris housing complex was made from the rubble of a 1960s building". Fast Company.
  154. ^ "Itaipu Web-site". 2 January 2012. Archived from the original on 9 February 2012. Retrieved 2 January 2012.
  155. ^ Sources, Other News (14 July 2009). "China's Three Gorges Dam, by the Numbers". Probe International. Archived from the original on 29 March 2017. Retrieved 13 August 2022.
  156. ^ "Concrete Pouring of Three Gorges Project Sets World Record". People's Daily. 4 January 2001. Archived from the original on 27 May 2010. Retrieved 24 August 2009.
  157. ^ "Concrete Pumping to 715 m Vertical – A New World Record Parbati Hydroelectric Project Inclined Pressure Shaft Himachal Pradesh – A case Study". The Masterbuilder. Archived from the original on 21 July 2011. Retrieved 21 October 2010.
  158. ^ "SCHWING Stetter Launches New Truck mounted Concrete Pump S-36". NBM&CW (New Building Materials and Construction World). October 2009. Archived from the original on 14 July 2011. Retrieved 21 October 2010.
  159. ^ Janyala, Sreenivas (7 January 2019). "Andhra Pradesh: Polavaram project enters Guinness Book of World Record for concrete pouring". The India Express. Retrieved 7 January 2020.
  160. ^ "Concrete Supplier for Landmark Tower". Construction Week Online. 19 April 2011. Archived from the original on 15 May 2013.
  161. ^ "The world record Concrete Supplier for Landmark Tower Unibeton Ready Mix". Archived from the original on 24 November 2012.
  162. ^ "Abu Dhabi – Landmark Tower has a record-breaking pour" (PDF). Al Habtoor Engineering. September–October 2007. p. 7. Archived from the original (PDF) on 8 March 2011.
  163. ^ National Geographic Channel International / Caroline Anstey (2005), Megastructures: Petronas Twin Towers
  164. ^ "Continuous cast: Exxcel Contract Management oversees record concrete pour". concreteproducts.com. 1 March 1998. Archived from the original on 26 May 2010. Retrieved 25 August 2009.
  165. ^ Exxcel Project Management – Design Build, General Contractors Archived 28 August 2009 at the Wayback Machine. Exxcel.com. Retrieved 19 February 2013.
  166. ^ "Contractors Prepare to Set Gates to Close New Orleans Storm Surge Barrier". www.construction.com. 12 May 2011. Archived from the original on 13 January 2013. Retrieved 13 August 2022.
  167. ^ Rider, Alistair (3 July 2015). "The Concreteness of Concrete Art". Parallax. 21 (3): 340–352. doi:10.1080/13534645.2015.1058887. hdl:10023/10329. ISSN 1353-4645.
  168. ^ "Distinction : Sardoine Mia, lauréate du prix " Faces of peace and art " | Le Courrier de Kinshasa". www.lecourrierdekinshasa.com. Retrieved 16 February 2025.

Further reading

[edit]
[edit]

 

Polyurethane synthesis: the urethane groups −NH−(C=O)−O− link the molecular units, resulting in a polymer consisting of an alternating chain of two monomers.
A kitchen sponge made of polyurethane foam

Polyurethane (/ˌpɒliˈjʊərəˌθn, -jʊəˈrɛθn/;[1] often abbreviated PUR and PU) is a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane does not refer to a single type of polymer but a group of polymers. Unlike polyethylene and polystyrene, polyurethanes can be produced from a wide range of starting materials, resulting in various polymers within the same group. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.[2]

A polyurethane is typically produced by reacting a polymeric isocyanate with a polyol.[3] Since a polyurethane contains two types of monomers, which polymerize one after the other, they are classed as alternating copolymers. Both the isocyanates and polyols used to make a polyurethane contain two or more functional groups per molecule.

Global production in 2019 was 25 million metric tonnes,[4] accounting for about 6% of all polymers produced in that year.

History

[edit]
Otto Bayer in 1952 demonstrating his creation

Otto Bayer and his coworkers at IG Farben in Leverkusen, Germany, first made polyurethanes in 1937.[5][6] The new polymers had some advantages over existing plastics that were made by polymerizing olefins or by polycondensation, and were not covered by patents obtained by Wallace Carothers on polyesters.[7] Early work focused on the production of fibers and flexible foams and PUs were applied on a limited scale as aircraft coating during World War II.[7] Polyisocyanates became commercially available in 1952, and production of flexible polyurethane foam began in 1954 by combining toluene diisocyanate (TDI) and polyester polyols. These materials were also used to produce rigid foams, gum rubber, and elastomers. Linear fibers were produced from hexamethylene diisocyanate (HDI) and 1,4-Butanediol (BDO).

DuPont introduced polyethers, specifically poly(tetramethylene ether) glycol, in 1956. BASF and Dow Chemical introduced polyalkylene glycols in 1957. Polyether polyols were cheaper, easier to handle and more water-resistant than polyester polyols. Union Carbide and Mobay, a U.S. Monsanto/Bayer joint venture, also began making polyurethane chemicals.[7] In 1960 more than 45,000 metric tons of flexible polyurethane foams were produced. The availability of chlorofluoroalkane blowing agents, inexpensive polyether polyols, and methylene diphenyl diisocyanate (MDI) allowed polyurethane rigid foams to be used as high-performance insulation materials. In 1967, urethane-modified polyisocyanurate rigid foams were introduced, offering even better thermal stability and flammability resistance. During the 1960s, automotive interior safety components, such as instrument and door panels, were produced by back-filling thermoplastic skins with semi-rigid foam.

In 1969, Bayer exhibited an all-plastic car in Düsseldorf, Germany. Parts of this car, such as the fascia and body panels, were manufactured using a new process called reaction injection molding (RIM), in which the reactants were mixed and then injected into a mold. The addition of fillers, such as milled glass, mica, and processed mineral fibers, gave rise to reinforced RIM (RRIM), which provided improvements in flexural modulus (stiffness), reduction in coefficient of thermal expansion and better thermal stability. This technology was used to make the first plastic-body automobile in the United States, the Pontiac Fiero, in 1983. Further increases in stiffness were obtained by incorporating pre-placed glass mats into the RIM mold cavity, also known broadly as resin injection molding, or structural RIM.

Starting in the early 1980s, water-blown microcellular flexible foams were used to mold gaskets for automotive panels and air-filter seals, replacing PVC polymers. Polyurethane foams are used in many automotive applications including seating, head and arm rests, and headliners.

Polyurethane foam (including foam rubber) is sometimes made using small amounts of blowing agents to give less dense foam, better cushioning/energy absorption or thermal insulation. In the early 1990s, because of their impact on ozone depletion, the Montreal Protocol restricted the use of many chlorine-containing blowing agents, such as trichlorofluoromethane (CFC-11). By the late 1990s, blowing agents such as carbon dioxide, pentane, 1,1,1,2-tetrafluoroethane (HFC-134a) and 1,1,1,3,3-pentafluoropropane (HFC-245fa) were widely used in North America and the EU, although chlorinated blowing agents remained in use in many developing countries. Later, HFC-134a was also banned due to high ODP and GWP readings, and HFC-141B was introduced in early 2000s as an alternate blowing agent in developing nations.[8]

Chemistry

[edit]

Polyurethanes are produced by reacting diisocyanates with polyols,[9][10][11][12][13][14] often in the presence of a catalyst, or upon exposure to ultraviolet radiation.[15] Common catalysts include tertiary amines, such as DABCO, DMDEE, or metallic soaps, such as dibutyltin dilaurate. The stoichiometry of the starting materials must be carefully controlled as excess isocyanate can trimerise, leading to the formation of rigid polyisocyanurates. The polymer usually has a highly crosslinked molecular structure, resulting in a thermosetting material which does not melt on heating; although some thermoplastic polyurethanes are also produced.

 
Carbon dioxide gas and urea links formed by reacting water and isocyanate

The most common application of polyurethane is as solid foams, which requires the presence of a gas, or blowing agent, during the polymerization step. This is commonly achieved by adding small amounts of water, which reacts with isocyanates to form CO2 gas and an amine, via an unstable carbamic acid group. The amine produced can also react with isocyanates to form urea groups, and as such the polymer will contain both these and urethane linkers. The urea is not very soluble in the reaction mixture and tends to form separate "hard segment" phases consisting mostly of polyurea. The concentration and organization of these polyurea phases can have a significant impact on the properties of the foam.[16]

The type of foam produced can be controlled by regulating the amount of blowing agent and also by the addition of various surfactants which change the rheology of the polymerising mixture. Foams can be either "closed-cell", where most of the original bubbles or cells remain intact, or "open-cell", where the bubbles have broken but the edges of the bubbles are stiff enough to retain their shape, in extreme cases reticulated foams can be formed. Open-cell foams feel soft and allow air to flow through, so they are comfortable when used in seat cushions or mattresses. Closed-cell foams are used as rigid thermal insulation. High-density microcellular foams can be formed without the addition of blowing agents by mechanically frothing the polyol prior to use. These are tough elastomeric materials used in covering car steering wheels or shoe soles.

The properties of a polyurethane are greatly influenced by the types of isocyanates and polyols used to make it. Long, flexible segments, contributed by the polyol, give soft, elastic polymer. High amounts of crosslinking give tough or rigid polymers. Long chains and low crosslinking give a polymer that is very stretchy, short chains with many crosslinks produce a hard polymer while long chains and intermediate crosslinking give a polymer useful for making foam. The choices available for the isocyanates and polyols, in addition to other additives and processing conditions allow polyurethanes to have the very wide range of properties that make them such widely used polymers.

Raw materials

[edit]

The main ingredients to make a polyurethane are di- and tri-isocyanates and polyols. Other materials are added to aid processing the polymer or to modify the properties of the polymer. PU foam formulation sometimes have water added too.

Isocyanates

[edit]

Isocyanates used to make polyurethane have two or more isocyanate groups on each molecule. The most commonly used isocyanates are the aromatic diisocyanates, toluene diisocyanate (TDI) and methylene diphenyl diisocyanate, (MDI). These aromatic isocyanates are more reactive than aliphatic isocyanates.

TDI and MDI are generally less expensive and more reactive than other isocyanates. Industrial grade TDI and MDI are mixtures of isomers and MDI often contains polymeric materials. They are used to make flexible foam (for example slabstock foam for mattresses or molded foams for car seats),[17] rigid foam (for example insulating foam in refrigerators) elastomers (shoe soles, for example), and so on. The isocyanates may be modified by partially reacting them with polyols or introducing some other materials to reduce volatility (and hence toxicity) of the isocyanates, decrease their freezing points to make handling easier or to improve the properties of the final polymers.

MDI isomers and polymer
MDI isomers and polymer

Aliphatic and cycloaliphatic isocyanates are used in smaller quantities, most often in coatings and other applications where color and transparency are important since polyurethanes made with aromatic isocyanates tend to darken on exposure to light.[page needed][18] The most important aliphatic and cycloaliphatic isocyanates are 1,6-hexamethylene diisocyanate (HDI), 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl-cyclohexane (isophorone diisocyanate, IPDI), and 4,4′-diisocyanato dicyclohexylmethane (H12MDI or hydrogenated MDI). Other more specialized isocyanates include Tetramethylxylylene diisocyanate (TMXDI).

Polyols

[edit]

Polyols are polymers in their own right and have on average two or more hydroxyl groups per molecule. They can be converted to polyether polyols by co-polymerizing ethylene oxide and propylene oxide with a suitable polyol precursor.[19] Polyester polyols are made by the polycondensation of multifunctional carboxylic acids and polyhydroxyl compounds. They can be further classified according to their end use. Higher molecular weight polyols (molecular weights from 2,000 to 10,000) are used to make more flexible polyurethanes while lower molecular weight polyols make more rigid products.

Polyols for flexible applications use low functionality initiators such as dipropylene glycol (f = 2), glycerine (f = 3), or a sorbitol/water solution (f = 2.75).[20] Polyols for rigid applications use higher functionality initiators such as sucrose (f = 8), sorbitol (f = 6), toluenediamine (f = 4), and Mannich bases (f = 4). Propylene oxide and/or ethylene oxide is added to the initiators until the desired molecular weight is achieved. The order of addition and the amounts of each oxide affect many polyol properties, such as compatibility, water-solubility, and reactivity. Polyols made with only propylene oxide are terminated with secondary hydroxyl groups and are less reactive than polyols capped with ethylene oxide, which contain primary hydroxyl groups. Incorporating carbon dioxide into the polyol structure is being researched by multiple companies.

Graft polyols (also called filled polyols or polymer polyols) contain finely dispersed styrene–acrylonitrile, acrylonitrile, or polyurea (PHD) polymer solids chemically grafted to a high molecular weight polyether backbone. They are used to increase the load-bearing properties of low-density high-resiliency (HR) foam, as well as add toughness to microcellular foams and cast elastomers. Initiators such as ethylenediamine and triethanolamine are used to make low molecular weight rigid foam polyols that have built-in catalytic activity due to the presence of nitrogen atoms in the backbone. A special class of polyether polyols, poly(tetramethylene ether) glycols, which are made by polymerizing tetrahydrofuran, are used in high performance coating, wetting and elastomer applications.

Conventional polyester polyols are based on virgin raw materials and are manufactured by the direct polyesterification of high-purity diacids and glycols, such as adipic acid and 1,4-butanediol. Polyester polyols are usually more expensive and more viscous than polyether polyols, but they make polyurethanes with better solvent, abrasion, and cut resistance. Other polyester polyols are based on reclaimed raw materials. They are manufactured by transesterification (glycolysis) of recycled poly(ethyleneterephthalate) (PET) or dimethylterephthalate (DMT) distillation bottoms with glycols such as diethylene glycol. These low molecular weight, aromatic polyester polyols are used in rigid foam, and bring low cost and excellent flammability characteristics to polyisocyanurate (PIR) boardstock and polyurethane spray foam insulation.

Specialty polyols include polycarbonate polyols, polycaprolactone polyols, polybutadiene polyols, and polysulfide polyols. The materials are used in elastomer, sealant, and adhesive applications that require superior weatherability, and resistance to chemical and environmental attack. Natural oil polyols derived from castor oil and other vegetable oils are used to make elastomers, flexible bunstock, and flexible molded foam.

Co-polymerizing chlorotrifluoroethylene or tetrafluoroethylene with vinyl ethers containing hydroxyalkyl vinyl ether produces fluorinated (FEVE) polyols. Two-component fluorinated polyurethanes prepared by reacting FEVE fluorinated polyols with polyisocyanate have been used to make ambient cure paints and coatings. Since fluorinated polyurethanes contain a high percentage of fluorine–carbon bonds, which are the strongest bonds among all chemical bonds, fluorinated polyurethanes exhibit resistance to UV, acids, alkali, salts, chemicals, solvents, weathering, corrosion, fungi and microbial attack. These have been used for high performance coatings and paints.[21]

Phosphorus-containing polyols are available that become chemically bonded to the polyurethane matrix for the use as flame retardants. This covalent linkage prevents migration and leaching of the organophosphorus compound.

Bio-derived materials

[edit]

Interest in sustainable "green" products raised interest in polyols derived from vegetable oils,[22][23][24] fatty acids,[25] lignin, sorbitol,[26] etc. These are mostly contributing to polyol part. There are attempts made to prepare isocyanate part using bio-derived material. However, as far as commercialization is concern, polyol part is more targeted being easy and required in more quantity than isocyanate part. Various oils used in the preparation polyols for polyurethanes include soybean oil, cottonseed oil, neem seed oil, algae oil,[27][28] and castor oil. Vegetable oils are functionalized in various ways and modified to polyetheramides, polyethers, alkyds, etc. Renewable sources used to prepare polyols may be fatty acids or dimer fatty acids.[29] Some biobased and isocyanate-free polyurethanes exploit the reaction between polyamines and cyclic carbonates to produce polyhydroxyurethanes.[30]

Chain extenders and cross linkers

[edit]

Chain extenders (f = 2) and cross linkers (f ≥ 3) are low molecular weight hydroxyl and amine terminated compounds that play an important role in the polymer morphology of polyurethane fibers, elastomers, adhesives, and certain integral skin and microcellular foams.

The elastomeric properties of these materials are derived from the phase separation of the hard and soft copolymer segments of the polymer, such that the urethane hard segment domains serve as cross-links between the amorphous polyether (or polyester) soft segment domains. This phase separation occurs because the mainly nonpolar, low melting soft segments are incompatible with the polar, high melting hard segments. The soft segments, which are formed from high molecular weight polyols, are mobile and are normally present in coiled formation, while the hard segments, which are formed from the isocyanate and chain extenders, are stiff and immobile. As the hard segments are covalently coupled to the soft segments, they inhibit plastic flow of the polymer chains, thus creating elastomeric resiliency. Upon mechanical deformation, a portion of the soft segments are stressed by uncoiling, and the hard segments become aligned in the stress direction. This reorientation of the hard segments and consequent powerful hydrogen bonding contributes to high tensile strength, elongation, and tear resistance values.[12][31][32][33][34] The choice of chain extender also determines flexural, heat, and chemical resistance properties.

The most important chain extenders are ethylene glycol, 1,4-butanediol (1,4-BDO or BDO), 1,6-hexanediol, cyclohexane dimethanol and hydroquinone bis(2-hydroxyethyl) ether (HQEE). All of these glycols form polyurethanes that phase separate well and form well defined hard segment domains, and are melt processable. They are all suitable for thermoplastic polyurethanes with the exception of ethylene glycol, since its derived bis-phenyl urethane undergoes unfavorable degradation at high hard segment levels.[10] Diethanolamine and triethanolamine are used in flex molded foams to build firmness and add catalytic activity. Diethyltoluenediamine is used extensively in RIM, and in polyurethane and polyurea elastomer formulations.

Table of chain extenders and cross linkers[35]
Compound type Molecule Mol.
mass
Density
(g/cm3)
Melting
pt (°C)
Boiling
pt (°C)
Hydroxyl compounds – difunctional molecules Ethylene glycol 62.1 1.110 −13.4 197.4
Diethylene glycol 106.1 1.111 −8.7 245.5
Triethylene glycol 150.2 1.120 −7.2 287.8
Tetraethylene glycol 194.2 1.123 −9.4 325.6
Propylene glycol 76.1 1.032 Supercools 187.4
Dipropylene glycol 134.2 1.022 Supercools 232.2
Tripropylene glycol 192.3 1.110 Supercools 265.1
1,3-Propanediol 76.1 1.060 −28 210
1,3-Butanediol 92.1 1.005 207.5
1,4-Butanediol 92.1 1.017 20.1 235
Neopentyl glycol 104.2 130 206
1,6-Hexanediol 118.2 1.017 43 250
1,4-Cyclohexanedimethanol
HQEE
Ethanolamine 61.1 1.018 10.3 170
Diethanolamine 105.1 1.097 28 271
Methyldiethanolamine 119.1 1.043 −21 242
Phenyldiethanolamine 181.2 58 228
Hydroxyl compounds – trifunctional molecules Glycerol 92.1 1.261 18.0 290
Trimethylolpropane
1,2,6-Hexanetriol
Triethanolamine 149.2 1.124 21
Hydroxyl compounds – tetrafunctional molecules Pentaerythritol 136.2 260.5
N,N,N′,N′-Tetrakis
(2-hydroxypropyl)
ethylenediamine
Amine compounds – difunctional molecules Diethyltoluenediamine 178.3 1.022 308
Dimethylthiotoluenediamine 214.0 1.208

Catalysts

[edit]

Polyurethane catalysts can be classified into two broad categories, basic and acidic amine. Tertiary amine catalysts function by enhancing the nucleophilicity of the diol component. Alkyl tin carboxylates, oxides and mercaptides oxides function as mild Lewis acids in accelerating the formation of polyurethane. As bases, traditional amine catalysts include triethylenediamine (TEDA, also called DABCO, 1,4-diazabicyclo[2.2.2]octane), dimethylcyclohexylamine (DMCHA), dimethylethanolamine (DMEA), Dimethylaminoethoxyethanol and bis-(2-dimethylaminoethyl)ether, a blowing catalyst also called A-99. A typical Lewis acidic catalyst is dibutyltin dilaurate. The process is highly sensitive to the nature of the catalyst and is also known to be autocatalytic.[36]

Another class of catalysts was published in a study in May 2024. In this study, polyurethane synthesis was investigated in the presence of acid catalysts, namely dimethylphosphite (DMHP), methanesulfonic acid (MSA), and trifluoromethanesulfonic acid (TFMSA). The thermodynamic profile was examined and described in detail through computational tools, showing that TFMSA had the best catalytic properties. The study aimed to open the door to a new class of catalysts.[37]

Factors affecting catalyst selection include balancing three reactions: urethane (polyol+isocyanate, or gel) formation, the urea (water+isocyanate, or "blow") formation, or the isocyanate trimerization reaction (e.g., using potassium acetate, to form isocyanurate rings). A variety of specialized catalysts have been developed.[38][39][40]

Surfactants

[edit]

Surfactants are used to modify the characteristics of both foam and non-foam polyurethane polymers. They take the form of polydimethylsiloxane-polyoxyalkylene block copolymers, silicone oils, nonylphenol ethoxylates, and other organic compounds. In foams, they are used to emulsify the liquid components, regulate cell size, and stabilize the cell structure to prevent collapse and sub-surface voids.[41] In non-foam applications they are used as air release and antifoaming agents, as wetting agents, and are used to eliminate surface defects such as pin holes, orange peel, and sink marks.

Production

[edit]

Polyurethanes are produced by mixing two or more liquid streams. The polyol stream contains catalysts, surfactants, blowing agents (when making polyurethane foam insulation) and so on. The two components are referred to as a polyurethane system, or simply a system. The isocyanate is commonly referred to in North America as the 'A-side' or just the 'iso'. The blend of polyols and other additives is commonly referred to as the 'B-side' or as the 'poly'.[citation needed] This mixture might also be called a 'resin' or 'resin blend'. In Europe the meanings for 'A-side' and 'B-side' are reversed.[citation needed] Resin blend additives may include chain extenders, cross linkers, surfactants, flame retardants, blowing agents, pigments, and fillers. Polyurethane can be made in a variety of densities and hardnesses by varying the isocyanate, polyol or additives.

Health and safety

[edit]

Fully reacted polyurethane polymer is chemically inert.[42] No exposure limits have been established in the U.S. by OSHA (Occupational Safety and Health Administration) or ACGIH (American Conference of Governmental Industrial Hygienists). It is not regulated by OSHA for carcinogenicity.

Open-flame test. Top: untreated polyurethane foam burns vigorously. Bottom: with fire-retardant treatment.

Polyurethanes are combustible.[43] Decomposition from fire can produce significant amounts of carbon monoxide and hydrogen cyanide, in addition to nitrogen oxides, isocyanates, and other toxic products.[44] Due to the flammability of the material, it has to be treated with flame retardants (at least in case of furniture), almost all of which are considered harmful.[45][46] California later issued Technical Bulletin 117 2013 which allowed most polyurethane foam to pass flammability tests without the use of flame retardants. Green Science Policy Institute states: "Although the new standard can be met without flame retardants, it does NOT ban their use. Consumers who wish to reduce household exposure to flame retardants can look for a TB117-2013 tag on furniture, and verify with retailers that products do not contain flame retardants."[47]

Liquid resin blends and isocyanates may contain hazardous or regulated components. Isocyanates are known skin and respiratory sensitizers. Additionally, amines, glycols, and phosphate present in spray polyurethane foams present risks.[48]

Exposure to chemicals that may be emitted during or after application of polyurethane spray foam (such as isocyanates) are harmful to human health and therefore special precautions are required during and after this process.[49]

In the United States, additional health and safety information can be found through organizations such as the Polyurethane Manufacturers Association (PMA) and the Center for the Polyurethanes Industry (CPI), as well as from polyurethane system and raw material manufacturers. Regulatory information can be found in the Code of Federal Regulations Title 21 (Food and Drugs) and Title 40 (Protection of the Environment). In Europe, health and safety information is available from ISOPA,[50] the European Diisocyanate and Polyol Producers Association.

Manufacturing

[edit]

The methods of manufacturing polyurethane finished goods range from small, hand pour piece-part operations to large, high-volume bunstock and boardstock production lines. Regardless of the end-product, the manufacturing principle is the same: to meter the liquid isocyanate and resin blend at a specified stoichiometric ratio, mix them together until a homogeneous blend is obtained, dispense the reacting liquid into a mold or on to a surface, wait until it cures, then demold the finished part.

Dispensing equipment

[edit]

Although the capital outlay can be high, it is desirable to use a meter-mix or dispense unit for even low-volume production operations that require a steady output of finished parts. Dispense equipment consists of material holding (day) tanks, metering pumps, a mix head, and a control unit. Often, a conditioning or heater–chiller unit is added to control material temperature in order to improve mix efficiency, cure rate, and to reduce process variability. Choice of dispense equipment components depends on shot size, throughput, material characteristics such as viscosity and filler content, and process control. Material day tanks may be single to hundreds of gallons in size and may be supplied directly from drums, IBCs (intermediate bulk containers, such as caged IBC totes), or bulk storage tanks. They may incorporate level sensors, conditioning jackets, and mixers. Pumps can be sized to meter in single grams per second up to hundreds of pounds per minute. They can be rotary, gear, or piston pumps, or can be specially hardened lance pumps to meter liquids containing highly abrasive fillers such as chopped or hammer-milled glass fiber and wollastonite.[citation needed]

The pumps can drive low-pressure (10 to 30 bar, 1 to 3 MPa) or high-pressure (125 to 250 bar, 12.5 to 25.0 MPa) dispense systems. Mix heads can be simple static mix tubes, rotary-element mixers, low-pressure dynamic mixers, or high-pressure hydraulically actuated direct impingement mixers. Control units may have basic on/off and dispense/stop switches, and analogue pressure and temperature gauges, or may be computer-controlled with flow meters to electronically calibrate mix ratio, digital temperature and level sensors, and a full suite of statistical process control software. Add-ons to dispense equipment include nucleation or gas injection units, and third or fourth stream capability for adding pigments or metering in supplemental additive packages.

Tooling

[edit]

Distinct from pour-in-place, bun and boardstock, and coating applications, the production of piece parts requires tooling to contain and form the reacting liquid. The choice of mold-making material is dependent on the expected number of uses to end-of-life (EOL), molding pressure, flexibility, and heat transfer characteristics.

RTV silicone is used for tooling that has an EOL in the thousands of parts. It is typically used for molding rigid foam parts, where the ability to stretch and peel the mold around undercuts is needed. The heat transfer characteristic of RTV silicone tooling is poor. High-performance, flexible polyurethane elastomers are also used in this way.

Epoxy, metal-filled epoxy, and metal-coated epoxy is used for tooling that has an EOL in the tens of thousands of parts. It is typically used for molding flexible foam cushions and seating, integral skin and microcellular foam padding, and shallow-draft RIM bezels and fascia. The heat transfer characteristic of epoxy tooling is fair; the heat transfer characteristic of metal-filled and metal-coated epoxy is good. Copper tubing can be incorporated into the body of the tool, allowing hot water to circulate and heat the mold surface.

Aluminum is used for tooling that has an EOL in the hundreds of thousands of parts. It is typically used for molding microcellular foam gasketing and cast elastomer parts, and is milled or extruded into shape.

Mirror-finish stainless steel is used for tooling that imparts a glossy appearance to the finished part. The heat transfer characteristic of metal tooling is excellent.

Finally, molded or milled polypropylene is used to create low-volume tooling for molded gasket applications. Instead of many expensive metal molds, low-cost plastic tooling can be formed from a single metal master, which also allows greater design flexibility. The heat transfer characteristic of polypropylene tooling is poor, which must be taken into consideration during the formulation process.

Applications

[edit]

In 2007, the global consumption of polyurethane raw materials was above 12 million metric tons, and the average annual growth rate was about 5%.[51] Revenues generated with PUR on the global market are expected to rise to approximately US$75 billion by 2022.[52] As they are such an important class of materials, research is constantly taking place and papers published.[53]

Degradation and environmental fate

[edit]

Effects of visible light

[edit]
Polyurethane foam made with an aromatic isocyanate, which has been exposed to UV light. Readily apparent is the discoloration that occurs over time.

Polyurethanes, especially those made using aromatic isocyanates, contain chromophores that interact with light. This is of particular interest in the area of polyurethane coatings, where light stability is a critical factor and is the main reason that aliphatic isocyanates are used in making polyurethane coatings. When PU foam, which is made using aromatic isocyanates, is exposed to visible light, it discolors, turning from off-white to yellow to reddish brown. It has been generally accepted that apart from yellowing, visible light has little effect on foam properties.[54][55] This is especially the case if the yellowing happens on the outer portions of a large foam, as the deterioration of properties in the outer portion has little effect on the overall bulk properties of the foam itself.

It has been reported that exposure to visible light can affect the variability of some physical property test results.[56]

Higher-energy UV radiation promotes chemical reactions in foam, some of which are detrimental to the foam structure.[57]

Hydrolysis and biodegradation

[edit]

Polyurethanes may degrade due to hydrolysis. This is a common problem with shoes left in a closet, and reacting with moisture in the air.[58]

Microbial degradation of polyurethane is believed to be due to the action of esterase, urethanase, hydrolase and protease enzymes.[59] The process is slow as most microbes have difficulty moving beyond the surface of the polymer. Susceptibility to fungi is higher due to their release of extracellular enzymes, which are better able to permeate the polymer matrix. Two species of the Ecuadorian fungus Pestalotiopsis are capable of biodegrading polyurethane in aerobic and anaerobic conditions such as found at the bottom of landfills.[60][61] Degradation of polyurethane items at museums has been reported.[62] Polyester-type polyurethanes are more easily biodegraded by fungus than polyether-type.[63]

See also

[edit]
  • Botanol, a material with higher plant-based content
  • Passive fire protection
  • Penetrant (mechanical, electrical, or structural)
  • Polyaspartic
  • Polyurethane dispersion
  • Thermoplastic polyurethanes
  • Thermoset polymer matrix

References

[edit]
  1. ^ "polyurethane". Dictionary.com Unabridged (Online). n.d.
  2. ^ Gama, Nuno; Ferreira, Artur; Barros-Timmons, Ana (27 September 2018). "Polyurethane Foams: Past, Present, and Future". Materials. 11 (10): 1841. Bibcode:2018Mate...11.1841G. doi:10.3390/ma11101841. PMC 6213201. PMID 30262722.
  3. ^ "Polyurethane". American Chemistry Council. Retrieved 2022-09-19.
  4. ^ "Polyurethane global market volume 2015-2026". Statista. Retrieved 23 July 2021.
  5. ^ Bayer, Otto (1947). "Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane)". Angewandte Chemie. 59 (9): 257–72. Bibcode:1947AngCh..59..257B. doi:10.1002/ange.19470590901.
  6. ^ DE 728981, I.G. Farbenindustrie A.G., "Verfahren zur Herstellung von Polyurethanen bzw. Polyharnstoffen [Process for the production of polyurethanes or polyurea]", published 1942-12-07 
  7. ^ a b c Seymour, Raymond B.; Kauffman, George B. (1992). "Polyurethanes: A class of modern versatile materials". Journal of Chemical Education. 69 (11): 909. Bibcode:1992JChEd..69..909S. doi:10.1021/ed069p909.
  8. ^ Feske, Bert (October 2004). "The Use of Saytex RB-9130/9170 Low Viscosity Brominated Flame Retardant Polyols in HFC-245fa and High Water Formulations" (PDF). Polyurethanes Expo 2004. Las Vegas, NV: Alliance for the Polyurethane Industry Technical Conference. p. 309. Retrieved 2007-08-01.
  9. ^ n ≥ 2
  10. ^ a b Gum, Wilson; Riese, Wolfram; Ulrich, Henri (1992). Reaction Polymers. New York: Oxford University Press. ISBN 978-0-19-520933-4.
  11. ^ Harrington, Ron; Hock, Kathy (1991). Flexible Polyurethane Foams. Midland: The Dow Chemical Company.
  12. ^ a b Oertel, Gunter (1985). Polyurethane Handbook. New York: Macmillen Publishing Co., Inc. ISBN 978-0-02-948920-8.[page needed]
  13. ^ Ulrich, Henri (1996). Chemistry and Technology of Isocyanates. New York: John Wiley & Sons, Inc. ISBN 978-0-471-96371-4.[page needed]
  14. ^ Woods, George (1990). The ICI Polyurethanes Book. New York: John Wiley & Sons, Inc. ISBN 978-0-471-92658-0.[page needed]
  15. ^ Soto, Marc; Sebastián, Rosa María; Marquet, Jordi (2014). "Photochemical Activation of Extremely Weak Nucleophiles: Highly Fluorinated Urethanes and Polyurethanes from Polyfluoro Alcohols". The Journal of Organic Chemistry. 79 (11): 5019–27. doi:10.1021/jo5005789. PMID 24820955.
  16. ^ Kaushiva, Byran D. (August 15, 1999). Structure-Property Relationships of Flexible Polyurethane Foams (Ph.D.). Virginia Polytechnic Institute.
  17. ^ "Technical data sheet from Dow Chemical". Archived from the original on 2007-10-13. Retrieved 2007-09-15.
  18. ^ Randall, David; Lee, Steve (2002). The Polyurethanes Book. New York: Wiley. ISBN 978-0-470-85041-1.
  19. ^ Petrović, Zoran S. (2008). "Polyurethanes from Vegetable Oils". Polymer Reviews. 48 (1): 109–155. doi:10.1080/15583720701834224. S2CID 95466690.
  20. ^ EP 0755955, Hager, Stanley L.; Knight, James E. & Helma, Gregory F. et al., "Polyether polyols suitable for flexible polyurethane foam prepared by co-initiation of aqueous solutions of solid polyhydroxyl initiators", published 1997-01-29, assigned to ARCO Chemical Technology 
  21. ^ Bob Parker. "FEVE Technology for Higher Performance Coating Systems on Bridges" (PDF). Paintsquare.com. Archived from the original (PDF) on 15 August 2021. Retrieved 5 March 2022.
  22. ^ Khanderay, Jitendra C., and Vikas V. Gite. "Vegetable oil-based polyurethane coatings: recent developments in India." Green Materials 5.3 (2017): 109-122.
  23. ^ Niemeyer, Timothy; Patel, Munjal; Geiger, Eric (September 2006). A Further Examination of Soy-Based Polyols in Polyurethane Systems. Salt Lake City, UT: Alliance for the Polyurethane Industry Technical Conference.
  24. ^ "New Twist on Green: 2008 Ford Mustang Seats Will Be Soy-Based Foam". Edmunds inside line. July 12, 2007. Archived from the original on 2008-05-31. Retrieved 2010-06-15.
  25. ^ SD Rajput, PP Mahulikar, VV Gite, Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings, Progress in Organic Coatings 77 (1), 38-46 https://doi.org/10.1016/j.porgcoat.2014.04.030
  26. ^ A Anand, RD Kulkarni, VV Gite, Preparation and properties of eco-friendly two pack PU coatings based on renewable source (sorbitol) and its property improvement by nano ZnO, Progress in Organic Coatings 74 (4), 764-767, https://doi.org/10.1016/j.porgcoat.2011.09.031
  27. ^ Chandrashekhar K Patil, Harishchandra D Jirimali, Jayasinh S Paradeshi, Bhushan L Chaudhari, Prakash K Alagi, Pramod P Mahulikar, Sung Chul Hong, Vikas V Gite, Chemical transformation of renewable algae oil to polyetheramide polyols for polyurethane coatings, Progress in Organic Coatings 151, 106084, https://doi.org/10.1016/j.porgcoat.2020.106084
  28. ^ CK Patil, HD Jirimali, JS Paradeshi, BL Chaudhari, VV Gite, Functional antimicrobial and anticorrosive polyurethane composite coatings from algae oil and silver doped egg shell hydroxyapatite for sustainable development, Progress in Organic Coatings 128, 127-136, https://doi.org/10.1016/j.porgcoat.2018.11.002
  29. ^ Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings, SD Rajput, PP Mahulikar, VV Gite, Progress in Organic Coatings 77 (1), 38-46
  30. ^ Nohra, Bassam; Candy, Laure; Blanco, Jean-François; Guerin, Celine; Raoul, Yann; Mouloungui, Zephirin (2013). "From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes" (PDF). Macromolecules. 46 (10): 3771–92. Bibcode:2013MaMol..46.3771N. doi:10.1021/ma400197c. Archived (PDF) from the original on 2017-09-22.
  31. ^ Blackwell, J.; Nagarajan, M. R.; Hoitink, T. B. (1981). "The Structure of the Hard Segments in MDI/diol/PTMA Polyurethane Elastomers". ACS Symposium Series. 172. Washington, D.C.: American Chemical Society: 179–196. doi:10.1021/bk-1981-0172.ch014. ISBN 978-0-8412-0664-9. ISSN 0097-6156.
  32. ^ Blackwell, John; Gardner, Kenncorwin H. (1979). "Structure of the hard segments in polyurethane elastomers". Polymer. 20 (1): 13–17. doi:10.1016/0032-3861(79)90035-1. ISSN 0032-3861.
  33. ^ Grillo, D. J.; Housel, T. L. (1992). "Physical Properties of Polyurethanes from Polyesters and Other Polyols". Polyurethanes '92 Conference Proceedings. New Orleans, LA: The Society of the Plastics Industry, Inc.
  34. ^ Musselman, S. G.; Santosusso, T. M.; Sperling, L. H. (1998). "Structure Versus Performance Properties of Cast Elastomers". Polyurethanes '98 Conference Proceedings. Dallas, TX: The Society of the Plastics Industry, Inc.
  35. ^ A Guide to Glycols. Midland, Mich.: The Dow Chemical Co., Chemicals and Metals Department. 1992. Brochure 117-00991-92Hyc.
  36. ^ Adam, Norbert; Avar, Geza; Blankenheim, Herbert; Friederichs, Wolfgang; Giersig, Manfred; Weigand, Eckehard; Halfmann, Michael; Wittbecker, Friedrich-Wilhelm; Larimer, Donald-Richard; Maier, Udo; Meyer-Ahrens, Sven; Noble, Karl-Ludwig; Wussow, Hans-Georg (2005). "Polyurethanes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a21_665.pub2. ISBN 978-3-527-30673-2.
  37. ^ Waleed, H. Q.; Viskolcz, B.; Fiser, B. (2024). "Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study". Molecules (Basel, Switzerland). 29 (10): 2375. doi:10.3390/molecules29102375. PMC 11123846. PMID 38792235.
  38. ^ "Jeffcat Amine Catalysts for the Polyurethane Industry" (PDF). 2006. Archived from the original (PDF) on 2007-11-29. Retrieved 2007-10-23.
  39. ^ "Building quality with Air Products trimerisation catalysts" (PDF). 2003. Archived from the original (PDF) on 2007-11-29. Retrieved 2007-10-23.
  40. ^ "FOMREZ Specialty Tin Catalysts for Polyurethane Applications". 120-074-10. January 2001.
  41. ^ Randall, David; Lee, Steve, eds. (2002). "10". The Polyurethanes Book. The United Kingdom: Huntsman International LLC, Polyurethanes business. pp. 156–159. ISBN 978-0470850411. Archived from the original on 2018-05-24. Retrieved 2018-05-23.
  42. ^ Dernehl, C. U. (1966). "Health hazards associated with polyurethane foams". Journal of Occupational Medicine. 8 (2): 59–62. PMID 5903304.
  43. ^ "Health Alert: Polyurethane exposure" (PDF). Archived from the original (PDF) on 2004-10-19. Retrieved 2009-12-19.
  44. ^ McKenna, Sean Thomas; Hull, Terence Richard (2016). "The fire toxicity of polyurethane foams". Fire Science Reviews. 5 (1): 3. doi:10.1186/s40038-016-0012-3.
  45. ^ "Environmental Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam". United States Environmental Protection Agency. September 2005.
  46. ^ "Flame Retardants Used in Flexible Polyurethane Foam – Draft Update to a 2005 Alternatives Assessment". United States Environmental Protection Agency. June 2014. Archived from the original on November 21, 2014.
  47. ^ "Manufacturers" (PDF). greensciencepolicy.org. 2015. Archived (PDF) from the original on 2015-12-19.
  48. ^ "Help Wanted: Spray Polyurethane Foam Insulation Research". NIOSH Science Blog. CDC. 21 March 2012.
  49. ^ "Quick Safety Tips for Spray Polyurethane Foam Users". United States Environmental Protection Agency. 4 August 2015.
  50. ^ "Home : ISOPA". www.isopa.org.
  51. ^ Avar, G. (October 2008). "Polyurethanes (PU)". Kunststoffe International (10/2008): 123–7.
  52. ^ "Market Study: Polyurethanes and Isocyanates". Ceresana. July 2013.
  53. ^ Jakhmola, Swati; Das, Sonalee; Dutta, Kingshuk (2023-10-31). "Emerging research trends in the field of polyurethane and its nanocomposites: Chemistry, Synthesis, Characterization, Application in coatings and Future perspectives". Journal of Coatings Technology and Research. 21 (1): 137–172. doi:10.1007/s11998-023-00841-z. ISSN 1935-3804. S2CID 264908475.
  54. ^ "Discoloration of polyurethane foam" (PDF). Foamex Information sheet. Archived from the original (PDF) on 2010-09-24. Retrieved 2010-09-26.
  55. ^ Valentine, C.; Craig, T.A.; Hager, S.L. (1993). "Inhibition of the Discoloration of Polyurethane Foam Caused by Ultraviolet Light". Journal of Cellular Plastics. 29 (6): 569–88. doi:10.1177/0021955X9302900605. S2CID 208363195.
  56. ^ Blair, G. Ron; Dawe, Bob; McEvoy, Jim; Pask, Roy; de Priamus, Marcela Rusan; Wright, Carol (2007). The Effect of Visible Light on the Variability of Flexible Foam Compression Sets (PDF). Orlando, FL: Center for the Polyurethane Industry. Retrieved 2008-01-26.
  57. ^ Newman, Christopher R.; Forciniti, Daniel (2001). "Modeling the Ultraviolet Photodegradation of Rigid Polyurethane Foams". Industrial & Engineering Chemistry Research. 40 (15): 3346–52. doi:10.1021/ie0009738.
  58. ^ "Hydrolysis, The Crumbling of Shoe Soles explained | Safety Shoes and Gloves". www.safetyjogger.com.
  59. ^ Toward, Gary T. (June 2002). "Biodegradation of polyurethane: a review". International Biodeterioration & Biodegradation. 49 (4): 245–252. Bibcode:2002IBiBi..49..245H. doi:10.1016/S0964-8305(02)00051-3.
  60. ^ Russell, J. R.; Huang, J.; Anand, P.; Kucera, K.; Sandoval, A. G.; Dantzler, K. W.; Hickman, D.; Jee, J.; Kimovec, F. M.; Koppstein, D.; Marks, D. H.; Mittermiller, P. A.; Nunez, S. J.; Santiago, M.; Townes, M. A.; Vishnevetsky, M.; Williams, N. E.; Vargas, M. P. N.; Boulanger, L.-A.; Bascom-Slack, C.; Strobel, S. A. (2011). "Biodegradation of Polyester Polyurethane by Endophytic Fungi". Applied and Environmental Microbiology. 77 (17): 6076–84. Bibcode:2011ApEnM..77.6076R. doi:10.1128/AEM.00521-11. PMC 3165411. PMID 21764951.
  61. ^ "Could Plastic-Eating Mushrooms Solve mankind's Plastic Problem?". Sciencemint. 2021-04-14. Archived from the original on 2021-07-09. Retrieved 2021-07-02.
  62. ^ Cappitelli, F.; Sorlini, C. (2007). "Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage". Applied and Environmental Microbiology. 74 (3): 564–9. Bibcode:2008ApEnM..74..564C. doi:10.1128/AEM.01768-07. PMC 2227722. PMID 18065627.
  63. ^ Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi (2009). "Biodegradability of Plastics". International Journal of Molecular Sciences. 10 (9): 3722–42. doi:10.3390/ijms10093722. PMC 2769161. PMID 19865515.
[edit]
  • Center for the Polyurethanes Industry: information for EH&S issues related to polyurethanes developments
  • Polyurethane synthesis, Polymer Science Learning Center, University of Southern Mississippi
  • Polyurethane Foam Association: Industry information, educational materials and resources related to flexible polyurethane foam
  • PU Europe: European PU insulation industry association (formerly BING): European voice for the national trade associations representing the polyurethane insulation industry
  • ISOPA: European Diisocyanate & Polyol Producers Association: ISOPA represents the manufacturers in Europe of aromatic diisocyanates and polyols